
IN PRESS, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE 1

Sharing visual features for multiclass and multiview
object detection

Antonio Torralba, Kevin P. Murphy, William T. Freeman

ABSTRACT

We consider the problem of detecting a large number of
different classes of objects in cluttered scenes. Traditional
approaches require applying a battery of different classifiers to
the image, at multiple locations and scales. This can be slow
and can require a lot of training data, since each classifier
requires the computation of many different image features.
In particular, for independently trained detectors, the (run-
time) computational complexity, and the (training-time) sam-
ple complexity, scales linearly with the number of classes to
be detected. We present a multi-task learning procedure, based
on boosted decision stumps, that reduces the computational
and sample complexity, by finding common features that can
be shared across the classes (and/or views). The detectors for
each class are trained jointly, rather than independently.For a
given performance level, the total number of features required,
and therefore the run-time cost of the classifier, is observed
to scale approximately logarithmically with the number of
classes. The features selected by joint training are generic
edge-like features, whereas the features chosen by training
each class separately tend to be more object-specific. The
generic features generalize better and considerably reduce the
computational cost of multi-class object detection.

Index Terms— Object detection, interclass transfer, sharing
features, boosting, multiclass

I. I NTRODUCTION

A long-standing goal of machine vision has been to build
a system which is able to recognize many different kinds of
objects in a cluttered world. Although the general problem re-
mains unsolved, progress has been made on restricted versions
of this goal. One succesful special case considers the problem
of detecting individualinstancesof highly textured objects,
such as magazine covers or toys, despite clutter, occlusion
and affine transformations. The method exploits features which
are invariant to various transformations, yet which are very
specific to a particular object [24], [31]. This can be used to
solve tasks such as “find an object that looks just like this
one”, where the user presents a specific instance; but it cannot
be used to solve tasks such as “find an object that looks like a
car”, which requires learning an appearance model of a generic
car.

The problem of detecting a generic category of object in
clutter is often posed as a binary classification task, namely

A. Torralba and W. T. Freeman are at the Department of Electrical Engineer-
ing and Computer Science from the Massachusetts Institute of Technology.

K. P. Murphy is at the Departments of computer science and statistics from
the University of British Columbia.

distinguishing between object class and background class.
Such a classifier can be turned into a detector by sliding it
across the image (or image pyramid), and classifying each such
local window [26], [16], [1]. Alternatively, one can extract
local windows at locations and scales returned by an interest
point detector and classify these, either as an object or as part
of an object (see e.g., [12]). In either case, the classifier will
be applied to a large number of image locations, and hence
needs to be fast and to have a low false positive rate. Various
classifiers have been used, such as SVMs [26], naive Bayes
[30], mixtures of Gaussians [12], boosted decision stumps
[37], etc. In addition, various types of image features have
been considered, ranging from generic wavelets [30], [37] to
class-specific fragments [16], [36]. Since it is expensive to
compute these features at run-time, many classifiers will try
to select a small subset of useful features.

The category-level object detection work mentioned above
is typically only concerned with finding a single class of
objects (most work has concentrated on frontal and profile
faces and cars). To handle multiple classes, or multiple views
of a class, separate classifiers are trained and applied indepen-
dently. There has been work on training a single multi-class
classifier, to distinguish between different classes of object,
but this typically assumes that the object has been separated
from the background (see e.g., [25], [22]).

In this paper [33], we consider the combined problem of
distinguishing classes from the background and from each
other. This is harder than standard multi-class isolated object
classification problems, because the background class is very
heterogeneous in appearance (it represents “all other classes”),
and is much more likely to appear than the various object
classes (since most of the image is background).

The first key insight of our work is that training multiple bi-
nary classifiers at the same time needs less training data, since
many classes share similar features (e.g., computer screens
and posters can both be distinguished from the background by
looking for the feature “edges in a rectangular arrangement”).
This observation has previously been made in the multi-task
learning literature (see e.g., [6], [32]). However, nearlyall of
this work focuses on feedforward neural networks, whereas
we use a quite different kind of classifier, based on boosted
decision stumps[29].

The second key insight of our work is that training multiple
binary classifiers at the same time results in a much faster
classifier at run time, since the computation of many of the
features can be shared for the different classes. This observa-
tion has previously been made in the neural network literature
[20], [21]. However, in these systems, the architecture of the

IN PRESS, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE 2

network(and hence its computational complexity) is fixed in
advance, whereas we effectively learn the structure subject
to the constraint that the classifier have a given run-time
complexity.

Our extensive empirical results, on 21 object classes, show
that the number of features needed when training jointly grows
roughly logarithmically with the number of classes (c.f., [18]),
whereas independent training shows linear growth. Since the
number of features is fewer, the classifier is faster, and the
amount of training data (needed to select the features and
estimate their parameters) is less. We also show that the
features which are chosen when training jointly are generic,
edge-like features (reminiscent of V1 cells); this is similar to
the results of unsupervised learning methods such as ICA.
However, the features chosen when training independently
are more class-specific, similar to the results in [36]. Our
algorithm will smoothly interpolate between generic and class-
specific features, depending on the amount of training data and
the bound on the computational complexity of the classifier.

The paper is organized as follows. We describe the mul-
ticlass boosting algorithm in Section II, and illustrate its
performance on some artificial data sets. In Section III, we
show how the algorithm can be used to learn to detect 21
different classes of objects in cluttered, real world images. In
Section IV, we show how the algorithm can be used to learn
to detect different views of an object class (we focus on cars).
The intuition behind this view-based approach is that a car
seen from the side is essentially a different visual class than a
car seen from the front, but the angles in between share many
features in common. In Section VI, we show how the algorithm
can be used to perform both face detection and recognition.
The idea here is that we first learn to classify a patch as face vs
background, and then learn features that discriminate between
the face classes. In section VII, we summarize previous work
on multiclass object detection and multiclass classifiers.We
conclude in Section VIII.

II. M ULTICLASS BOOSTING WITH FEATURE SHARING

A. Boosting for binary classification

We start with a brief review of boosting for binary classi-
fication problems [29], [28], [14]. Boosting provides a simple
way to sequentially fit additive models of the form

H(v) =

M
∑

m=1

hm(v),

where v is the input feature vector,M is the number of
boosting rounds, andH(v) = log P (z = 1|v)/P (z = −1|v)
is the log-odds of being in class+1, where z is the class
membership label (±1). HenceP (z = 1|v) = σ(H(v)), where
σ(x) = 1/(1+ e−x) is the sigmoid or logistic function. In the
boosting literature, thehm(v) are often called weak learners,
and H(v) is called a strong learner. Boosting optimizes the
following cost function one term of the additive model at a
time:

J = E
[

e−zH(v)
]

(1)

The term zH(v) is called the “margin”, and is related to
the generalization error (out-of-sample error rate). The cost

function can be thought of as a differentiable upper bound
on the misclassification rate [28] or as an approximation
to the likelihood of the training data under a logistic noise
model [14]. There are many ways to optimize this function.
We chose to base our algorithm on the version of boosting
called “gentleboost” [14], because it is simple to implement,
numerically robust, and has been shown experimentally [23]to
outperform other boosting variants for the face detection task.
In gentleboost, the optimization ofJ is done using adaptive
Newton steps, which corresponds to minimizing a weighted
squared error at each step. Specifically, at each stepm, the
functionH is updated asH(v) := H(v)+hm(v), wherehm is
chosen so as to minimize a second order Taylor approximation
of the cost function:

arg min
hm

J(H + hm) ≃ arg min
hm

E
[

e−zH(v)(z − hm)2
]

(2)

Replacing the expectation with an empirical average over the
training data, and defining weightswi = e−ziH(vi) for training
examplei, this reduces to minimizing the weighted squared
error:

Jwse =

N
∑

i=1

wi(zi − hm(vi))
2, (3)

whereN is the number of training examples. How we min-
imize this cost depends on the specific form of the weak
learnershm. It is common to define the weak learners to be
simple functions of the formhm(v) = aδ(vf > θ) + bδ(vf ≤
θ), wherevf denotes thef ’th component (dimension) of the
feature vectorv, θ is a threshold,δ is the indicator function,
anda and b are regression parameters. In this way, the weak
learners perform feature selection, since each one picks a
single componentf . These weak learners are called decision
or regression “stumps”, since they can be viewed as degenerate
decision trees with a single node. We can find the best stump
just as we would learn a node in a decision tree: we search
over all possible featuresf to split on, and for each one, we
search over all possible thresholdsθ induced by sorting the
observed values off ; given f and θ, we can estimate the
optimal a and b by weighted least squares. Specifically, we
have

a =

∑

i wiziδ(v
f
i > θ)

∑

i wiδ(v
f
i > θ)

, (4)

b =

∑

i wiziδ(v
f
i ≤ θ)

∑

i wiδ(v
f
i ≤ θ)

(5)

We pick thef and θ, and correspondinga and b, with the
lowest cost (using Equation 3), and add this weak learner to the
previous ones for each training example:H(vi) := H(vi) +
hm(vi). Finally, boosting makes the following multiplicative
update to the weights on each training sample:

wi := wie
−zihm(vi)

This update increases the weight of examples which are
missclassified (i.e., for whichziH(vi) < 0), and decreases the
weight of examples which are correctly classified. The overall
algorithm is summarized in Figure 1.

