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Sharing visual features for multiclass and multiview
object detection

Antonio Torralba, Kevin P. Murphy, William T. Freeman

ABSTRACT distinguishing between object class and background class.

We consider the problem of detecting a large number §uch a classifier can be turned into a detector by sliding it
different classes of objects in cluttered scenes. Trausio across the image (orimage pyramid), and classifying eacih su
approaches require applying a battery of different classifito l0cal window [26], [16], [1]. Alternatively, one can extrac
the image, at multiple locations and scales. This can be sid@¢al windows at locations and scales returned by an interes
and can require a lot of training data, since each classifig?0int detector and classify these, either as an object oggs p
requires the computation of many different image featuredf an object (see e.g., [12]). In either case, the classifiér w
In particular, for independently trained detectors, theufe € applied to a large number of image locations, and hence
time) computational complexity, and the (training-timejrs need_s.to be fast and to have a low false positive rate. Various
ple complexity, scales linearly with the number of classes §lassifiers have been used, such as SVMs [26], naive Bayes
be detected. We present a multi-task learning procedueda [30], mixtures of Gaussians [12], boosted decision stumps
on boosted decision stumps, that reduces the computatiok®l: €tc. In addition, various types of image features have
and sample complexity, by finding common features that cB@en considered, ranging from generic wavelets [30], [87] t
be shared across the classes (and/or views). The detectors§@ss-specific fragments [16], [36]. Since it is expenswe t
each class are trained jointly, rather than independerfity.a compute these features at run-time, many classifiers will tr
given performance level, the total number of features meqyi 0 select a small subset of useful features.
and therefore the run-time cost of the classifier, is obsitrve The category-level object detection work mentioned above
to scale approximately logarithmically with the number o typically only concerned with finding a single class of
classes. The features selected by joint training are geneﬁbjects (most work has concentrated on frontal and profile
edge-like features, whereas the features chosen by tginf@ces and cars). To handle multiple classes, or multipleisie
each class separately tend to be more object-specific. 192 class, separate classifiers are trained and appliegénde
generic features generalize better and considerably redne dently. There has been work on training a single multi-class

computational cost of multi-class object detection. classifier, to distinguish between different classes okabj
Index Terms— Object detection, interclass transfer, sharing but this typically assumes that the object has been separate
features, boosting, multiclass from the background (see e.g., [25], [22]).
In this paper [33], we consider the combined problem of
I. INTRODUCTION distinguishing classes from the background and from each

A long-standing goal of machine vision has been to bu“gther: _Thi_s is harder than standard multi-class isolatejdo_cbb
a system which is able to recognize many different kinds §f@ssification problems, because the background classys ve
objects in a cluttered world. Although the general problem rheterogeneous in appearance (it represents “all otheseslgs
mains unsolved, progress has been made on restrictedners@fld is much more likely to appear than the various object
of this goal. One succesful special case considers theqmob(classes (since most of the image is background).
of detecting individualinstancesof highly textured objects, 1he first key insight of our work is that training multiple bi-
such as magazine covers or toys, despite clutter, occlusi&HY classifiers at the same time needs less training data si
and affine transformations. The method exploits featurastwh Many classes share similar features (e.g., computer screen
are invariant to various transformations, yet which areyvefnd posters can both be distinguished from the background by
specific to a particular object [24], [31]. This can be used 1§0king for the feature “edges in a rectangular arrangetjient
solve tasks such as “find an object that looks just like thighis observation has previously been made in the multi-task
one”, where the user presents a specific instance; but itotanigarning literature (see e.g., [6], [32]). However, neaallof
be used to solve tasks such as “find an object that looks likdhés work focuses on feedforward neural networks, whereas
car”, which requires learning an appearance model of a gene¥€ use a quite different kind of classifier, based on boosted
car. decision stumps[29].

The problem of detecting a generic category of object in The second key insight of our work is that training multiple

classifier at run time, since the computation of many of the
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network(and hence its computational complexity) is fixed ifunction can be thought of as a differentiable upper bound
advance, whereas we effectively learn the structure subjea the misclassification rate [28] or as an approximation
to the constraint that the classifier have a given run-tinte the likelihood of the training data under a logistic noise
complexity. model [14]. There are many ways to optimize this function.

