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CS840a
Fall 2006 

Learning and Computer Vision 
Prof. Olga Veksler

Lecture 3
SVM

Information Theory (a little BIT)
Some pictures from C. Burges

Today

� Support Vector Machines
� Mutual Information
� Preparation for the next time:

� papers: “Object Recognition with Informative 
Features and Linear Classification” by M. Naquet 
and S. Ullman
� Ignore section of tree-augmented network

� “Face Recognition with Support Vector 
Machines: Global vs. Component-based 
Approach”

SVM

� Said to start in 1979 with Vladimir 
Vapnik’s paper

� Major developments throughout 
1990’s

� Elegant theory 
� Has good generalization properties

� Have been applied to diverse 
problems very successfully  in the last 
10-15 years 

� One of the most important  
developments in pattern recognition  
in the last 10 years

Linear Discriminant Functions
� A discriminant function is linear if it can be written as

g(x) = wtx + w0

x(1)

x(2)

(((( ))))
(((( )))) 20

10
classxxg
classxxg

∈∈∈∈����<<<<
∈∈∈∈����>>>>

� which separating hyperplane should we choose?
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Linear Discriminant Functions

x(1)

x(2)

� Training data is just a subset of of all possible data
� Suppose hyperplane is close to sample xi
� If we see new sample close to sample i, it is likely 

to be on the wrong side of the hyperplane

xi

� Poor generalization (performance on unseen data)

Linear Discriminant Functions
� Hyperplane as far as possible from any sample

x(1)

x(2)

xi

� New samples close to the old samples will be 
classified correctly

� Good generalization

SVM
� Idea: maximize distance to the closest example

x(1)

x(2)

xi

x(1)

x(2)

xi

smaller distance larger distance

� For the optimal hyperplane
� distance to the closest negative example = distance to 

the closest positive example

SVM: Linearly Separable Case
� SVM:  maximize the margin

x(1)

x(2)

� margin is twice the absolute value of distance b of  
the closest example to the separating hyperplane 

� Better generalization (performance on test data)
� in practice 
� and in theory

b
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SVM: Linearly Separable Case

x(1)

x(2)

� Support vectors are the samples closest to the 
separating hyperplane
� they are the most difficalt patterns to classify
� Optimal hyperplane is completely defined by support vectors

� of course, we do not know which samples are support vectors without 
finding the optimal hyperplane

b b
b

SVM: Formula for the Margin

� g(x) = wtx + w0

x(1)

x(2)

x

g(
x)

 /||
w||

� absolute distance between x 
and the boundary g(x) = 0

w

wxw t
0++++

� distance is unchanged for hyperplane
g1(x)=αg (x)

w

wxw t

αααα
αααααααα 0++++

� Let xi be an example closest to the boundary.  Set
10 ====++++ wxw i

t

w

wxw t
0++++

====

� Now the largest margin hyperplane is unique

SVM: Formula for the Margin

� now distance from closest sample xi to g(x) = 0 is

w

wxw i
t

0++++
w
1====

� Thus the margin is 

w
m

2====

x(1)

x(2)

1
/||

w||

1
/||

w||1
/||

w||

2
/ |

|w
||

� For uniqueness, set for any example 
xi closest to the boundary

10 ====++++ wxw i
t

SVM: Optimal Hyperplane

����
����
����

−−−−≤≤≤≤++++
≥≥≥≥++++

examplenegativeisxifwxw
examplepositiveisxifwxw

ii
t

ii
t

1
1

0

0

� Maximize margin 
w

m
2====

� subject to constraints

� Let  
����
����
����

−−−−====
====

examplenegativeisxif1z
examplepositiveisxif1z

ii

ii

� Can convert our problem to  

minimize 

constrained to

(((( )))) 2

2
1

wwJ ====

(((( )))) i1wxwz 0i
t

i ∀∀∀∀≥≥≥≥++++

� J(w) is a quadratic function, thus there is a single 
global minimum  
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SVM: Optimal Hyperplane

