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Lecture 3

SVM
Information Theory (a little BIT)
Some pictures from C. Burges

Today

= Support Vector Machines
= Mutual Information

= Preparation for the next time:

= papers: “Object Recognition with Informative
Features and Linear Classification” by M. Naquet
and S. Ullman
= Ignore section of tree-augmented network
= “Face Recognition with Support Vector

Machines: Global vs. Component-based
Approach”




SVM

= Said to start in 1979 with Vladimir
Vapnik’s paper

= Major developments throughout
1990’s

= Elegant theory
= Has good generalization properties

= Have been applied to diverse
problems very successfully in the last
10-15 years

= One of the most important
developments in pattern recognition
in the last 10 years

Linear Discriminant Functions

= A discriminant function is linear if it can be written as
g(x) = wix + w,

g(x)>0 = xeclass1
g(x)<0 = xeclass 2

»

X2 4

= which separating hyperplane should we choose?




Linear Discriminant Functions

= Training data is just a subset of of all possible data
= Suppose hyperplane is close to sample x;

= |f we see new sample close to sample i, it is likely
to be on the wrong side of the hyperplane
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= Poor generalization (performance on unseen data)

Linear Discriminant Functions

= Hyperplane as far as possible from any sample
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= New samples close to the old samples will be
classified correctly

= Good generalization




SVM

= |dea: maximize distance to the closest example
x(2) | x(2)
A A

x(1)

smaller distance larger distance
= For the optimal hyperplane

= distance to the closest negative example = distance to
the closest positive example

SVM: Linearly Separable Case

= SVM: maximize the margin
x2 A& -

= margqin is twice the absolute value of distance b of
the closest example to the separating hyperplane
= Better generalization (performance on test data)
= in practice
= and in theory




SVM: Linearly Separable Case
x2 4

Support vectors are the samples closest to the
separating hyperplane
= they are the most difficalt patterns to classify

= Optimal hyperplane is completely defined by support vectors
= of course, we do not know which samples are support vectors without

finding the optimal hyperplane

SVM: Formula for the Margin

x(2)
g(x) = wix + w, \T
absolute distance between x
and the boundary g(x) = 0 a
W' X+ w,| 0
[l O o ’
—

distance is unchanged for hyperplane
9+(x)=0g (x)

aw'x + aw,|

lawl — — [w]

Let x; be an example closest to the boundary. Set
|w'x,. +w0|=1

Now the largest margin hyperplane is unique




SVM: Formula for the Margin

= For uniqueness, set |w'x, +w,|=1 for any example
X; closest to the boundary
= now distance from closest sample x;to g(x) = 0 is

= Thus the margin is
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SVM: Optimal Hyperplane

- : 2
= Maximize margin m=-—
[wi

= subject to constraints
w'x;+w, 21 if x; is positive example
w'x; +w, <-1 if x; is negative example

= Let J&= 1 if x; is positive example
z,=—1 if x; is negative example

= Can convert our problem to

minimize J(w)=%||w||2

constrained to  z,(w'x,+w,)>1 vi

= J(w) is a quadratic function, thus there is a single
global minimum




SVM: Optimal Hyperplane

= Use Kuhn-Tucker theorem to convert our problem to:

maximize Ly zn:a,——ZZaa 2,2, X! X,

i
11/1

constrainedto & 20 Vi and zaz =

" a={a,,..., &} are new variables, one for each sample

= Can rewrite Lp(@) using n by n matrix H:

t
n o, [«
- 2la,| |a,

= where the value in the ith row and jth column of His

H; _z,zjx,x,

SVM: Optimal Hyperplane

Use Kuhn-Tucker theorem to convert our problem to:

maximize Ly(a)= ia,. —%iia.a.z.z.x?x.
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constrained to 20 Vi an

a={a,,..., a,} are new variables, one for each sample

L,(a) can be optimized by quadratic programming

Ly(a) formulated in terms of &
= it depends on w and wjindirectly




SVM: Optimal Hyperplane

= After finding the optimal @ = {«q;,..., @}
= For every sample i, one of the following must hold
= a;=0 (sample i is not a support vector)
= ;=0 and z(wix+w,- 1) = 0 (sample i is support vector)
= can find wusing w=zn:a,.z,.x,.
= can solve for w, using'any @ > 0 and a|z,(w'x, +w,)-1]=0

t
Wy =—-w'x,

= Final discriminant function:

g(x)= ( Za,.z,.x,]t X+w,

X;eS

= where Sis the set of support vectors
S={x, | a, #0}

SVM: Optimal Hyperplane

maximize Ly(@)=>a -

Q
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R
N
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constrained to >0 Vi an