Our extensive empirical results, on 21 object classes, shtMe chose to base our algorithm on the version of boosting
that the number of features needed when training jointlyvgro called “gentleboost” [14], because it is simple to implemen
roughly logarithmically with the number of classes (c.18]), numerically robust, and has been shown experimentallytf23]
whereas independent training shows linear growth. Sinee thutperform other boosting variants for the face detectimk .t
number of features is fewer, the classifier is faster, and thegentleboost, the optimization of is done using adaptive
amount of training data (needed to select the features adeéwton steps, which corresponds to minimizing a weighted
estimate their parameters) is less. We also show that #wuared error at each step. Specifically, at each stefhe
features which are chosen when training jointly are generfanction H is updated a$f (v) := H(v)+h,,(v), whereh,,, is
edge-like features (reminiscent of V1 cells); this is sanilo chosen so as to minimize a second order Taylor approximation
the results of unsupervised learning methods such as |G#.the cost function:
However, the features chosen when training independently ) ) LH(@) )
are more class-specific, similar to the results in [36]. Oura'sn J(H + hm) zafgr}%flE [e (z=hm)"| (2)
algorithm will smoothly interpolate between generic arabsst ) . . .
specific features, depending on the amount of training deda d<€Placing the expectation with an empirical average over th
the bound on the computational complexity of the classifief@ining data, and defining weighis = e_ziH(m')_ for training

The paper is organized as follows. We describe the m@xamplei, this reduces to minimizing the weighted squared
ticlass boosting algorithm in Section 1l, and illustrate it€for N

erformance on some artificial data sets. In Section Ill, we _ 2
ghow how the algorithm can be used to learn to detect 21 Juse = sz(zl om (v3))”, ®)
different classes of objects in cluttered, real world inmda . . ]
Section 1V, we show how the algorithm can be used to lea¥¥1€reé N is the number of training examples. How we min-
to detect different views of an object class (we focus on)carémize this cost depends on the specific form of the weak
The intuition behind this view-based approach is that a c&@mnersh,. Itis common to define the weak learners to be
seen from the side is essentially a different visual clags th Simple functions of the fornk,,, (v) = ad(v’ > 0) +.b5(“'f <
car seen from the front, but the angles in between share mé&nyWherev’ denotes thef’th component (dimension) of the
features in common. In Section VI, we show how the algorithf§ature vectow, 0 is a thresholdy is the indicator function,
can be used to perform both face detection and recognitigfide andb are regression parameters. In this way, the weak
The idea here is that we first learn to classify a patch as facelgarners perform feature selection, since each one picks a
background, and then learn features that discriminatedsew Single componenf. These weak learners are called decision
the face classes. In section VII, we summarize previous wd?k 'egression “stumps”, since they can be viewed as degenera

on multiclass object detection and multiclass classifigve, decision trees with a single node. We can find the best stump
conclude in Section VIII. just as we would learn a node in a decision tree: we search

over all possible featureg to split on, and for each one, we
Il. MULTICLASS BOOSTING WITH FEATURE SHARING search over all possible thresholsnduced by sorting the
A. Boosting for binary classification observed values of; given f and #, we can estimate the

We start with a brief review of boosting for binary classio ptimal a and b by weighted least squares. Specifically, we

=1

fication problems [29], [28], [14]. Boosting provides a simp have 5 w‘Zlé(vf > 0)
way to sequentially fit additive models of the form == fi , (4)
M Yo wid(v] > 0)
H(v) = Zl hon(v), b Zl wizi(s(vif <0 )
where v is the input feature vector) is the number of > wﬂs(vzf <)

boosting rounds, andf (v) = log P(z = 1|v)/P(z = —1|v) e pick the f and §, and corresponding and b, with the

is the log-odds of being in class1, wherez is the class |owest cost (using Equation 3), and add this weak learnéreto t
membership labet(1). HenceP(z = 1|v) = o(H (v)), where previous ones for each training examplé(v;) := H(v;) +
o(x) =1/(1+e7") is the sigmoid or logistic function. In the 1, (,,). Finally, boosting makes the following multiplicative
boosting literature, thé.,, (v) are often called weak learnersypdate to the weights on each training sample:

and H(v) is called a strong learner. Boosting optimizes the

following cost function one term of the additive model at a w; 1= wye #iMm ()
time:
J=E |:6sz(1;):| 1) This update increases the weight of examples which are
missclassified (i.e., for which; H (v;) < 0), and decreases the