� Use Kuhn-Tucker theorem to convert our problem to:

maximize 

constrained to

(((( )))) ������������
==== ========

−−−−====
n

1i

n

1j
j

t
ijiji

n

1i
iD xxzz

2
1L αααααααααααααααα

����
====

====∀∀∀∀≥≥≥≥
n

1i
iii 0zandi0 αααααααα

� α α α α ={αααα1,…, ααααn} are new variables, one for each sample

(((( ))))
����
����

����

����
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����
−−−−==== ����

==== n

1
t

n

1n

1i
iD H

2
1L

αααα

αααα

αααα

αααα
αααααααα ��

� Can rewrite LD(αααα) using  n by n matrix H:

j
t
ijiij xxzzH ====

� where the value in the i th row and j th column of H is 

SVM: Optimal Hyperplane

� Use Kuhn-Tucker theorem to convert our problem to:

maximize 

constrained to

(((( )))) ������������
==== ========

−−−−====
n

1i

n

1j
j

t
ijiji

n

1i
iD xxzz

2
1L αααααααααααααααα

����
====

====∀∀∀∀≥≥≥≥
n

1i
iii 0zandi0 αααααααα

� α α α α ={αααα1,…, ααααn} are new variables, one for each sample

� LD(αααα) can be optimized by quadratic programming

� LD(αααα) formulated in terms of αααα
� it depends on w and w0 indirectly

SVM: Optimal Hyperplane

� Final discriminant function:

(((( )))) 0

t

Sx
iii wxxzxg

i

++++����
����






����
����
����
����

����
==== ����

∈∈∈∈
αααα

� After finding the optimal α  α  α  α  = {αααα1,…, ααααn} 

� can solve for w0 using any ααααi > 0 and (((( ))))[[[[ ]]]] 01wxwz 0i
t

ii ====−−−−++++αααα

� where S is the set of support vectors
{{{{ }}}}0| ≠≠≠≠==== iixS αααα

� can find w using ����
====

====
n

1i
iii xzw αααα

� For every sample i, one of the following must hold
� ααααi = 0 (sample i is not a support vector)
� ααααi 0 and zi(wtxi+w0 - 1) = 0 (sample i is support vector)≠≠≠≠

i
t

i

xw
z

w −−−−====
1

0

SVM: Optimal Hyperplane

maximize 

constrained to

(((( )))) ������������
==== ========

−−−−====
n

1i

n

1j
j

t
ijiji

n

1i
iD xxzz

2
1L αααααααααααααααα

����
====

====∀∀∀∀≥≥≥≥
n

1i
iii 0zandi0 αααααααα

� LD(αααα) depends on the number of samples, not on 
dimension of samples

� samples appear only through the dot products j
t
i xx

� This will become important when looking for a 
nonlinear discriminant function, as we will see soon

� Code available on the web to optimize
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SVM: Non Separable Case
� Data is most likely to be not linearly separable, but 

linear classifier may still be appropriate

x(1)

x(2)

outliers

� Can apply SVM in non linearly separable case
� data should be “almost” linearly separable for good 

performance

SVM: Non Separable Case
� Use non-negative slack variables ξξξξ1,…, ξξξξn (one for 

each sample)

x(1)

x(2)

(((( )))) i1wxwz i0i
t

i ∀∀∀∀−−−−≥≥≥≥++++ ξξξξ

� ξξξξi is a measure of 
deviation from the ideal 
for sample i
� ξξξξi >1  sample i is on the wrong 

side of the separating
hyperplane

� 0< ξξξξi <1 sample i is on the 
right side of separating  
hyperplane but within the 
region of maximum margin

ξξξξi > 1

0< ξξξξi <1

(((( )))) i1wxwz 0i
t

i ∀∀∀∀≥≥≥≥++++� Change constraints from                                 to 

SVM: Non Separable Case
� Would like to minimize

� where (((( ))))
����
����
����

≤≤≤≤
>>>>====>>>> 00

010
i

i
i if

ifI ξξξξ
ξξξξξξξξ

(((( )))) (((( ))))����
====

>>>>++++====
n

i
in IwwJ

1

2
1 0

2
1

,...,, ξξξξββββξξξξξξξξ
# of samples

not in ideal location

� ββββ is a constant which measures relative weight of the 
first and second terms
� if ββββ is small, we allow a lot of samples not in ideal position
� if ββββ is large, we want to have very few samples not in ideal 

positon

(((( )))) ii
t

i wxwz ξξξξ−−−−≥≥≥≥++++ 10� constrained to                            and ii ∀∀∀∀≥≥≥≥ 0ξξξξ