IN PRESS, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE 3

1) Initialize the weightswi = 1 and setH(vi) = 0, i = 1..N .
2) Repeat form = 1, 2, . . . , M

a) Fit stump:hm(vi) = aδ(vf
i > θ) + bδ(vf

i ≤ θ)
b) Update class estimates for examplesi = 1, . . . , N :

H(vi) := H(vi) + hm(vi)
c) Update weights for examplesi = 1, . . . , N : wi :=

wie
−zihm(vi)

Fig. 1. Boosting for binary classification with regression stumps.vf
i is the

f ’th feature of thei’th training example,zi ∈ {−1,+1} are the labels,
andwi are theunnormalizedexample weights.N is the number of training
examples, andM is the number of rounds of boosting.

B. Sharing features: basic idea

In the multiclass case, we modify the cost function as in
Adaboost.MH [29]:

J =

C
∑

c=1

E
[

e−zcH(v,c)
]

(6)

wherezc is the membership label (±1) for classc and

H(v, c) =
M
∑

m=1

hm(v, c).

where H(v, c) = log P (zc = 1|v)/P (zc = −1|v). Our
algorithm for minimizing this cost function differs from Ad-
aboost.MH [29] in the structure of the weak classifiershm. The
key idea is that at each roundm, the algorithm will choose a
subset of classesS(m) that will share a feature and that will
have their classification error reduced. The weak classifieris
obtained by fitting a binary decision stump as outlined above
(some small modifications are required when we share classes,
which are explained below.). We consider multiple overlapping
subsets of classes, rather than a hierarchical partitioning,
because some features may be shared between classes in a
way that is not tree-structured (see Figure 2).

We will present two methods for choosing the best subset
of classes at each round: the first is based on exhaustive search
of all possible subsets, which has complexityO(2C); the
second is based on greedy search (forward selection), which
has complexityO(C2). We will show that, at least on artificial
data, the greedy approach is a very good approximation to the
exhaustive approach.

C. Toy problem

Before we explain in detail how JointBoost works, we
illustrate its behavior on a toy data set. We consider the
problem of discriminating amongC classes, which consists of
C spherical “clouds” of data inD dimensions, embedded in a
uniform “sea” of background distractors. So, the classification
task requires discriminating among theC classes and also
against the background class. In Figure 3, we considerC = 3
classes (plus a background class) inD = 2 dimensions. In
this 2D example, the feature vectors are the projection of
the coordinates onto lines at 60 different angles coming from
the origin. It is intuitively clear that some features (lines) are
useful for separating multiple classes from the background,

b

R
3bb

33

33
Fig. 2. Objects may share features in a way that cannot be represented as
a tree. In this example, we can see how each pair of objects shares a part:
the R and the 3 share the crescent-shaped fragment in the top right; the R
and the b share the vertical line on the left; and the b and the 3share the
semi-circle-shaped fragment on the bottom right.

and thus can be fruitfully shared. In our formulation, the
multiclass classifier is composed by three binary classifiers that
can share features (stumps). Each binary problem classifies
one class against the others and the background. Our goal is
to figure out which features to share amongst which classes.

Figure 4.a shows all subsets of 3 classes arranged in a
lattice (ordered by subset inclusion). Let the set at noden
in this graph be denotedS(n). At each round, JointBoost will
consider each of one of these subsets as a possible candidate
to share a stump and will learn a weak classifier for that
subset. If we sum up all the weak learners associated with
subsetS(n), we get a strong learner, which we can denote
GS(n)(v). (If subsetS(n) was never chosen by the algorithm,
thenGS(n)(v) = 0.) Finally, for each classc, we can find all
subsetsS(n) that containc, and sum up their additive models
to give the final form of the classifiers:

H(v, 1) = G1,2,3(v) + G1,2(v) + G1,3(v) + G1(v)

H(v, 2) = G1,2,3(v) + G1,2(v) + G2,3(v) + G2(v)

H(v, 3) = G1,2,3(v) + G1,3(v) + G2,3(v) + G3(v)

where eachGS(n)(v) is itself an additive model of the form
GS(n)(v) =

∑Mn

m=1 hn
m(v).

If we apply the JointBoost algorithm to the data in Fig. 3,
but restrict it to 8 rounds (so it can choose exactly 8 features),
the result is the model shown in Fig. 4.b. In this case, the
first shared function has the formG123(v) =

∑3
m=1 h123

m (v),
meaning that the classifier which separates classes 1,2,3 vs. the
background has 3 decision boundaries. The other nodes have
the following number of boundaries:M123 = 3, M12 = 2,
M23 = 1, M13 = 0, M1 = 1, M2 = 0, M3 = 1, so there are
no pure boundaries for class 2 in this example (indicated by
the blankG2 square in Figure 4.b). The decomposition is not
unique as different choices of functionsGS(n)(v) can give the
same classifiersH(v, c). But we are interested in the choices
of GS(n)(v) that minimize the computational cost. We impose
the constraint that

∑

n Mn = M , whereM is the total number
of functions that have to be learned (i.e., the number of rounds
of boosting).

IN PRESS, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE 4

1 2

3

Fig. 3. Illustration of feature sharing (top row) and independent features
(bottom row) on a toy problem in which there are three object classes and one
background class. 50 samples from each class are used for training, and we
use 8 rounds of boosting. Left: The thickness of the lines indicates the number
of classes sharing each stump. Right: whiter colors indicate that the class is
more likely to be present. Note that for the same computational resources,
feature sharing gives better separation of the 3 classes from the background
class.

a)

G12 G1

G123 G13 G2

G23 G3 b)

G
123

G
12

G
1

G
23

G
3

G
13

G
2

Fig. 4. a) All possible ways to share features amongst 3 classifiers. The sets
are shown in a lattice ordered by subset inclusion. The leaves correspond to
single classes. b) Decision boundaries learned by all the nodes in the sharing
graph for the problem in Fig. 3

D. Shared stumps

We now explain in more detail how JointBoost works.
Proceeding as in the regular gentleBoost algorithm, we must
solve the following weighted least squares problem at each
iteration:

Jwse =

C
∑

c=1

N
∑

i=1

wc
i (z

c
i − hm(vi, c))

2 (7)

wherewc
i = e−zc

i
H(vi,c) are the weights for examplei and for

the classifier for classc. Note that each training examplei has
C weights,wc

i , one for each binary problem. It is important
to note that the weights cannot be normalized for each binary
problem independently, but a global normalization does not
affect the results.zc

i is the membership label (±1) for example
i for classc1.

For classes in the chosen subset,c ∈ S(n), we can fit
a regression stump as before. For classes not in the chosen
subset,c 6∈ S(n), we define the weak learner to be a class-
specific constantkc. The form of a shared stump is:

hm(v, c) =







aS if vf
i > θ andc ∈ S(n)

bS if vf
i ≤ θ andc ∈ S(n)

kc
S if c /∈ S(n)

(8)

1For each binary classification problem we can consider as negative
examples all the other classes and the background or just thebackground
class (in such a case we can set the weights towc

i > 0 for samples in the
classc (zc

i = 1) or in the background class and we setwc
i = 0 for samples

i in one of other classesC − c).

The purpose of the class-specific constantkc
S is to prevent

a class being chosen for sharing just due to the imbalance
between negative and positive training examples. (The constant
gives a way to encode a prior bias for each class, without
having to use features from other classes that happen to
approximate that bias.) Note that this constant changes theway
features are shared, especially in the first iterations of boosting.
Therefore, in order to add a class to the shared subset we need
to have a decrease of the classification error that is larger than
just using a constant as weak classifier. This insures that the
shared features are really providing additional discriminative
information.