The term zH (v) is called the “margin”, and is related toweight of examples which are correctly classified. The dvera
the generalization error (out-of-sample error rate). Thet ¢ algorithm is summarized in Figure 1.
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1) Initialize the weightaw; = 1 and setH (v;) =0, ¢ = 1..N. >
2) Repeat forn=1,2,...,. M

a) Fit stump:h, (v;) = ad(v! > 0) +b5(v! < 6)

b) Update class estimates for examples= 1,...,N: /
H(v;) := H(vi) + hm(vs) R N N

¢) Update weights for examples = 1,...,N: w; := N S 3
wiefzihm(vi) l ! P | 3//

Fig. 1. Boosting for binary classification with regressidnnsps.vlf is the \
f'th feature of thei'th training example,z; € {—1,+1} are the labels,

andw,; are theunnormalizedexample weightsN is the number of training

examples, and// is the number of rounds of boosting. J

. . - Fig. 2. Objects may share features in a way that cannot begsepted as
B. Shar'ng features: basic idea a tree. In this example, we can see how each pair of objecteslaapart:

In the multiclass case, we modify the cost function as fhe R and the 3 share the crescent-shaped fragment in thegtup the R
fy and the b share the vertical line on the left; and the b and tebaBe the

Adaboost.MH [29]: semi-circle-shaped fragment on the bottom right.
c

J =Y B[e =] (6)
c=1

wherez¢ is the membership labelH1) for classc and

and thus can be fruitfully shared. In our formulation, the
multiclass classifier is composed by three binary classifteat

can share features (stumps). Each binary problem classifies
one class against the others and the background. Our goal is

H(v,c) = Z hun (v, €). to figure out which features to share amongst which classes.
m=1 Figure 4.a shows all subsets of 3 classes arranged in a
where H(v,c) = logP(2¢ = 1Jv)/P(2¢ = —1Jv). Our lattice (ordered by subset inclusion). Let the set at nade

algorithm for minimizing this cost function differs from Ad in this graph be denotesl(n). At each round, JointBoost will
aboost.MH [29] in the structure of the weak classifiefs The consider each of one of these subsets as a possible candidate
key idea is that at each round, the algorithm will choose a to share a stump and will learn a weak classifier for that
subset of classeS(m) that will share a feature and that willsubset. If we sum up all the weak learners associated with
have their classification error reduced. The weak classgiersubsetS(n), we get a strong learner, which we can denote
obtained by fitting a binary decision stump as outlined abowe®(™ (v). (If subsetS(n) was never chosen by the algorithm,
(some small modifications are required when we share classten G5(") (v) = 0.) Finally, for each class, we can find all
which are explained below.). We consider multiple overlagp subsetsS(n) that containc, and sum up their additive models
subsets of classes, rather than a hierarchical partitionifio give the final form of the classifiers:
because some features may be shared between classes in a

H(v,1) = GY?3(v) + G*2(v) + G3(v) + G (v)

(v

way that is not tree-structured (see Figure 2).
We will present two methods for choosing the best subset H(v,2) = GY23() + GY2(v) + G23(v) + G2(v)
of classes at each round: the first is based on exhaustivehsear ’
of all possible subsets, which has complex®(2¢); the H(v,3) = GY?3(v) + G*3(v) + G*3(v) + G3(v)
second is based on greedy search (forward selection), whic o "
I g y (forw lon), wh Iqere eachG®()(v) is itself an additive model of the form

. 9 . e - W
has complexityO(C<). We will show that, at least on artificial ~ o~

My yn
data, the greedy approach is a very good approximation to frie (0) =205 hm(”)' . o
exhaustive approach. If we apply the JointBoost algorithm to the data in Fig. 3,

but restrict it to 8 rounds (so it can choose exactly 8 feaiure

the result is the model shown in Fig. 4.b. In this case, the
C. Toy problem first shared function has the forti'?3(v) = 2% _ hl23(v),