SVM: Non Separable Case

(((( )))) (((( ))))����
====

>>>>++++====
n

i
in IwwJ

1

2
1 0

2
1

,...,, ξξξξββββξξξξξξξξ
# of examples

not in ideal location

x(1)

x(2)

large β, β, β, β, few samples not  in 
ideal position

x(1)

x(2)

small β,  β,  β,  β,  a lot of samples 
not  in ideal position
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SVM: Non Separable Case

� where (((( ))))
����
����
����

≤≤≤≤
>>>>====>>>> 00

010
i

i
i if

ifI ξξξξ
ξξξξξξξξ

(((( )))) (((( ))))����
====

>>>>++++====
n

i
in IwwJ

1

2
1 0

2
1

,...,, ξξξξββββξξξξξξξξ
# of examples

not in ideal location

� Unfortunately this minimization problem is NP-hard 
due to discontinuity of functions I(ξξξξi)

(((( )))) ii
t

i wxwz ξξξξ−−−−≥≥≥≥++++ 10� constrained to                            and ii ∀∀∀∀≥≥≥≥ 0ξξξξ

SVM: Non Separable Case
� Instead we minimize

(((( )))) ����
====

++++====
n

i
in wwJ

1

2
1 2

1
,...,, ξξξξββββξξξξξξξξ

(((( ))))
����
����
����

∀∀∀∀≥≥≥≥
∀∀∀∀−−−−≥≥≥≥++++

i0
i1wxwz

i

i0i
t

i

ξξξξ
ξξξξ

� constrained to

a measure of
# of misclassified 

examples

� Can use Kuhn-Tucker theorem to converted to

maximize 

constrained to

(((( )))) ������������
==== ========

−−−−====
n

1i

n

1j
j

t
ijiii

n

1i
iD xxzz

2
1L αααααααααααααααα

����
====

====∀∀∀∀≤≤≤≤≤≤≤≤
n

1i
iii 0zandi0 ααααββββαααα

� find w using ����
====

====
n

1i
iii xzw αααα

� solve for w0 using any 0 <ααααi < β β β β and (((( ))))[[[[ ]]]] 01wxwz 0i
t

ii ====−−−−++++αααα

Non Linear Mapping
� Cover’s theorem:  

� “pattern-classification problem cast in a high dimensional 
space non-linearly is more likely to be linearly separable 
than in a low-dimensional space” 

� One dimensional space, not linearly separable

� Lift to two dimensional space with ϕϕϕϕ(x)=(x,x2 )
0 1 2 3 5-2-3

Non Linear Mapping
� To solve a non linear classification problem with a 

linear classifier
1. Project data x to high dimension using function ϕϕϕϕ(x)
2. Find a linear discriminant function for transformed data ϕϕϕϕ(x)
3. Final nonlinear discriminant function is g(x) = wt ϕϕϕϕ(x) +w0

0 1 2 3 5-2-3

ϕϕϕϕ(x)=(x,x2 )

�In 2D, discriminant function is linear
(((( ))))
(((( )))) [[[[ ]]]]

(((( ))))
(((( )))) 02

1

212

1
wx

xwwx
xg ++++��������

����
				





����====����






����
����
����

����
��������

����
				





����

�In 1D, discriminant function is not linear (((( )))) 0
2

21 wxwxwxg ++++++++====

R1
R2 R2
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Non Linear Mapping: Another Example

Non Linear SVM

� Can use any linear classifier after lifting data into a 
higher dimensional space.  However we will have to 
deal with the “curse of dimensionality”

1. poor generalization to test data 
2. computationally expensive

� SVM avoids the “curse of dimensionality” problems by
1. enforcing largest margin permits good generalization

� It can be shown that generalization in SVM is a function of the 
margin, independent of the dimensionality

2. computation in the higher dimensional case is performed 
only implicitly through the use of kernel functions

Non Linear SVM: Kernels

� Recall SVM optimization
maximize (((( )))) ������������

==== ========
−−−−====

n

1i

n

1j
j

t
ijiii

n

1i
iD xxzz

2
1L αααααααααααααααα

� Note this optimization depends on samples xi only 
through the dot product  xi

txj

� If we lift xi to high dimension using ϕϕϕϕ(x), need to 
compute high dimensional product ϕϕϕϕ(xi)tϕϕϕϕ(xj)

maximize (((( )))) (((( )))) (((( ))))������������
==== ========

−−−−====
n

i

n

j
j

t
ijiii

n

i
iD xxzzL

1 11 2
1 ϕϕϕϕϕϕϕϕαααααααααααααααα

� Idea: find kernel function K(xi,xj) s.t.
K(xi,xj) = ϕϕϕϕ(xi)tϕϕϕϕ(xj)