At iterationn, the algorithm will select the best stump and a
classes subset. For a subsetS(n), the parameters of the stump
are set to minimize Equation 7. Note that the class labelszc

i do
not change with the shared subset selected. The class labels
zc

i define theC binary classification problems that we are
trying to solve jointly. When a stump is shared among several
classes, the error for each shared class increases with respect
to a stump optimized just for that class. However, because
more classes have their classification error reduced when the
stump is shared, the total multiclass error decreases (see also
section III-E).

Minimizing Equation 7 gives

aS(f, θ) =

∑

c∈S(n)

∑

i wc
i z

c
i δ(v

f
i > θ)

∑

c∈S(n)

∑

i wc
i δ(v

f
i > θ)

, (9)

bS(f, θ) =

∑

c∈S(n)

∑

i wc
i z

c
i δ(v

f
i ≤ θ)

∑

c∈S(n)

∑

i wc
i δ(v

f
i ≤ θ)

, (10)

kc =

∑

i wc
i z

c
i

∑

i wc
i

c /∈ S(n). (11)

Thus each weak learner contains 4 parameters (a, b, f, θ) for
the positive class,C−|S(n)| parameters for the negative class,
and 1 parameter to specify which subsetS(n) was chosen.

Fig. 5 presents the simplest version of the algorithm, which
involves a search over all2C − 1 possible sharing patterns
at each iteration. Obviously this is very slow. In Section II-
E, we discuss a way to speed this up by a constant factor,
by reusing computation at the leaves to compute the score for
interior nodes of the sharing graph. In Section II-F, we discuss
a greedy search heuristic that has complexityO(C2) instead
of O(2C).

E. Efficient computation of shared regression stumps

To evaluate the quality of a node in the sharing graph, we
must find the optimal regression stump, a slow computation,
since it involves scanning over all features and allN thresholds
(whereN is the number of training examples). However, we
can propagate most of the computations from the leaves to
higher nodes, as we now discuss.

At each boosting round, and for each isolated class (the
leaves of the graph), we compute the parametersac and bc

for a set of predefined thresholds and for all features, so as
to minimize the weighted square error. Then, the parameters
aS andbS for each threshold and feature at any other internal

IN PRESS, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE 5

1) Initialize the weightswc
i = 1 and setH(vi, c) = 0, i = 1..N ,

c = 1..C.
2) Repeat form = 1, 2, . . . , M

a) Repeat forn = 1, 2, . . . , 2C
− 1

i) Fit shared stump:

hn
m(vi, c) =

8

<

:

aS if vf
i > θ andc ∈ S(n)

bS if vf
i ≤ θ andc ∈ S(n)

kc if c /∈ S(n)

ii) Evaluate error

Jwse(n) =
C

X

c=1

N
X

i=1

wc
i (z

c
i − hn

m(vi, c))
2

b) Find best subset:n∗ = arg minn Jwse(n).
c) Update the class estimates

H(vi, c) := H(vi, c) + hn∗

m (vi, c)

d) Update the weights

wc
i := wc

i e
−zc

i
hn

∗

m
(vi,c)

Fig. 5. Boosting with shared regression stumps.vf
i is thef ’th feature of the

i’th training example,zc
i ∈ {−1, +1} are the labels for classc, andwc

i are
the unnormalizedexample weights.N is the number of training examples,
andM is the number of rounds of boosting.

node can be computed simply as a weighted combination of
the parameters at the leaves that are connected with that node.
The best regression parameters for a subset of classesS is:

aS(f, θ) =

∑

c∈S ac(f, θ)wc
+(f, θ)

∑

c∈S wc
+(f, θ)

(12)

bS(f, θ) =

∑

c∈S bc(f, θ)wc
−

(f, θ)
∑

c∈S wc
−

(f, θ)
(13)

with wc
+(f, θ) =

∑N
i=1 wc

i δ(v
f
i > θ) and wc

−
(f, θ) =

∑N
i=1 wc

i δ(v
f
i ≤ θ). For each featuref , and each threshold

θ, the joint weighted regression error, for the set of classes
S(n), is:

Jwse(n) = (1 − a2
s)

∑

c∈S(n)

wc
+ + (1 − b2

s)
∑

c∈S(n)

wc
−

+

+
∑

c/∈S(n)

N
∑

i=1

wc
i (z

c
i − kc)2 (14)

The first two terms correspond to the weighted error in the
classes sharing a feature. The third term is the error for the
classes that do not share a feature at this round. This can be
used instead of Eq. 7, for speed.

F. Approximate search for the best sharing

As currently described, the algorithm requires computing
features for all possible2C − 1 subsets of classes, so it does
not scale well with the number of classes. Instead of searching
among all possible2C − 1 combinations, we use best-first
search and a forward selection procedure. This is similar to
techniques used for feature selection but here we group classes
instead of features.

At each round, we have to decide which classes are going to
share a feature. We start by computing all the features for the
leaves (single classes) as described in the previous section.
We first select the class that has the best reduction of the
error. Then we select the second class that has the best error
reduction jointly with the previously selected class. We keep
adding the next best class, until we have added all the classes.
We then pick the set, from theC we have considered, with
the largest error reduction. This set can have any size between
1 andC.

Since at each step we must consider adding one fromO(C)
classes, and there areC steps, the overall complexity of this
algorithm isO(C2). This is much better thanO(2C) required
for exhaustive search. We can improve the approximation by
using beam search, considering at each step the bestNc < C
classes.

To compare the exhaustive and greedy search procedures,
we return to the toy data shown in Fig. 3. We considerD =
2 dimensions butC = 9 classes (so that we can afford to
consider all possible subsets). For this experiment, the features
are the raw coordinate values; we use 25 training samples per
class, and 8,000 samples for the background.

Fig. 6.a illustrates the differences between exact search for
the best sharing, the best first approximate search, the best
pairs only, a random sharing and no sharing. For each search
algorithm the graph shows the number of stumps needed to
achieve a fixed level of performance (area under the ROC
= 0.95). We can see that using the exact best sharing or the
one obtained using the approximate search (best first) provides
similar results. The complexity of the resulting multiclass
classifier (17 stumps) is smaller than the complexity of a one-
vs-all classifier that requires 63 stumps to achieve the same
performance.

Fig. 6.b illustrates the dependency of the complexity of the
classifier as a function of the number of classes when using
different sharing patterns. For these experiments we use 2
dimensions, 25 training samples per class, and 40,000 samples
for the background. As expected, when no sharing is used
(one-vs-all classifier), the complexity grows linearly with the
number of classes. When the sharing is allowed to happen
only between pairs of classes, then the complexity is lower
that the one-vs-all but still grows linearly with the numberof
classes. The same thing happens with random sharing. What
is perhaps a bit surprising is that, even though random sharing
exhibits linear complexity, it still performs about as wellas the
best pair. The reason is that a random sharing will be good for
at least two classes at each round (in general, for D classes
in D dimensions). However, when using the best sharing at
each round (here using best-first search), then the complexity
drops dramatically and the dependency between complexity
and number of classes follows a logarithmic curve.

The above scaling results are on low-dimensional artificial
data, but the experimental results in Section III show that the
algorithm also scales to handle 21 object classes and feature
vectors of size 2000.

IN PRESS, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE 6

a)

0

10

20

30

40

50

60

70

80

No

sharing

Random

sharing

Best

pairs

Best

sharing

Best

first

search

N
u
m

b
er

 o
f

fe
at

u
re

s
(a

re
a

R
O

C
 =

 0
.9

5
)

b)
1 10 20 30 40 50

0

10

20

30

40

50

60

70

80

90

No sharing

Random sharing

Best pairs

Best sharing

Number of classes

N
u

m
b

er
 o

f
fe

at
u

re
s

(a
re

a
R

O
C

 =
 0

.9
5

)

Fig. 6. a) Comparison of number of stumps needed to achieve the same performance (area under ROC equal to 0.95) when using exact search, best-first, best
pair, random sharing and no sharing at each round. We use a toydata set withC = 9 classes plus a background class inD = 2 dimensions. b) Complexity of
the multiclass classifier as a function of the number of classes. The complexity of a classifier is evaluated here as the number of stumps needed for achieving
a predefined level of performance (area under the ROC of 0.95).