Before we explain in detail how JointBoost works, weneaning that the classifier which separates classes 1,28vs

illustrate its behavior on a toy data set. We consider thmackground has 3 decision boundaries. The other nodes have
problem of discriminating among' classes, which consists ofthe following number of boundaries\i/125 = 3, M5 = 2,
C spherical “clouds” of data irD dimensions, embedded in aM>3 = 1, M3 =0, My =1, My =0, M3 = 1, so there are
uniform “sea” of background distractors. So, the clasdifica no pure boundaries for class 2 in this example (indicated by
task requires discriminating among tlge¢ classes and also the blankG? square in Figure 4.b). The decomposition is not
against the background class. In Figure 3, we congitler 3  unique as different choices of functio6s’ (™ (v) can give the
classes (plus a background class)Ilm= 2 dimensions. In same classifier$f (v, ¢). But we are interested in the choices
this 2D example, the feature vectors are the projection of G°(")(v) that minimize the computational cost. We impose
the coordinates onto lines at 60 different angles cominmfrothe constraint tha} | A, = M, whereM is the total number
the origin. It is intuitively clear that some features (K)ere of functions that have to be learned (i.e., the number of dsun
useful for separating multiple classes from the backgrouraf boosting).
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The purpose of the class-specific const&fitis to prevent

a class being chosen for sharing just due to the imbalance
between negative and positive training examples. (Thetaohs
gives a way to encode a prior bias for each class, without
having to use features from other classes that happen to
approximate that bias.) Note that this constant changesdlye
features are shared, especially in the first iterations oftiog.
Therefore, in order to add a class to the shared subset we need
to have a decrease of the classification error that is latger t

just using a constant as weak classifier. This insures that th
shared features are really providing additional discratiie

Fig. 3. lllustration of feature sharing (top row) and indegent features information.

(bottom row) on a toy problem in which there are three objéasses and one At jterationn, the algorithm will select the best stump and a
background class. 50 samples from each class are used ifangraand we
use 8 rounds of boosting. Left: The thickness of the linegcatds the number classes subset. For a SUbSéﬁ)’ the parameters of the stump

of classes sharing each stump. Right: whiter colors indi¢ait the class is are set to minimize Equation 7. Note that the class latfetio

more likely t‘o be‘ present. Note tha_t for the same computatioesources, not Change with the shared subset selected. The class labels
feature sharing gives better separation of the 3 classes the background 2¢ define theC' binary classification problems that we are

class.
trying to solve jointly. When a stump is shared among several
a2 e“] R classes, the error for each shared class increases witactesp
y : to a stump optimized just for that class. However, because
2., g2 c'y p more classes have their classification error reduced when th
]/ﬁ X D > . ,. ’r stump is shared, the total multiclass error decreases (see a
G12<G1 G2 stﬂ ;Jsﬂ section IlI-E).
! g > Minimizing Equation 7 gives
a) G2>_<:G3 b) !A 9= g .
C .C
Fig. 4. a) All possible ways to share features amongst 3ifiass The sets as(f,0) = ECES(") Zi Wi% 5(vi > 0) 9)
are shown in a lattice ordered by subset inclusion. The &averespond to ’ > S w_c(g(v_f > 0) ’
single classes. b) Decision boundaries learned by all tdesin the sharing c€S(n) £vi Wi TR
graph for the problem in Fig. 3
S\J» = 3 )
S e stn Li wid(v] <)
D. Shared stumps cesn) i T
C .C
We now explain in more detail how JointBoost works. kS — LU’Z‘? ¢ Sn). (11)
Proceeding as in the regular gentleBoost algorithm, we must 22w
solve the following weighted least squares problem at eaThus each weak learner contains 4 parameiers, , §) for
iteration: the positive classy'—|S(n)| parameters for the negative class,
c N and 1 parameter to specify which sub$gh) was chosen.
Jwse = Z Z wé(28 — hon (v, )2 @) Fig. 5 presents the simplest version of the algorithm, which
e=1i=1 involves a search over all — 1 possible sharing patterns