K(xi,xj)

Non Linear SVM: Kernels

� Then we only need to compute K(xi,xj) instead of 
ϕϕϕϕ(xi)tϕϕϕϕ(xj)

� “kernel trick”: do not need to perform operations in high 
dimensional space explicitly

maximize (((( )))) (((( )))) (((( ))))������������
==== ========

−−−−====
n

i

n

j
j

t
ijiii

n

i
iD xxzzL

1 11 2
1 ϕϕϕϕϕϕϕϕαααααααααααααααα

K(xi,xj)
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Non Linear SVM: Kernels

� Suppose we have 2 features and  K(x,y) = (xty)2

� Which mapping ϕϕϕϕ(x) does it correspond to?

(((( )))) (((( ))))2, yxyxK t==== (((( )))) (((( ))))[[[[ ]]]] (((( ))))

(((( ))))

2

2

1
21

��������






����
��������
����

����
����
����

����
				






����====
y
yxx (((( )))) (((( )))) (((( )))) (((( ))))(((( ))))22211 yxyx ++++====

(((( )))) (((( ))))(((( )))) (((( )))) (((( ))))(((( )))) (((( )))) (((( ))))(((( )))) (((( )))) (((( ))))(((( ))))2222211211 2 yxyxyxyx ++++++++====
(((( ))))(((( )))) (((( )))) (((( )))) (((( ))))(((( ))))[[[[ ]]]] (((( ))))(((( )))) (((( )))) (((( )))) (((( ))))(((( ))))[[[[ ]]]]222121222121 22 yyyyxxxx====

t

� Thus 
(((( )))) (((( ))))(((( )))) (((( )))) (((( )))) (((( ))))(((( ))))[[[[ ]]]]222121 2 xxxxx ====ϕϕϕϕ

Non Linear SVM: Kernels
� How to choose kernel function K(xi,xj)?

� K(xi,xj) should  correspond to  product ϕϕϕϕ(xi)tϕϕϕϕ(xj)  in a 
higher dimensional space

� Mercer’s condition tells us which kernel function can be 
expressed as  dot product of two vectors

� Kernel’s not satisfying Mercer’s condition can be 
sometimes used, but no geometrical interpretation

� Some common choices (satisfying Mercer’s 
condition):
� Polynomial kernel (((( )))) (((( )))) p

j
t
iji xxxxK 1, ++++====

� Gaussian radial Basis kernel (data is lifted in infinite 
dimension)

(((( )))) ����






����
����
����

���� −−−−−−−−====
2

22
1

exp, jiji xxxxK
σσσσ

Non Linear SVM

� Choose ϕϕϕϕ(x) so that the first (“0”th) dimension is the 
augmented dimension with feature value fixed to 1

(((( )))) (((( )))) (((( )))) (((( )))) (((( ))))[[[[ ]]]]t2121 xxxx1x ====ϕϕϕϕ

� Threshold parameter w0 gets folded into the weight 
vector w

[[[[ ]]]] 0*
1ww0 ====��������
����

				




����

� search for separating hyperplane in high dimension
(((( )))) 0wxw 0 ====++++ϕϕϕϕ

ϕϕϕϕ(x)

Non Linear SVM

� Will not  use notation   a = [w0 w], we’ll use old 
notation w and seek hyperplane through the origin

(((( )))) 0xw ====ϕϕϕϕ

� If the first component of ϕϕϕϕ(x) is not 1, the above is 
equivalent to saying that the hyperplane has to go 
through the origin in high dimension
� removes only one degree of freedom
� But we have introduced many new degrees when we lifted 

the data in high dimension
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Non Linear SVM Recepie

� Choose kernel K(xi,xj) or function ϕϕϕϕ(xi) which takes 
sample xi to a higher dimensional space