L,(a) depends on the number of samples, not on
dimension of samples

samples appear only through the dot products  x; x;

This will become important when looking for a
nonlinear discriminant function, as we will see soon

Code available on the web to optimize




SVM: Non Separable Case

= Data is most likely to be not linearly separable, but
linear classifier may still be appropriate
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= Can apply SVM in non linearly separable case

= data should be “almost” linearly separable for good
performance

SVM: Non Separable Case

= Use non-negative slack variables &,,..., &, (one for
each sample)

= Change constraints from zWw'x,+w,)>1 Vi to
z(wix, +w,)21-& Vi

= £ is a measure of NCE
deviation from the ideal ’
for sample i 2
= &>1 sample i is on the wrong
side of the separating
hyperplane
= 0< & <1 sample i is on the
right side of separating

hyperplane but within the
region of maximum margin

*




SVM: Non Separable Case
= Would like to minimize

1 # of samples
Jw,é,,....E )= E||w|| 2 B not in ideal location

1 if&>0
0 if £<0

= constrainedto z(w'x, +w,)21-¢ and &3>0 Vi

= where /(£ > 0)={

= Bis a constant which measures relative weight of the
first and second terms
= if Bis small, we allow a lot of samples not in ideal position

= if B is large, we want to have very few samples not in ideal
positon

SVM: Non Separable Case

1 # of examples
Jw,&,....,&E, )= E||w|| 24 B not in ideal location

A X ‘o,

large B, few samples not in small 5, a lot of samples
ideal position not in ideal position
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SVM: Non Separable Case

= Unfortunately this minimization problem is NP-hard
due to discontinuity of functions (&)

1 # of examples
JWw,&,,....E,)= EHWH 24 B not in ideal location

1 if£>0
0 if £<0

= constrainedto z(w'x, +w,)=1-¢& and &3>0 Vi

= where (& > 0)={

SVM: Non Separable Case
= |Instead we minimize

a measure of
JWw,é,...E)= 1HWH 241 B # of misclassified
2 examples

z(wix, +w,)21-¢& Vi
&20 Vi

= constrained to {

= Can use Kuhn-Tucker theorem to converted to

maximize L,(a)= Zn:a,. —%Z":Zn:a,a,.z.z.x?x.

i<j%i%
i=1 i=1 j=1

constrainedto  0<e,<p Vi and Y @z,=0
i=1

n
= find wusin w=) a,zX;
11 1

i=1

= solve for w,using any 0 <¢;< 8 and a|z,(w'x, +w,)-1]=0
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Non Linear Mapping

= Cover’s theorem:

= “pattern-classification problem cast in a high dimensional
space non-linearly is more likely to be linearly separable
than in a low-dimensional space”

= One dimensional space, not linearly separable

—faa8—oo00 00—
-3 -2 012 3 5
= Lift to two dimensional space with @(x)=(x,x?)
A n
= o

N o)

v

Non Linear Mapping

= To solve a non linear classification problem with a
linear classifier
1. Project data x to high dimension using function ¢(x)
2. Find a linear discriminant function for transformed data ¢(x)
3. Final nonlinear discriminant function is g(x) = w! ¢(x) +w,

PAX)=(xX) o

=|n 2D, discriminant function is linear

(1) (1)
g([;(Z)D = [W1 Wz][)):@)] +W,

=In 1D, discriminant function is not linear  g(x)=w,x +w,x* +w,

12



Non Linear Mapping: Another Example

Non Linear SVM

= Can use any linear classifier after lifting data into a
higher dimensional space. However we will have to
deal with the “curse of dimensionality”

1. poor generalization to test data
2. computationally expensive

= SVM avoids the “curse of dimensionality” problems by

1. enforcing largest margin permits good generalization
= |t can be shown that generalization in SVM is a function of the
margin, independent of the dimensionality
2. computation in the higher dimensional case is performed
only implicitly through the use of kernel functions

13



Non Linear SVM: Kernels

= Recall SVM optimization
maximize  L,( Z";a, %

n n
> a2,z X x;
j=1

i=1

-~

= Note this optimization depends on samples Xx; only
through the dot product x;'x;

= If we lift x; to high dimension using ¢( eed to

X), n
compute hlgh dimensional product ¢(x;)!¢(x))

maximize L,(a)= Za —%Zn:zn:a,az,zl

i=1 j=1

= Idea: find kernel function K{(x;X;) s.t.