wherew¢ = e~ H(vi<) are the weights for exampteand for each _iteration. Obviously this i; very slow. In Section Il
the classifier for class. Note that each training exampidas E» We discuss a way to speed this up by a constant factor,
C weights,w¢, one for each binary problem. It is importanlby reusing computation at the leaves to compute the score for
to note that the weights cannot be normalized for each bindRjerior nodes of the sharing graph. In Section II-F, we asc
problem independently, but a global normalization does n@tdreedy search heuristic that has complexty"?) instead
affect the resultsz{ is the membership labet{1) for example of 0(2).
i for classct.

For classes in the chosen subsets S(n), we can fit E. Efficient computation of shared regression stumps

a regression stump as l_)efore. For classes not in the chosepo evaluate the quality of a node in the sharing graph, we
subsetc ¢ 5(n), we define the weak learner to_b.e a clasgqyst find the optimal regression stump, a slow computation,
specific constant®. The form of a shared stump is: since it involves scanning over all features and\althresholds

asg if vif >0 andc € S(n) (where N is the number of training examples). However, we
hm(v.e) =4 bg if v/ <6 andce S(n) (8) can propagate most of the computations from the leaves to
kS if Cz¢fg(n) higher nodes, as we now discuss.

At each boosting round, and for each isolated class (the
IFor each binary classification problem we can consider astweg leaves of the graph), we compute the parameterand b,
examples all the other classes and the background or jusbabkground for g set of predefined thresholds and for all features, so as
class (in such a case we can set the weighta)fo> 0 for samples in the ¢ L .
classe (z¢ = 1) or in the background class and we set = 0 for samples (O Minimize the weighted square error. Then, the parameters
i in one of other classe€' — ¢). ag andbg for each threshold and feature at any other internal



1) Initialize the weightsw{ = 1 and setH (v;,c¢) =0, i = 1..N,

c=1..C.
2) Repeat form=1,2,..., M
a) Repeatfom =1,2,...,2¢ -1
i) Fit shared stump:
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At each round, we have to decide which classes are going to
share a feature. We start by computing all the features for th
leaves (single classes) as described in the previous sectio
We first select the class that has the best reduction of the
error. Then we select the second class that has the best error
reduction jointly with the previously selected class. Weke
adding the next best class, until we have added all the dasse

bs if v/ <0 andce S(n)

as if v/ >0 andce S(n)
h:’b(viv C) -
k¢ if c ¢ S(n)

We then pick the set, from th€ we have considered, with
the largest error reduction. This set can have any size leetwe

ii) Evaluate error
1 andC.

Since at each step we must consider adding one fga1)
classes, and there afe steps, the overall complexity of this
algorithm isO(C?). This is much better tha®(2¢) required
for exhaustive search. We can improve the approximation by
using beam search, considering at each step theMest C
classes.

C N
Juse(n) =Y > wi(zf — hi(vi,0))?
c=1 i=1

b) Find best subset.” = arg min, Juse(n).
c) Update the class estimates

H(Ui7c) = H(Ui7c) + hg: ('UZ',C)

d) Update the weights
To compare the exhaustive and greedy search procedures,
we return to the toy data shown in Fig. 3. We considkee
2 dimensions butC' = 9 classes (so that we can afford to
, o _ _ ’ consider all possible subsets). For this experiment, theifes
Et'ﬂ'tféinagozggﬁqgg;hear{e_dlr’efrgsiga”tﬁté‘T;gzl'z ;';fgg"s;egﬁgfugf;?; are the raw coordinate values; we use 25 training samples per

the unnormalizedexample weightsN is the number of training examples, €lass, and 8,000 samples for the background.
and M is the number of rounds of boosting.