� Start with data x1,…,xn which lives in feature space 
of dimension d

� Find the largest margin linear discriminant function in 
the higher dimensional space by using quadratic 
programming package to solve:

maximize 

constrained to

(((( )))) (((( ))))������������
==== ========

−−−−====
n

1i

n

1j
jijiii

n

1i
iD x,xKzz

2
1L αααααααααααααααα

����
====

====∀∀∀∀≤≤≤≤≤≤≤≤
n

1i
iii 0zandi0 ααααββββαααα

Non Linear SVM Recipe

� Linear discriminant function of largest margin in the 
high dimensional space:

(((( )))) (((( ))))xxz
t

Sx
iii

i

ϕϕϕϕϕϕϕϕαααα ����
����






����
����
����
����

����
==== ����

∈∈∈∈

� where S is the set of support vectors {{{{ }}}}0| ≠≠≠≠==== iixS αααα

(((( )))) (((( ))))����
∈∈∈∈

====
Sx

i
t

ii
i

xxz ϕϕϕϕϕϕϕϕαααα (((( ))))����
∈∈∈∈

====
Sx

iii
i

x,xKzαααα

� Non linear discriminant function in the original space:

(((( )))) (((( )))) (((( ))))xxzxg
t

Sx
iii

i

ϕϕϕϕϕϕϕϕαααα ����
����






����
����
����
����

����
==== ����

∈∈∈∈

� decide class 1 if g (x ) > 0, otherwise decide class 2 

(((( ))))����
∈∈∈∈

====
Sx

iii
i

xzw ϕϕϕϕαααα
� Weight vector w in  the high dimensional space:

(((( ))))(((( )))) (((( ))))xwxg tϕϕϕϕϕϕϕϕ ====

Non Linear SVM

(((( )))) (((( ))))����
∈∈∈∈

====
Sx

iii
i

xxKzxg ,αααα

� Nonlinear discriminant function

(((( )))) ����====xg
most important

training samples,
i.e. support vectors

weight of support 
vector  xi

����1 “inverse distance” 
from x to

support vector xi

(((( )))) ����






����
����
����

���� −−−−−−−−====
2

22
1

exp, xxxxK ii σσσσ

SVM Example: XOR Problem

� Class 2: x3 = [1,1], x4 = [-1,-1] 
� Class 1: x1 = [1,-1], x2 = [-1,1] 

� Use polynomial kernel of degree 2:
� K(xi,xj) = (xi

t xj + 1)2

� This kernel corresponds to mapping

(((( )))) (((( )))) (((( )))) (((( )))) (((( )))) (((( ))))(((( )))) (((( ))))(((( ))))[[[[ ]]]]txxxxxxx 22212121 2221====ϕϕϕϕ

� Need to maximize
(((( )))) (((( ))))������������

==== ========
++++−−−−====

4

1i

4

1j

2
j

t
ijiii

4

1i
iD 1xxzz

2
1L αααααααααααααααα

constrained to 00 4321 ====−−−−−−−−++++∀∀∀∀≤≤≤≤ αααααααααααααααααααα andii
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SVM Example: XOR Problem

� Can rewrite (((( )))) αααααααααααααααα HL t

i
iD 2

14

1

−−−−==== ����
====

� where                                     and[[[[ ]]]]t4321 αααααααααααααααααααα ====
����
����
����

����

����

				
				
				







����

−−−−−−−−
−−−−−−−−

−−−−−−−−
−−−−−−−−

====
9111
1911
1191
1119

H

� Take derivative with respect to αααα and set it to 0

(((( )))) 0
9111
1911
1191
1119

1
1
1
1

====
����
����
����

����

����

				
				
				







����

−−−−−−−−
−−−−−−−−

−−−−−−−−
−−−−−−−−

−−−−
����
����
����

����

����

				
				
				







����

==== ααααααααDL
da
d

� Solution to the above is αααα1= αααα2 = αααα3 = αααα4 = 0.25

� all samples are support vectors
� satisfies the constraints 00, 4321 ====−−−−−−−−++++≤≤≤≤∀∀∀∀ αααααααααααααααααααα andi i

SVM Example: XOR Problem

� Weight vector w is:

(((( )))) (((( ))))xwxg ϕϕϕϕ====

(((( ))))����
====

====
4

1i
iii xzw ϕϕϕϕαααα (((( )))) (((( )))) (((( )))) (((( ))))(((( ))))4321 xxxx25.0 ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ −−−−−−−−++++====