III. M ULTICLASS OBJECT DETECTION

In this section, we used 21 object categories: 13 indoor
objects (screen, keyboard, mouse, mouse pad, speaker, com-
puter, trash, poster, bottle, chair, can, mug, light); 7 outdoor
objects (frontal view car, side view car, traffic light, stop
sign, one way sign, do not enter sign, pedestrians); and heads
(which can occur indoors and outdoors). We used hand-labeled
images from theLabelMedatabase of objects and scenes [27],
available atlabelme.csail.mit.edu.

A. Features

The features we use are inspired by the fragments proposed
by [36]. As in [36], first we build a dictionary of features by
extracting a random set ofD = 2000 patches or fragments
from a subset of the training images from all the classes (with
objects normalized in scale so that they fit in a bounding box of
32x32 pixels). The fragments have sizes ranging from 4x4 to
14x14 pixels. When we extract a fragmentgf , we also record
the location with respect to the object center from which it
was taken (within the 32x32 window); this is represented by
a binary spatial maskwf (we fix the mask to be a square
of 7x7 pixels centered on the original fragment location). See
Figure 7.a for some examples. Once the dictionary is built,
for each image we compute the features by performing the
following steps for each of the 2000 fragmentsf :

1) For training, we first scale the images so that the target
object fits in a bounding box of 32x32 pixels. We crop
the images so that they are not larger than 128x128
pixels. We will use the background around the object
to collect negative training samples.

2) Apply normalized cross correlation between each frag-
ment gf and the training images. Normalized cross
correlation can be speed up by approximating each patch
gf with a linear combination of 1D separable filters [35],
[19].

3) Perform elementwise exponentiation of the result, using
exponentp. With a large exponent, this has the effect

of performing template matching. Withp = 1, the
feature vector encodes the average of the filter responses,
which are good for describing textures. In this paper,
we usep = 10; this is good for template matching as it
approximates a local maximum operator (although other
values ofp will be useful for objects defined as textures
like buildings, grass, etc.).

4) Convolve the response with the spatial maskwf (to
test if the fragment occurs in the expected location).
This corresponds to make each feature to vote for the
expected object center. Convolution with the binary,
rectangular maskswf can be implemented in a small
number of operations using the integral image [37].

This will give us a very large set of training vectors. To
reduce the number we use only a sparse set of locations. From
each image in the training set we extract positive training
vectors by sampling the feature outputs at the object center
and negative training vectors by sampling randomly in the
background (Fig. 7). We do not use samples that are inside the
object bounding box. For each chosen location, we get a vector
of size equal to the number of features in the dictionary. Using
2000 fragments give us a 2000 dimensional feature vector for
each location. However, by only usingM rounds of boosting,
we will select at mostM of these features, so the run time
complexity of the classifier is bounded byM .

At test time, objects are detected by applying the classifierto
the jet of feature responses at each image location. As objects
were normalized in scale for the training images, objects are
only detected at a normalized scale of 32x32 pixels. Scale
invariance is obtained by scanning scale by scaling down the
image in small steps. This evaluation of features for all image
locations and scales, can be summarized as:

vf (x, y, σ) = (wf ∗ |Iσ ⊗ gf |
p) (15)

whereIσ is the image at scaleσ, gf is the fragment,wf is
the spatial mask,⊗ represents the normalized correlation, and
∗ represents the convolution operator.

IN PRESS, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE 7

p

=

p

=

g1 w1

gD wD

..
.

a) b)

Fig. 7. a) Each feature is composed of a template (image patchon the left) and a binary spatial mask (on the right) indicating the region in which the response
will be averaged. The patches vary in size from 4x4 pixels to 14x14. b) Each feature is computed by applying normalize correlation with the template. From
each image, we get positive (zc = 1) and negative (background,zc = −1 ∀c) training samples by sampling the set of responses from all the features in the
dictionary at various points in the background and in the center of each target object.

Fig. 8. Examples of typical detections for computer screen,mouse, do-not-enter sign, mug and chairs (results are the first 5 images processed from a typical
run). For each row, only the output of one object class detector is shown. The results are obtained training 21 object classes using 50 training samples per
class and 1000 background samples. The classifier uses 500 features (rounds of boosting). Images are cropped so that the difficulty of detecting all the object
classes is the same independent of their real size. Images have about 180x180 pixels. Detections are performed by scanning the image across locations and
scales. Scale is explored by scaling the image with steps of 0.9.

IN PRESS, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE 8

70 features

20 tr. samples

15 features

20 tr. samples

15 features

2 tr. samples

70 features

20 tr. samples

15 features

20 tr. samples

15 features

2 tr. samples

70 features

20 tr. samples

15 features

20 tr. samples

15 features

2 tr. samples

S
cr

ee
n

C
h
ai

r
C

ar
 s

id
e

C
an

P
er

so
n

T
ra

fi
c

li
g
h
t

S
to

p

P
o
st

er
K

ey
b
o
ar

d
M

o
u
se

T
ra

sh
M

u
g

O
n
e

w
ay

 s
ig

n
L

ig
h
t

C
ar

 f
ro

n
ta

l
B

o
tt

le
M

o
u
se

 p
ad

H
ea

d
S

p
ea

k
er

D
o
 n

o
t

en
te

r
C

o
m

p
u
te

r

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1
0 1

0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1
0 1

0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1
0 1

0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1
0 1

0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

Fig. 9. ROC curves for 21 objects (red (lower curve) = isolated detectors, blue (top curve) = joint detectors). ROC is obtained by running the detector on
entire images and sampling the detector output at the location of the target and on the background. For each graph, the horizontal axis is the false alarm ratio
and the vertical axis is the ratio of correct detections. Foreach object we show the ROC obtained with different trainingparameters. From left to right: i) 70
features in total (on average70/21 ≃ 3.3 features per object) and 20 training samples per object, ii)15 features and 20 training samples, and iii) 15 features
and 2 training samples. In the second and third cases, there are fewer features than classes, so training each class separately will inevitably result in some
classifiers performing at chance (shown by diagonal ROC lines).

a)

Class-specific features

Sharing features

Boosting round (m)

A
v

er
ag

e
ar

ea
 u

n
d

er
 R

O
C

10 20 30 40 50 60 70
0.5

0.55

0.65

0.75

0.85

0.95

1

b) Boosting round (m)

N
u
m

b
er

 o
f

o
b
je

ct
s

sh
ar

in
g
 e

ac
h
 f

ea
tu

re

0

2

4

6

8

10

12

14

16

18

10 20 30 40 50 60 70

Fig. 10. a) Evolution of classification performance of the test set as a function of number of boosting rounds (or features). Performance is measured as the
average area below the ROC across all classes. Chance level is 0.5 and perfect detection for all objects correspond to area= 1. Both joint and independent
detectors are trained using up to 70 features (boosting rounds), 20 training samples per object and 21 object classes. The dashed lines indicate the number of
features needed when using joint or independent training for the same performance. b) This graph shows how many objects share the same feature at each
round of boosting during training. Note that a feature shared among 10 objects is in fact using20 ∗ 10 = 200 training samples.

IN PRESS, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE 9

B. Results on multiclass object detection

Figure 8 shows some sample detection results when running
the detectors with shared features on whole images by scan-
ning each location and scale, and finding the local maxima.
Figure 9 summarizes the performances of the detectors for
each class. For the test, we use an independent set of im-
ages. All the detectors have better performances when trained
jointly, sometimes dramatically so. When separate classifiers
are trained, we require that exactly the same number of
features (weak learners) are used in total (summing across
classes) as in the joint classifier, to ensure that the run-time
complexity of the two approaches is comparable.

Note that as we reduce the number of features and training
samples, all the results get worse. In particular, when training
the detectors independently, if we allow fewer features than
classes, then some classifiers will have no features, and will
perform at chance level (a diagonal line on the ROC). Even for
the classifiers that get some features, the performance can be
bad — sometimes it is worse than chance (below the diagonal),
because there is not enough data to reliably pick the good
features or to estimate their parameters. However, the jointly
trained detectors perform well even as we reduce the amount
of computation time and training data.