*
c_—zihp (v4,¢)

c
w; ‘= w;e

Fig. 6.a illustrates the differences between exact seanch f
the best sharing, the best first approximate search, the best
node can be computed simply as a weighted combinationpirs only, a random sharing and no sharing. For each search
the parameters at the leaves that are connected with that nadgorithm the graph shows the number of stumps needed to
The best regression parameters for a subset of clés$®s achieve a fixed level of performance (area under the ROC
s el f, 0wl (f,6) = 0.95). We can see that using the exact best sharing or the

as(f,0) = 3 <(7,6) (12) one obtained using the approximate search (best first) geevi
ces Wil similar results. The complexity of the resulting multidas
bs(1.0) D ees be(f,O)we (f,0) (13) classifier (17 stumps) is smaller than the complexity of a-one
S\J> =

vs-all classifier that requires 63 stumps to achieve the same
performance.

Zceswc—(fae)
with we.(f,0) = SN wid(w! > 6) and we (f,0) =

Zij\il wes(v! < 6). For each featurdf, and each threshold Fig. 6.b illustrates the dependency of the complexity of the

K2

6, the joint weighted regression error, for the set of classe@ssifier as a function of the number of classes when using

S(n), is: different sharing patterns. For these experiments we use 2
) ) dimensions, 25 training samples per class, and 40,000 sampl
Juse(n) = (1—a2) > wi+(1-b2) Y w'+  for the background. As expected, when no sharing is used

c€S(n) c€S(n) (one-vs-all classifier), the complexity grows linearly kvihe
N number of classes. When the sharing is allowed to happen
+ 0D wi(ef — k) (14) only between pairs of classes, then the complexity is lower

cgS(n) i=1 that the one-vs-all but still grows linearly with the numlmér

The first two terms correspond to the weighted error in tHdasses. The same thing happens with random sharing. What
classes sharing a feature. The third term is the error for tifePerhaps a bit surprising is that, even though randomrstari

classes that do not share a feature at this round. This caneiBibits linear complexity, it still performs about as weti the
used instead of Eq. 7, for speed. best pair. The reason is that a random sharing will be good for

at least two classes at each round (in general, for D classes
F. Approximate search for the best sharing in D dimensions). prever, vyhen using the best sharing E?lt
each round (here using best-first search), then the contyplexi

As currently desc.”beg’ the algorithm requires cor_nput|r@(0ps dramatically and the dependency between complexity
features for all possibl@“ — 1 subsets of classes, so it doe%nd number of classes follows a logarithmic curve
not scale well with the number of classes. Instead of seagchi '

among all possibl@® — 1 combinations, we use best-first The above scaling results are on low-dimensional artificial
search and a forward selection procedure. This is similar data, but the experimental results in Section Ill show that t
techniques used for feature selection but here we groupadasalgorithm also scales to handle 21 object classes and &atur
instead of features. vectors of size 2000.
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Fig. 6. a) Comparison of nhumber of stumps needed to achieveame performance (area under ROC equal to 0.95) when usingsearch, best-first, best
pair, random sharing and no sharing at each round. We usedatayset withC' = 9 classes plus a background class/in= 2 dimensions. b) Complexity of

the multiclass classifier as a function of the number of elss¥he complexity of a classifier is evaluated here as thebeuwf stumps needed for achieving
a predefined level of performance (area under the ROC of 0.95)

[1l. M ULTICLASS OBJECT DETECTION of performing template matching. With = 1, the

In this section, we used 21 object categories: 13 indoor feature vector encodes the average of the filter responses,
objects (screen, keyboard, mouse, mouse pad, speaker, com- Which are good for describing textures. In this paper,
puter, trash, poster, bottle, chair, can, mug, light); 7doot we usep = 10; this is good for template matching as it
objects (frontal view car, side view car, traffic light, stop ~ @pproximates a local maximum operator (although other
sign, one way sign, do not enter sign, pedestrians); andshead values ofp will be useful for objects defined as textures
(which can occur indoors and outdoors). We used hand-ldbele  like buildings, grass, etc.).
images from thé_abelMedatabase of objects and scenes [27], 4) Convolve the response with the spatial mask (to

available afl abel nme. csail . mt. edu. test if the fragment occurs in the expected location).
This corresponds to make each feature to vote for the
A. Features expected object center. Convolution with the binary,
The features we use are inspired by the fragments proposed e€ctangular masks); can be implemented in a small
by [36]. As in [36], first we build a dictionary of features by ~ Nnumber of operations using the integral image [37].