Kixx)) = o(x)'o(x))

Non Linear SVM: Kernels

maximize Ly( ia,—%iia,az,z!
=1

i=1 j=1

= Then we only need to compute K{(x;X;) instead of

P x) 'p(x))
=  ‘“kernel trick”: do not need to perform operations in high
dimensional space explicitly

14



Non Linear SVM: Kernels

Suppose we have 2 features and K(x,y) = (xly)?

Which mapping ¢(x) does it correspond to?

2

K(x,y)=(x"yf= ([X“’ X‘”]B,'g))D = (xy® 1. 5@y @

— (™M (1),,(1) 2),,(2) 2),,(2)
(xy O 4 2(x Wy O x@y @) (x@y@f t
— (1) (1) y(2) (2) (1) (1),,(2) (2)
(xF V2xOx@ (x@F[[(y®f J2yy® (y@f

Thus =
o(x)= I(X(1))2 V2xWx® (x(2))2] [

Non Linear SVM: Kernels

How to choose kernel function K(x;,x;)?
= Kix;x; should correspond to product ¢(x,)'@(x;) ina
higher dimensional space

= Mercer’s condition tells us which kernel function can be
expressed as dot product of two vectors

= Kernel's not satisfying Mercer’s condition can be
sometimes used, but no geometrical interpretation

Some common choices (satisfying Mercer’s
condition):
= Polynomial kernel  K(x,,x,)=(x!x, +1)

= Gaussian radial Basis kernel (data is lifted in infinite
dimension)
2
X = x|

K(Xiixj)=exp(_;

15



Non Linear SVM

search for separating hyperplane in high dimension
wo(x)+w, =0

Choose ¢(x) so that the first (“0”th) dimension is the
augmented dimension with feature value fixed to 1

o(x)=[1 x x@ xx@F

Threshold parameter w, gets folded into the weight

vector w
w, wl|:|=0

Non Linear SVM

Will not use notation a =[w, w], we'll use old
notation w and seek hyperplane through the origin

wo(x)=0

If the first component of ¢(x) is not 7, the above is
equivalent to saying that the hyperplane has to go
through the origin in high dimension
= removes only one degree of freedom

= But we have introduced many new degrees when we lifted
the data in high dimension

16



Non Linear SVM Recepie

Start with data x;,...,x,, which lives in feature space
of dimension d

Choose kernel K{x;x)) or function ¢(x;) which takes
sample x; to a higher dimensional space

Find the largest margin linear discriminant function in
the higher dimensional space by using quadratic
programming package to solve:

maximize LD(a)=Zn:a,- %Zn:iaa,z,z,K(x x;)
i=1 i=1 j=

constrainedto 0<ag,<pB Vi and ) o,z,=0
i=1

Non Linear SVM Recipe

Weight vector win the high dimensional space:

w= ZZ,¢

X;eS

= where Sis the set of support vectors S={x, | a, #0}

Linear discriminant function of largest margin in the
high dimensional space:

9(o(x))= wip(x) (z z,¢(xJ x)

X;eS

Non linear discriminant function in the original space

X)=(Z“izi¢(X:)J o(x) = Zsaiz#’t(xi)?(x ZaZK X;,X)

Xx;eS X;eS

decide class 1 if g (x) > 0, otherwise decide class 2

17



Non Linear SVM

Nonlinear discriminant function

g(x)= Z &l Z; K(Xisx)

X;eS

g( X) — z weight of support | |F71 "invefrrsoemdi)?tt%nce”
WG 2 support vector X;

most important
_training samples,

i.e. support vectors K(x,-,x)=exp(—2;2x, — x|

SVM Example: XOR Problem

Class 1: x;=[1,-1], X, = [-1,1]
Class 2: Xy =[1,1], X, = [-1,-1]

Use polynomial kernel of degree 2:
= KX, X) = (x;'x;+ 1)?
= This kernel corresponds to mapping

ox)=fi V2x0 y2x® y2x0x® (x0f (x@f]

Need to maximize

4 1 4 4
LD(“)=Z“:"§ Za,.a,.z,.z,(x}x,+1)z
i=1 i=1 j=1

I

constrainedto 0<e, Vi and o, +a, -0, -, =0

18



SVM Example: XOR Problem

4
Canrewrite Ly(a)=) ¢ —%a‘Ha
i=1

= where e=[e, % & o] and H=!