Figure 10.a show performance of both methods improves
as we allow more rounds of boosting. The horizontal axis
of the figure corresponds to the number of features (rounds
of boosting) used for all the object classes. The vertical axis
shows the area under the ROC for the test set, averaged across
all object classes. When enough training samples are provided,
and many boosting rounds are allowed, then both joint and
independent classifiers will converge to the same performance,
as both have the same functional form. However, when only
a reduced number of rounds are allowed (in order to reduce
computational cost), the joint training outperforms the isolated
detectors. Furthermore, we expect the relative advantage of
joint training to get larger and larger as more classes are added.

C. Feature sharing

To gain some insight into how the algorithm works, it is
helpful to examine which features it selects and why. Fig. 11
shows an example of a feature shared between two objects
at one of the boosting rounds. The selected feature can help
discriminate both trashcans and heads against the background,
as is shown by the distribution of positive and negative samples
along the feature dimension.

Figure 10.b shows the evolution of the number of objects
sharing features for each boosting round. We expected to see
that the features chosen initially would be shared by many
classes, and the features chosen later would be more class-
specific, but this is not what is observed.

Figure 12 shows the final set of features selected (the
parameters of the regression stump are not shown) and the
sharing matrix that specifies how the different features are
shared across the 21 object classes. Each column corresponds
to one feature and each row shows the features used for each
object. A white entry in cell(i, j) means that objecti uses
featurej. The features are sorted according to the number of

0 20 40 60 80 100 120 140 160 180
0

1

ch
ai

r

0 20 40 60 80 100 120 140 160 180
0

1

ca
r

si
d
e

0 20 40 60 80 100 120 140 160 180
0

1

m
o
u
se

p
ad

0 20 40 60 80 100 120 140 160 180
0

1

tr
as

h

0 20 40 60 80 100 120 140 160 180
0

1

h
ea

d

0 20 40 60 80 100 120 140 160 180
0

1

P
ed

es
tr

ia
n

0 20 40 60 80 100 120 140 160 180
0

1

o
n
e

w
ay

0 20 40 60 80 100 120 140 160 180
0

1

d
o
 n

o
t

en
te

r

0 20 40 60 80 100 120 140 160 180
-1

0

1

F
ea

tu
re patch mask

regression stump

vf (arbitrary units)

Fig. 11. Example of a shared feature (obtained at round 4 of boosting)
between two objects (heads and trash-cans) when training 8 objects jointly.
The shared feature is shown at the bottom of the figure. It is defined by an
image feature (template and mask) and a regression stump (a, b andθ). For
each object, the blue graph shows an empirical approximation to p(vf |zc =
−1) (negative examples), and the red graph showsp(vf |zc = 1) (positive
examples). The x-axis represent the feature indicesf on an arbitrary scale.

objects that use each feature. From left to right the features
are sorted from generic features (shared across many classes)
to class-specific features (shared among very few objects).

We can measure similarity between two object classes by
counting the number of features that they have in common
and normalizing by the number of features used by each
class (normalized correlation). Figure 13 shows the result
of a greedy clustering algorithm using this simple similarity
measure. Objects that are close in the tree are objects that share
many features, and therefore share most of their computations.
The same idea can be used to group features (results not
shown).

D. Specific vs. generic features

One consequence of training object detectors jointly is in the
nature of the features selected for multiclass object detection.
When training objects jointly, the system will look for features
that generalize across multiple classes. These features tend
to be edges and generic features typical of many natural
structures, similar to the response properties of V1 cells.
Similar results have been obtained using unsupervised learning
methods, such as ICA, applied to image patches, but we
obtained our results using supervised, discriminative methods
(similar to a neural network).

The generality of the features we find is in contrast to
the claim in [36] that class-specific features (of intermediate
complexity) are best. When training classifiers independently,
we find that class-specific features are indeed best, since

IN PRESS, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE 10

screen
poster

car frontal
chair

keyboard
bottle

car side
mouse

mouse pad
can

trashcan
head

person
mug

speaker
traffic light

one way Sign
do not enter

stop Sign
light
cpu

Fig. 12. Matrix that relates features to classifiers, which shows which features are shared among the different object classes. The features are sorted from
left to right from more generic (shared across many objects)to more specific. Each feature is defined by one filter, one spatial mask and the parameters of
the regression stump (not shown). These features were chosen from a pool of 2000 features in the first 40 rounds of boosting.

Screen Chair Car side CanPerson Trafic

light

Stop

sign

Poster KeyboardMouse Trash Mug One way

sign

LightCar

frontal

BottleMouse

pad

Head Speaker Do not

enter

Computer

Fig. 13. Clustering of objects according to the number of shared features. Objects that are close in the tree are objects that share more features and therefore
share most of the computations when running the classifiers on images. This clustering is obtained by training jointly 21objects, using 70 stumps and 50
training samples per object.

they are more discriminative and therefore fewer are needed.
However, in cases where we cannot afford to have a large
number of features, it is better to use generic features, since
they can be shared.

Fig. 14 illustrates the difference between class-specific and
generic features. In this figure we show the features selected
for detecting a traffic sign. This is a well-defined object
with a very regular shape. When training a single detector
using boosting, most of the features are class-specific (the
selected features are pieces of the target object despite that
the algorithm could chose pieces coming from other 20 object
categories) and behave like a template matching detector (see
Fig. 14b). But when we need to detect thousands of other
objects, we cannot afford to develop such specific features

for each object. This is what we observe when training the
same detector jointly with 20 other objects. The new features
(Fig. 14c) are more generic (configuration of edges) which can
be reused by other objects.

E. The number of features needed is approximately logarith-
mic in the number of classes

One important consequence of feature sharing is that the
number of features needed grows sub-linearly with respect
to the number of classes. Fig. 15.a shows the number of
features necessary (vertical axis) to obtain a fixed performance
as a function of the number of object classes to be detected
(horizontal axis). When usingC independent classifiers, the

IN PRESS, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE 11

a) Object

b) Selected features by a single detector

c) Selected features when trained jointly

Fig. 14. Specific vs. generic features for object detection.(a) An object with
very little intra-class variation. (b) When training an independent detector,
the system learns template-like filters. (c) When trained jointly with 20 other
classes, the system learns more generic, wavelet-like filters.

complexity grows linearly, as expected. However, when shared
features are used, the complexity seems to grow aslog(C). (A
similar result has been reported by Krempp, Geman and Amit
([18]) using character detection as a test bed.)

When the system is required to represent an increasing
number of object categories, each shared feature becomes
less informative for a single object class and, therefore, more
features are required for achieving the same detection perfor-
mance than if we were using class-specific features (Fig. 15.b).
However, the fact that we can allocate more features for each
object by reusing features from other object classes results in
a reduced set of features (Fig. 15.a). Fig. 15.b explains why
class-specific features are the preferred representation when
studying representations for single object classes. Although
this is the goal of some computer vision applications (e.g.,
car detection), the human visual system is confronted with a
more general multiclass object recognition problem.

Both graphs in Fig. 15 show a trade-off between the
efficiency of the multiclass object representation and the repre-
sentation of a single object class. A useful strategy would be to
devote class-specific features for classes of special interest. For
instance, faces play an important role in human vision and area
IT contains cells selective for faces and parts of faces. Face-
specific features emerge when we indicate to the algorithm that
a larger efficiency is required for that object class (this isdone
by increasing the penalty of classification errors for the face-
class). The resulting visual dictionary contains generic features
(shared across many object classes) and face-specific features
devoted to an efficient encoding of faces (see Section VI).

0 10 20 30
0

50

100

150

200

250

0 10 20 30
0

5

10

15

20

25

30Total number of features

for all the classes

Number of object classes Number of object classes

Number of features

for a single class

a) b)

Shared features

Class-specific features

Fig. 15. Comparison of the efficiency of class-specific and shared features to
represent many object classes (in this experiment we used 29object classes
by adding to previous 21 classes also frontal faces, parkingmeter, pot, paper
cup, bookshelf, desk, laptop, and fire hydrant). a) Total number of features
needed to reach a given classification performance for all the objects (area
under the ROC equal to 0.95). The results are averaged across20 training
sets and different combinations of objects. Error bars correspond to 80%
interval. As we increase the number of objects to be represented the number
of features required to keep performance constant increaselinearly for class-
specific features and sub-linearly for shared features. b) Number of features
allocated for each object class. When sharing features, thefeatures become
less informative for a single class, and we therefore need more features
per class to achieve the same performance compared to using class-specific
features.