extracting a random set dP = 2000 patches or fragments This will give us a very large set of training vectors. To
from a subset of the training images from all the classesh(witeduce the number we use only a sparse set of locations. From
objects normalized in scale so that they fit in a bounding fox ®ach image in the training set we extract positive training
32x32 pixels). The fragments have sizes ranging from 4x4 ¥éctors by sampling the feature outputs at the object center
14x14 pixels. When we extract a fragment we also record and negative training vectors by sampling randomly in the
the location with respect to the object center from which hackground (Fig. 7). We do not use samples that are inside the
was taken (within the 32x32 window); this is represented W3bject bounding box. For each chosen location, we get a vecto
a binary spatial masko; (we fix the mask to be a squareof size equal to the number of features in the dictionaryngsi

of 7x7 pixels centered on the original fragment locatiorde S 2000 fragments give us a 2000 dimensional feature vector for
Figure 7.a for some examples. Once the dictionary is bui@ach location. However, by only using rounds of boosting,

for each image we compute the features by performing tie will select at mostM of these features, so the run time
following steps for each of the 2000 fragmerfts complexity of the classifier is bounded By .

1) For training, we first scale the images so that the targetAt test time, objects are detected by applying the classdier
object fits in a bounding box of 32x32 pixels. We croﬁhe jet of feature responses at each image location. As tsbjec
the images so that they are not larger than 128x1&re normalized in scale for the training images, objects ar
pixels. We will use the background around the obje@tnly detected at a normalized scale of 32x32 pixels. Scale
to collect negative training samples. invariance is obtained by scanning scale by scaling down the

2) Apply normalized cross correlation between each fraffnage in small steps. This evaluation of features for allgma
ment g; and the training images. Normalized crostcations and scales, can be summarized as:
correlation can be speed up by approximating each patch ¥ o p
gy with a linear combination of 1D separable filters [35], i@y, o) = (wrx le @ 9417) (15)
[19]. where I, is the image at scale, g; is the fragmentwy is

3) Perform elementwise exponentiation of the result, usirllge spatial maskg represents the normalized correlation, and
exponentp. With a large exponent, this has the effect represents the convolution operator.
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Fig. 7. a) Each feature is composed of a template (image aithe left) and a binary spatial mask (on the right) indimatihe region in which the response
will be averaged. The patches vary in size from 4x4 pixels4wl4. b) Each feature is computed by applying normalizeetation with the template. From

each image, we get positive{ = 1) and negative (background® = —1 Vc¢) training samples by sampling the set of responses fronhalfe¢atures in the

dictionary at various points in the background and in thetereaf each target object.

Fig. 8. Examples of typical detections for computer screrause, do-not-enter sign, mug and chairs (results are stesfimages processed from a typical
run). For each row, only the output of one object class detastshown. The results are obtained training 21 objectselsising 50 training samples per
class and 1000 background samples. The classifier uses &@@efe (rounds of boosting). Images are cropped so thatiffieulty of detecting all the object

classes is the same independent of their real size. Imagesat®ut 180x180 pixels. Detections are performed by sognifie image across locations and

scales. Scale is explored by scaling the image with steps%f 0
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Fig. 9. ROC curves for 21 objects (red (lower curve) = isalatetectors, blue (top curve) = joint detectors). ROC is iobth by running the detector on
entire images and sampling the detector output at the totati the target and on the background. For each graph, theohtal axis is the false alarm ratio
and the vertical axis is the ratio of correct detections. éarh object we show the ROC obtained with different trairpagameters. From left to right: i) 70
features in total (on averag®/21 ~ 3.3 features per object) and 20 training samples per object5iifeatures and 20 training samples, and iii) 15 features
and 2 training samples. In the second and third cases, therfewer features than classes, so training each classaselyawill inevitably result in some
classifiers performing at chance (shown by diagonal ROG)ine
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Fig. 10. a) Evolution of classification performance of thst teet as a function of number of boosting rounds (or featuRerformance is measured as the
average area below the ROC across all classes. Chance deddd and perfect detection for all objects correspond te=are Both joint and independent
detectors are trained using up to 70 features (boostingds)u20 training samples per object and 21 object classesdakhed lines indicate the number of
features needed when using joint or independent traininghl® same performance. b) This graph shows how many objbate she same feature at each
round of boosting during training. Note that a feature sthaong 10 objects is in fact usirt) x* 10 = 200 training samples.
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B. Results on multiclass object detection