Take derivative with respect to aand set it to 0

NIEEEE
|1 -1 -1, _
gal@=|1|-|-1 -1 "9 “1]2=0

1 -1-1 1 9

Solution to the above is a;= @, = a3 = a, = 0.25
= gsatisfies the constraints Vi, 0<¢e;, and o, +a, -, -, =0
= all samples are support vectors

SVM Example: XOR Problem

ox)=fi V2x® y2x® y2x0x® (x0f (x@f]

Weight vector wis:
W=Z:aizi¢(xi) =0'25(¢(X1)+¢(X2)_¢(X3)_¢(X4))
} =lo 0 0 -v2 0 o
Thus the nonlinear discriminant function is:

a(x)= W¢(X) = iwi¢i(x) = —\/E(\/EX(”X(Z)) =-2x"x®

19



SVM Example: XOR Problem

g(x)=-2x"x®
J2x0x®@
x? A
12
o o
o i’ o P
J2x®
. . e e e
-1 1 x 2 -1 .1 17 2
o :, 0 )
L O O
1.2
decision boundaries nonlinear decision boundary is linear

Degree 3 Polynomial Kernel

= Inlinearly separable case (on the left), decision
boundary is roughly linear, indicating that
dimensionality is controlled

= Nonseparable case (on the right) is handled by a
polynomial of degree 3

20



SVM Summary

Advantages:
= Based on nice theory
= excellent generalization properties
= objective function has no local minima
= can be used to find non linear discriminant functions

= Complexity of the classifier is characterized by the number
of support vectors rather than the dimensionality of the
transformed space

Disadvantages:
= tends to be slower than other methods
= quadratic programming is computationally expensive
= Not clear how to choose the Kernel

Information theory

= Information Theory regards information as only those
symbols that are uncertain to the receiver

only infrmatn esentil to understnd mst b tranmitd

= Shannon made clear that uncertainty is the very commodity
of communication

= The amount of information, or uncertainty, output by an
information source is a measure of its entropy

= In turn, a source's entropy determines the amount of bits per
symbol required to encode the source's information

= Messages are encoded with strings of 0 and 1 (bits)

21



Information theory

= Suppose we toss a fair die with 8 sides
= need 3 bits to transmit the results of each toss
= 1000 throws will need 3000 bits to transmit
= Suppose the die is biased
= side A occurs with probability 1/2, chances of throwing B are 1/4,
Care 1/8, D are 1/16, E are 1/32, F 1/64, G and H are 1/128

= Encode A=0,B=10,C=110,D =1110,..., soon until G =
1111110, H=1111111

= We need, on average, 1/2+2/4+3/8+4/16+5/32+6/64+7/128+7/128
= 1.984 bits to encode results of a toss

= 1000 throws require 1984 bits to transmit
= Less bits to send = less “information”

= Biased die tosses contain less “information” than unbiased die
tosses (know in advance biased sequence will have a lot of A’s)

= What'’s the number of bits in the best encoding?

= Extreme case: if a die always shows side A, a sequence of
1,000 tosses has no information, 0 bits to encode

Information theory

= if a die is fair (any side is equally likely, or uniform distribution),
for any toss we need log(8) = 3 bits

= Suppose any of n events is equally likely (uniform distribution)
= P(x) = 1/n, therefore -log P = -log(1/n) = log n
= In the “good” encoding strategy for our biased die example,
every side x has -log p(x) bits in its code

= Expected number of bits is

—Zp )log p(x)

22



Shannon’s Entropy

Hlp(x)]=-3 p(x)log plx)= T p(x)iog L5

= How much randomness (or uncertainty) is there in the value
of signal x if it has distribution p(x)

= For uniform distribution (every event is equally likely), H[x] is
maximum

= |f p(x) = 1 for some event x, then H[x] = 0

= Systems with one very common event have less entropy than
systems with many equally probable events

= Gives the expected length of optimal encoding (in binary
bits) of a message following distribution p(x)
= doesn’t actually give this optimal encoding

Conditional Entropy of X given Y

Hlx|y]=Y p(x,y)log ==Y p(x,y)log p(x|y)

1
p(x|y)

= Measures average uncertainty about x when
y is known
= Property:
= H[x] > H[x|y], which means after seeing new

data (y), the uncertainty about x is not
increased, on average
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Mutual Information of Xand Y

I[x,y]=H(x)-H(x | y)

= Measures the average reduction in uncertainty
about x after y is known

= or, equivalently, it measures the amount of
information that y conveys about x
= Properties
= 1(x,y) = 1(y,x)
= I(x,y) =0
= If x and y are independent, then I(x,y) = 0
= [(x,x) = H(x)

MI for Feature Selection

I[x,c]=H(c)-H(c|x)

= Let x be a proposed feature and c be the
class

= If I[x,c] is high, we can expect feature x be
good at predicting class ¢
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