F. Loss function for multiclass object detection

We have given the same weight to all errors. But some mis-
labelings might be more important than others. For instance,
it is not a big error if a mug is mislabeled as a cup, or if a
can is mislabeled as a bottle. However, if a frontal view of a
car is mislabeled as a door that could be hazardous. Changing
the loss function will have consequences for deciding which
objects will share more features. The more features that are
shared by two objects, the more likely it is that they are going
to be confused at the detection stage.

IV. M ULTIVIEW OBJECT DETECTION

When building view invariant object detectors, the standard
approach is to discretize the space of poses, and to implement
a set of binary classifiers, each one tuned to a particular pose
(e.g., [30]). In this section, we discuss how to train a single
multiview classifier that exploits features that are sharedacross
views.

One problem when discretizing the space of poses is to
decide how fine the discretization should be. The finer the
sampling, the more detectors we will need and hence the larger
the computational cost. However, when training the detectors
jointly, the computational cost does not blow up in this way:
If we sample too finely, we find that many of the views are
quite similar, and hence can share many features.

In the case of multiple views, some objects have poses that
look very similar. For instance, in the case of a car, both
frontal and back views have many common features, and both

IN PRESS, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE 12

0 30 60 90 120 150 180 210 240 270 300 330

Fig. 16. Examples of pose variations for cars and screens from the LabelMe dataset (the angles are approximate).

a) b)
0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
P

re
ci

si
o
n

PASCAL Cars 2 RPC Curves

specific-1-800

shared-1-100

shared-50-300

specific-50-300

Darmstadt: ISMbig4

Darmstadt: ISMSVMbig4

FranceTelecom: pascal_develtest

INRIA: dalal: ndalal_competition_number_6

TSI-pLSA (Fergus)

Constellation (Fergus)

specific-1-800

shared-1-100

specific-50-300

shared-50-300

Fig. 17. a) Detection results on images from the PASCAL collection (cars test set 2, [8]). The classifier is trained on 12 views of cars from the LabelMe
dataset (50 positive examples for each view and 12860 background samples) and uses 300 shared features. The detection results are organized according to
the confidence of the detector (from high precision/low recall to low precision/high recall). The first row are randomly selected among the most confident
detections. Each row represents a different point in the precision-recall curve. b) Precision-recall curves comparing our algorithm with algorithms evaluated
during the PASCAL challenge.

detectors should share a lot of computations. However, in the
case of a computer monitor, the front and back views are
very different, and we will not be able to share features. Our
algorithm will share features as much as possible, but only if
it does not hurt performance.

Fig. 17 shows the detection results obtained on the PASCAL
dataset [8] which contains a challenging set of cars with
multiple views. We trained a set of classifiersH(v, c, θi),
for the car class and poseθi (with some tolerance). For
those patches in which the detector is above the detection
threshold,maxi {H(v, c, θi)} > th, we can estimate the pose
of the object asθ = argmaxθi

{H(v, c, θi)}. Fig. 17.a shows
some detection results ranked according to confidence of the
detector. The different aspect ratios of the bounding boxes
correspond to the hypothesized car orientations.

Fig. 17.b compares performances with respect to other
algorithms from the PASCAL challenge [8]and also from
[11]. Our algorithm is evaluated in four versions: 1) one
training sample per view, 800 features (rounds of boosting),
and no sharing (referenced in the figure asspecific-1-800), 2)
one training sample/view, 100 features, and sharing (shared-
1-100), 3) 50 training samples/view, 300 features, and no
sharing (specific-50-300), and 4) 50 training samples/view,
300 features with sharing (shared-50-300). Versions 1 and
2 evaluate the ability of the algorithms to generalize from
few training examples (note that without sharing features,

generalization is poor and it is not a function of how many
features are used by the classifier, see next section). Versions
3 and 4 evaluate performances for same computational cost.
Note that if the algorithm can use as much training data as he
wants, and use as many computations as needed, then there
will not be any difference between sharing and no sharing
features in this framework.

V. L EARNING FROM FEW EXAMPLES: MULTICLASS VS

MULTIVIEW

Another important consequence of joint training is that the
amount of training data required is reduced. Fig. 9 shows the
ROC for the 21 objects trained with 20 samples per object,
and also with only 2 samples per objects. When reducing the
amount of training, some of the detectors trained in isolation
perform worse than chance level (which will be the diagonal
on the ROC), which means that the selected features were
misleading. This is due to the lack of training data, which hurts
the isolated method more. In the case where we are training
C object class detectors and we haveN positive training
examples for each class, by jointly training the detectors we
expect that the performance will be equivalent to training each
detector independently withNe positive examples for each
class, withN ≤ Ne ≤ NC. The number of equivalent training
samplesNe will depend on the degree of sharing between
objects.

IN PRESS, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE 13

AngryCloseAngryOpenCalmCloseCalmOpenDisgustCloseFearCloseFearOpen

HappyCloseHappyExtreme

DisgustOpen

HappyOpenSurprisedOpen SadCloseSadOpen NervousCloseNervousOpen

Fig. 19. Example of the emotions used.

To get an estimate of how much largerNe is compared
to N , we ran two experiments in which the classes have
different degrees of similarity. In the first experiment, weused
12 different object classes; in the second, we use 12 different
views of a car (see previous section). For this comparison,
we used 600 features in the dictionary, and 1000 negative
examples in the two experiments. We used for training and
test images from the LabelMe dataset.

Intuitively, we expect that more features will be shared
in the multiview case than in the multiclass case. The ex-
periment confirms this intuition. Specifically, we find that
in the multiclass case, each feature was shared amongst 5.4
classes on average, whereas in the multiview case, each feature
was shared amongst 7 classes on average. In Fig. 18, we
see that that in the multiclass case,Ne ≈ 2.1N (i.e., we
need to double the size of the training set to get the same
performance out of class-specific features), and that in the
multiview case,Ne ≈ 4.8N (i.e., joint training effectively
increases the training set by almost a factor of 5).

VI. FEATURE SHARING APPLIED TO FACE DETECTION AND

RECOGNITION

Feature sharing may be useful in systems requiring differ-
ent levels of categorization. If we want to build a system
to perform both class detection (e.g. faces vs. background)
and instance-level categorization (e.g., recognition of specific
faces), a common approach is to use a two stage system: the
first stage is built by training a generic class detector (to detect
any face), and the second stage is built by training a dedicated
classifier to discriminate between specific instances (e.g., my
face vs. all others).

By applying the feature sharing approach, we can train
one classifier to solve both tasks. The algorithm will find the
commonalities between the object instances, deriving generic
class features (shared among all instances) and specific class
features (used for discriminating among classes). This provides
a natural solution that will adapt the degree of feature sharing
as a function of intra-class variability.

To illustrate the feature sharing approach, we have trained
a system to do face detection and emotion recognition (the
same approach will apply for other intra-class discriminations
like person recognition, gender classification, etc.). We use

the MacBrain Face Stimulus2 database (Fig. 19). There are
16 emotions and 40 faces per emotion. We use 5 faces of
each class to build the feature dictionary (2000 features).For
training we used 20 additional faces and 1000 background
patches selected randomly from images. The test is performed
on the remaining faces and additional background patches.
The joint classifier is trained to differentiate the faces from the
background (detection task) and also to differentiate between
the different emotions (recognition task).

Fig. 20 shows the features selected and the sharing between
the different emotion categories. The first 5 features are shared
across all classes. Therefore, they contribute exclusively to the
task of detection and not to the recognition. For instance, the
smiling-face detector will have a collection of features that are
generic to all faces, as part of the difficulty of the classification
is in the localization of the face itself in a cluttered scene. The
training of a specific class detector will benefit from having
examples from other expressions. Note that the features used
for the recognition (i.e., not shared among all classes) also
contribute to the detection.

Fig. 21 summarizes the performances of the system on
detection and emotion recognition. The efficiency of the final
system will also be a function of the richness of the dictionary
of image features used. Here we use image patches and
normalized correlation for computing image features, as in
the previous sections.

Recently it has become popular to detect objects by detect-
ing their parts, and checking that they satisfy certain spatial
constraints (see e.g., [12], [10]). Our algorithm implicitly does
this: the spatial mask is a way of requiring that the fragment
occurs in the desired place. However, the fragments that are
chosen do not have any special semantic meaning [36]. For
example, Fig. 20 shows the features we learn for faces; they
do not have a clean correspondence with nameable parts like
eyes, nose, mouth, etc.