(((( )))) (((( )))) (((( )))) (((( )))) (((( )))) (((( ))))(((( )))) (((( ))))(((( ))))[[[[ ]]]]txxxxxxx 22212121 2221====ϕϕϕϕ

[[[[ ]]]]002000 −−−−====

� Thus the nonlinear discriminant function is:
(((( )))) (((( ))))(((( ))))21 xx22−−−−====(((( ))))xw i

6

1i
iϕϕϕϕ����

====
==== (((( )))) (((( ))))21 xx2−−−−====

SVM Example: XOR Problem
(((( )))) (((( )))) (((( ))))21 xx2xg −−−−====

(((( ))))1x

(((( ))))2x

-1 1

1

-1

decision boundaries nonlinear

(((( ))))12x

(((( )))) (((( ))))212 xx

-1 1

1

-1

-2

2

2-2

decision boundary is linear

Degree 3 Polynomial Kernel

� In linearly separable case (on the left), decision 
boundary is roughly linear, indicating that 
dimensionality is controlled

� Nonseparable case (on the right) is handled by a 
polynomial of degree 3
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SVM Summary

� Advantages:
� Based on nice theory
� excellent generalization properties
� objective function has no local minima
� can be used to find non linear discriminant functions
� Complexity of the classifier is characterized by the number 

of support vectors rather than the dimensionality of the 
transformed space

� Disadvantages: 
� tends to be slower than other methods
� quadratic programming is computationally expensive
� Not clear how to choose the Kernel

Information theory
� Information Theory regards information as only those 

symbols that are uncertain to the receiver
���������	 
����
����� �� �����
����	 
� ����
�	 ���

� Shannon made clear that uncertainty is the very commodity 
of communication 

� The amount of information, or uncertainty, output by an 
information source is a measure of its entropy

� In turn, a source's entropy determines the amount of bits per 
symbol required to encode the source's information

� Messages are encoded with strings of 0 and 1 (bits)

Information theory
� Suppose we toss a fair die with 8 sides 

� need 3 bits to transmit the results of each toss
� 1000 throws will need 3000 bits to transmit

� Suppose the die  is biased
� side A occurs with probability 1/2, chances of throwing B are 1/4, 

C are 1/8, D are 1/16, E are 1/32, F 1/64, G and H are 1/128
� Encode A= 0, B = 10, C = 110, D = 1110,…, so on until  G = 

1111110, H = 1111111
� We need, on average, 1/2+2/4+3/8+4/16+5/32+6/64+7/128+7/128 

= 1.984 bits to encode results of a toss
� 1000 throws require 1984 bits to transmit
� Less bits to send = less “information”
� Biased die tosses contain less “information” than unbiased die 

tosses (know in advance biased sequence will have a lot of A’s)
� What’s the number of bits in the best encoding?

� Extreme case: if a die always shows side A, a sequence of 
1,000 tosses has no information, 0 bits to encode

Information theory
� if a die is fair (any side is equally likely, or uniform distribution), 

for any toss we need log(8) = 3 bits
� Suppose any of n events is equally likely (uniform distribution)

� P(x) = 1/n, therefore -log P = -log(1/n) = log n 
� In the “good” encoding strategy for our biased die example, 

every side x has -log p(x) bits in its code
� Expected number of bits is
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Shannon’s Entropy

� How much randomness (or uncertainty) is there in the value 
of signal x if it has distribution p(x)
� For uniform distribution (every event is equally likely), H[x] is 

maximum

� If p(x) = 1 for some event x, then H[x] = 0

� Systems with one very common event have less entropy than 
systems with many equally probable events

� Gives the expected length of optimal encoding (in binary 
bits) of a message following distribution p(x)
� doesn’t actually give this optimal encoding
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Conditional  Entropy of X given Y
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� Measures average uncertainty about x when 
y is known

� Property:
� H[x] ≥ H[x|y], which means after seeing new 

data (y), the uncertainty about x is not 
increased, on average

Mutual Information of X and Y
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� Measures the average reduction in uncertainty 
about x after y is known

� or, equivalently, it measures the amount of 
information that y conveys about x

� Properties
� I(x,y) = I(y,x)

� I(x,y) ≥ 0
� If x and y are independent, then I(x,y) = 0

� I(x,x) = H(x)

MI for Feature Selection
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� Let x be a proposed feature and c be the 
class

� If I[x,c] is high, we can expect feature x be 
good at predicting class c