VII. R ELATED WORK

We first discuss work from the computer vision literature,
and then discuss work from the machine learning community.

A. Multi-class object detection

There has been a large amount of work on object detection
and classification. Here we only mention results that are
concerned with multi-class object detection in clutter.

Perhaps the closest previous work is by Krempp, Geman
and Amit [18]. They present a system that learns to reuse
parts for detecting several object categories. The system is
trained incrementally by adding one new category at each step
and adding new parts as needed. They apply their system to
detecting mathematical characters on a background composed
of other characters. They show that the number of parts grows
logarithmically with respect to the number of classes, as we

2Development of the MacBrain Face Stimulus Set was overseen by Nim
Tottenham and supported by the John D. and Catherine T. MacArthur
Foundation Research Network on Early Experience and Brain Development.
Please contact Nim Tottenham at tott0006@tc.umn.edu for more information
concerning the stimulus set.

IN PRESS, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE 14

1 5 10 20 50
0.7

0.75

0.8

0.85

0.9

0.95

1

0.7

0.75

0.8

0.85

0.9

0.95

1

1 5 10 20 50

A
v

er
ag

e
ar

ea
 u

n
d

er
 R

O
C

Number of training examples per class Number of training examples per class

A
v

er
ag

e
ar

ea
 u

n
d

er
 R

O
C

Shared features

Class-specific features

a) b)

Fig. 18. Detection performance as a function of number of training examples per class. (a) 12 objects of different categories. (b) 12 views of the same object
class. Sharing features improves the generalization when few training samples are available, especially when the classes have many features in common (case
b). The boosting procedure (both with class-specific and shared features) is run for as many rounds as necessary to achieve maximal performance on the test
set.

{
AngryClose

AngryOpen

CalmClose

CalmOpen

DisgustClose

DisgustOpen

FearClose

FearOpen

HappyClose

SurprisedOpen

HappyOpen

NervousClose

NervousOpen

SadClose

SadOpen {

Generic features

(Detection)

Intra-class specific features

(Detection and recognition)

Fig. 20. Sharing matrix for face detection and emotion classification. This matrix shows the features selected using 30 rounds of boosting. The (face) generic
features are used to distinguish faces from non-faces (detection task), while the intra-class specific features perform both detection (distinguish faces from
the background) and recognition (distinguish among face categories). Here, the degree of sharing is larger than the sharing obtained in the multiclass and
multiview experiments.

have found. However, they do not jointly optimize the shared
features, and they have not applied their technique to real-
world images.

A related piece of work is by Amit, Geman and Fian [3].
They describe a system for multiclass and multi-pose object
detection in a coarse-to-fine search. They model the joint
distribution of poses between different objects in order toget
better results than using independent classifiers. Their CTF
search yields candidate locations which are then validated
using a generative model.

Fei-Fei, Fergus and Perona [9] propose a model based on
the geometric configuration of parts; each part is represented
as a local PCA template. They impose a prior on the model
parameters for each class, which encourages each class to be
similar, and allows the system to learn from small sample
sizes. However, this is a generative model, not a discriminative

one, and has run-time complexity

(

d
N

)

, where d is the

number of interest point detections andN is the number of
model parts. Hence it is too expensive to detect objects in

IN PRESS, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE 15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10 -3

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Shared features

Class-specific

features

2 4 6 8 10 12 14 15

AngryClose

AngryOpen

CalmClose

CalmOpen

DisgustClose

DisgustOpen

FearClose

FearOpen

HappyClose

SurprisedOpen

HappyOpen

NervousClose

NervousOpen

SadClose

SadOpen

55 14 5 0 0 5 0 0 0 0 0 5 9 9 0

9 64 0 0 5 5 0 0 5 0 0 5 0 9 0

0 0 45 18 0 0 0 0 0 0 0 27 0 0 9

0 0 14 32 0 0 0 9 0 0 5 18 23 0 0

14 5 5 5 45 9 0 0 0 0 5 0 0 9 5

9 9 5 0 5 50 0 0 0 9 5 0 0 5 5

0 0 9 5 0 5 68 5 0 0 0 5 0 0 5

0 0 0 5 0 0 18 55 0 18 0 0 5 0 0

0 0 0 0 5 5 5 0 41 0 36 9 0 0 0

0 0 0 0 0 5 0 23 5 64 0 0 5 0 0

0 0 0 0 14 5 0 0 9 0 73 0 0 0 0

0 5 36 9 0 5 5 0 0 0 0 2 7 5 9 0

0 5 5 9 0 5 0 0 0 0 5 3 6 36 0 0

9 5 0 0 5 5 9 5 0 0 0 1 4 5 45 0

0 0 0 5 5 9 0 0 0 0 0 0 9 0 7 3

Assigned class

T
ru

e
cl

as
s

False alarms rate

D
et

ec
ti

o
n
 r

at
e

a) b)

Fig. 21. This figure evaluates the performances of the joint classifier by splitting both tasks, detection and recognition. a) ROC for face detection and, b)
confusion matrix for emotion classification with 30 shared features and 15 emotion categories. The numbers correspond to percentages.

really cluttered images.

LeCun, Huang, and Bottou [21] use Convolutional Neural
Networks in order to learn to classify several toy objects on
backgrounds of moderate complexity. Since the hidden layers
are shared by all the classes, they learn common features. We
discuss this in more detail below, when we discuss multi-task
learning.

More recently, Bernstein and Amit [5] show that one can
use clustering (EM applied to a mixture of bernoulli-product
models) to discover ’features’, or little patches, which can then
serve as a universal dictionary for subsequent generative classi-
fiers. In particular, the codebook or dictionary is constructed by
clustering patches of binary oriented-edge filtered images; new
images are then recoded in terms of which codeword occurs
where; a new mixture model, one per class, is then fit this
transformed data. However, the dictionary of patches is shared
across classes. They demonstrate results on handwritten digits,
Latex symbols and the UIUC car-side dataset. Transferring
knowledge between objects to improve generalization has also
been studied in several recent papers [4], [17], [34].

B. Multi-class classification

As mentioned in the introduction, the insight that learning
to solve multiple tasks at once is easier than solving them
separately has been exploited in the field of “multiple task
learning” [6] or “inductive transfer” [32]. The vast majority
of this work has focused on the case where the classifier to
be learned is a feedforward neural network. In this case, the

hidden layer is naturally shared amongst the output classes.3

The algorithm proposed in this paper is also related to the
idea of error correcting output codes (ECOC) developed by
Dietterich and Bakiri [7]. This is a way of converting binary
classifiers into multi-class classifiers [2]. The idea of ECOC
is to construct a code matrixµ with entries in{−1, 0, +1}.
There is one row per class and one column for each subset
being considered. A binary classifier is fit for each column;
the 1’s in the column specify which classes to group together
as positive examples, and the−1’s specify which classes to
treat as negative examples; the 0 classes are ignored. Givenan
examplev, each column classifier is applied to produce a bit-
vector,(f1(v), . . . , fn(v)), wheren is the number of columns.
The estimated class label is the one corresponding to the row
which is closest in Hamming distance to this bit-vector.

The goal is to design encodings for the classes that are
resistant to errors (misclassifications of the individual bits).
There are several possible code matrices: (1)µ has sizeC×C,
and has+1 on the diagonal and−1 everywhere else; this
corresponds to one-against-all classification. (2)µ has sizeC×
(

C
2

)

in which each column corresponds to a distinct pair of

labelsz1, z2; for this column,µ has+1 in row z1, −1 in row
z2 and 0 in all other rows; this corresponds to building all pairs
of i vs j classifiers [15]. (3)µ has sizeC×2C−1, and has one
column for every non-empty subset; this is the complete case.
(4) µ is designed randomly and is chosen to ensure that the
rows are maximally dissimilar (i.e., so the resulting code has
good error-correcting properties). Allwein et. al. [2] show that

3An additive model of boosted stumps is like a 2 layer perceptron, where
the m’th hidden unit acts like a weighted linear threshold unit:hm(v) =
aδ(vf > θ) + b. The main difference from standard multi-layer perceptrons
is the learning procedure: instead of learning all parameters at once using
backpropagation (gradient descent), the parameters are learned sequentially
using weighted least squares plus exhaustive search (although boosting can
be viewed as gradient descent in a function space [13].) In practice, boosting
is orders of magnitude faster than backprop. It is also more general in the
sense that the weak learners do not have to be simple linear threshold units
(decision stumps).

IN PRESS, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE 16

the popular one-against-all approach is often suboptimal,but
that the best code matrix is problem dependent. Our algorithm
learns the best possible subset to use at each round. Another
difference between our approach and the ECOC framework is
how we use the column (subset) classifiers. In ECOC, they
classify an example by running each column classifier, and
looking for the closest matching row in the code matrix. In
our algorithm, we add the output of the individual column
(subset) classifiers together, as in a standard additive model.

VIII. C ONCLUSION

We have introduced an algorithm for multi-class object
detection that shares features across objects. The result is a
classifier that runs faster (since it computes fewer features)
and requires less data to train (since it can share data across
classes) than independently trained classifiers. In particular,
the number of features required to reach a fixed level of
performance grows sub-linearly with the number of classes,
as opposed to the linear growth observed with independently
trained classifiers.

We have applied the algorithm to the problem of multi-
class, multi-view object detection in clutter. The jointlytrained
classifier significantly outperforms standard boosting (which is
a state-of-the-art method for this problem) when we control
for computational cost (by ensuring that both methods use
the same number of features). We believe the computation
of shared features will be an essential component of object
recognition algorithms as we scale up to large numbers of
object classes.

IX. A CKNOWLEDGMENTS

We acknowledge support from NSF contract IIS-0413232,
the National Geospatial-Intelligence Agency (NGA-NEGI),
DARPA contract DABT63-99-1-0012, and the Nippon Tele-
graph and Telephone Corporation as part of the NTT/MIT
Collaboration Agreement.

REFERENCES

[1] S. Agarwal, A. Awan, and D. Roth. Learning to detect objects in images
via a sparse, part-based representation.IEEE Trans. on Pattern Analysis
and Machine Intelligence, 26(11):1475–1490, 2004.

[2] E. Allwein, R. Schapire, and Y. Singer. Reducing multiclass to binary:
A unifying approach for margin classifiers.J. of Machine Learning
Research, pages 113–141, 2000.

[3] Y. Amit, D. Geman, and X. Fan. Computational strategies for model-
based scene interpretation for object detection, 2003.

[4] E. Bart and S. Ullman. Cross-generalization: learning novel classes from
a single example by feature replacement. InProc. IEEE Conf. Computer
Vision and Pattern Recognition, 2005.

[5] E. Bernstein and Y. Amit. Part-based statistical modelsfor object
classification and detection. InProc. IEEE Conf. Computer Vision and
Pattern Recognition, 2005.

[6] R. Caruana. Multitask learning.Machine Learning, 28(1):41–75, 1997.
[7] T. G. Dietterich and G. Bakiri. Solving multiclass learning problems

via ECOCs.J. of AI Research, 2:263–286, 1995.
[8] M. Everingham, A. Zisserman, C. Williams, L. Van Gool, M.Allan,

C. Bishop, O. Chapelle, N. Dalal, T. Deselaers, G. Dorko, S. Duffner,
J. Eichhorn, J. Farquhar, M. Fritz, C. Garcia, T. Griffiths, F. Jurie,
D. Keysers, M. Koskela, J. Laaksonen, D. Larlus, B. Leibe, H.Meng,
H. Ney, B. Schiele, C. Schmid, E. Seemann, J. Shawe-Taylor, A. Storkey,
S. Szedmak, B. Triggs, I. Ulusoy, V. Viitaniemi, and J. Zhang. The 2005
pascal visual object classes challenge. InFirst PASCAL Challenges
Workshop. Springer-Verlag, 2005.

[9] L. Fei-Fei, R. Fergus, and P. Perona. A bayesian approachto unsuper-
vised one-shot learning of object categories. InIEEE Conf. on Computer
Vision and Pattern Recognition, 2003.

[10] P. Felzenszwalb and D. Huttenlocher. Pictorial structures for object
recognition. Intl. J. Computer Vision, 61(1), 2005.

[11] R. Fergus.Visual Object Category Recognition. PhD thesis, University
of Oxford, 2005.

[12] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by
unsupervised scale-invariant learning. InProc. IEEE Conf. Computer
Vision and Pattern Recognition, 2003.

[13] J. Friedman. Greedy function approximation: a gradient boosting
machine.Annals of Statistics, 29:1189–1232, 2001.

[14] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression:
a statistical view of boosting.Annals of statistics, 28(2):337–374, 2000.

[15] T. Hastie and R. Tibshirani. Classification by pairwisecoupling. Annals
of Statistics, 26:451–471, 1998.

[16] B. Heisele, T. Serre, S. Mukherjee, and T. Poggio. Feature reduction
and hierarchy of classifiers for fast object detection in video images. In
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2001.

[17] M. Fink K. Levi and Y. Weiss. Learning from a small numberof training
examples by exploiting object categories. InWorkshop of Learning in
Computer Vision, 2004.

[18] S. Krempp, D. Geman, and Y. Amit. Sequential learning ofreusable
parts for object detection. Technical report, CS Johns Hopkins, 2002.
http://cis.jhu.edu/cis-cgi/cv/cisdb/pubs/query?id=geman.

[19] T. Kubota and C. O. Alford. Computation of orientational filters for
real-time computer vision problems i: implementation and methodology.
Real-time Imaging, 1:261–281, 1995.

[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition.Proceedings of the IEEE, 86(11):2278–
2324, November 1998.

[21] Y. LeCun, Fu-Jie Huang, and L. Bottou. Learning methodsfor generic
object recognition with invariance to pose and lighting. InProceedings
of CVPR’04. IEEE Press, 2004.

[22] B. Leibe and B. Schiele. Analyzing appearance and contour based
methods for object categorization. InIEEE Conference on Computer
Vision and Pattern Recognition (CVPR’03), Madison, WI, June 2003.

[23] R. Lienhart, A. Kuranov, and V. Pisarevsky. Empirical analysis of
detection cascades of boosted classifiers for rapid object detection. In
DAGM 25th Pattern Recognition Symposium, 2003.

[24] D. G. Lowe. Object recognition from local scale-invariant features. In
Proc. of the International Conference on Computer Vision ICCV, Corfu,
pages 1150–1157, 1999.

[25] H. Murase and S. Nayar. Visual learning and recognitionof 3-d objects
from appearance.Intl. J. Computer Vision, 14:5–24, 1995.

[26] C. Papageorgiou and T. Poggio. A trainable system for object detection.
Intl. J. Computer Vision, 38(1):15–33, 2000.

[27] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. Labelme:
a database and web-based tool for image annotation. Technical Report
025, MIT AI Lab, 2005.

[28] R. Schapire. The boosting approach to machine learning: An overview.
In MSRI Workshop on Nonlinear Estimation and Classification, 2001.

[29] R. Schapire and Y. Singer. BoosTexter: A boosting-based system for
text categorization.Machine Learning, 39(2/3):135–168, 2000.

[30] H. Schneiderman and T. Kanade. A statistical model for 3D object
detection applied to faces and cars. InProc. IEEE Conf. Computer
Vision and Pattern Recognition, 2000.

[31] S. Lazebnik, C. Schmid, and J. Ponce. Affine-invariant local descriptors
and neighborhood statistics for texture recognition. InIntl. Conf. on
Computer Vision, 2003.

[32] S. Thrun and L. Pratt, editors.Machine Learning. Special issue on
Inductive Transfer. 1997.

[33] A. Torralba, K. Murphy, and W. Freeman. Sharing features: efficient
boosting procedures for multiclass object detection. InProc. IEEE Conf.
Computer Vision and Pattern Recognition, pp. 762-769, 2004.

[34] E. Sudderth, A. Torralba, W.T. Freeman, and A. Willsky.Learning
hierarchical models of scenes, objects, and parts. InProc. IEEE Conf.
Computer Vision and Pattern Recognition, 2005.

[35] S. Treitel and J. Shanks. The design of multistage separable planar
filters. IEEE Trans. Geosci. Electron., 9(1):10–27, 1971.

[36] M. Vidal-Naquet and S. Ullman. Object recognition withinformative
features and linear classification. InIEEE Conf. on Computer Vision
and Pattern Recognition, 2003.

[37] P. Viola and M. Jones. Robust real-time object detection. Intl. J.
Computer Vision, 57(2):137–154, 2004.