chair

Figure 8 shows some sample detection results when running  ———r="—0— =2 0 1w
the detectors with shared features on whole images by scan- 7 T T AN ‘
ning each location and scale, and finding the local maxima. frl) I R e S e T TR
Figure 9 summarizes the performances of the detectors for &% ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
each class. For the test, we use an independent set of im- £, . 1 L . |
ages. All the detectors have better performances wherettain 2! A —H LR
jointly, sometimes dramatically so. When separate classifi go' . ‘ f ‘ ‘ ‘ ]
are trained, we require that exactly the same number of 00 0 L0160 150
features (weak learners) are used in total (summing across N - ‘ ‘ ‘ . VA ‘

1

classes) as in the joint classifier, to ensure that the roe-ti
complexity of the two approaches is comparable.

Note that as we reduce the number of features and training
samples, all the results get worse. In particular, whemitngi
the detectors independently, if we allow fewer featuresitha
classes, then some classifiers will have no features, ard wil
perform at chance level (a diagonal line on the ROC). Even for
the classifiers that get some features, the performanceean b
bad — sometimes it is worse than chance (below the diagonal),
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because there is not enough data to reliably pick the good 0 100 140 160 180
features or to estimate their parameters. However, thélyoin v arbicary onis)
trained detectors perform well even as we reduce the amOHBt 11. Example of a shared feature (obtained at round 4 obtiray)

of computation time and training data. between two objects (heads and trash-cans) when traininigjegts jointly.

Figure 10.a show performance of both methods imprové%e shared feature is shown at the bottom of the figure. It isel® by an

. . image feature (template and mask) and a regression sturipand ). For

as we allow more rounds of boosting. The horizontal axis,., object, the blue graph shows an empirical approximatig (v |-° —

of the figure corresponds to the number of features (rounds) (negative examples), and the red graph shpis’|2¢ = 1) (positive

of boosting) used for all the object classes. The verticid ayexamples). The x-axis represent the feature indites an arbitrary scale.
shows the area under the ROC for the test set, averaged across

all object classes. When enough training samples are mdyid _
and many boosting rounds are allowed, then both joint aRBiects that use each feature. From left to right the feature

independent classifiers will converge to the same perfocean@re sorted from generic features (shared across many sjasse
as both have the same functional form. However, when orff} class-specific features (shared among very few objects).

a reduced number of rounds are allowed (in order to reduce/Ve can measure similarity between two object classes by
computational cost), the joint training outperforms thelased CcoUNting the number of features that they have in common
detectors. Furthermore, we expect the relative advantage@3d normalizing by the number of features used by each

joint training to get larger and larger as more classes atecid C/ass (normalized correlation). Figure 13 shows the result
of a greedy clustering algorithm using this simple simtiari

measure. Objects that are close in the tree are objectdtiuat s
many features, and therefore share most of their compuotatio
To gain some insight into how the algorithm works, it iSThe same idea can be used to group features (results not
helpful to examine which features it selects and why. Fig. Ishown).
shows an example of a feature shared between two objects
at one of the boosting rounds. The selected feature can help . i
discriminate both trashcans and heads against the bagigyrol?: SPeCific vs. generic features
as is shown by the distribution of positive and negative damp One consequence of training object detectors jointly ifién t
along the feature dimension. nature of the features selected for multiclass object tietec
Figure 10.b shows the evolution of the number of objec#hen training objects jointly, the system will look for fea¢s
sharing features for each boosting round. We expected to et generalize across multiple classes. These featunes te
that the features chosen initially would be shared by maty be edges and generic features typical of many natural
classes, and the features chosen later would be more clasasctures, similar to the response properties of V1 cells.
specific, but this is not what is observed. Similar results have been obtained using unsuperviseditear
Figure 12 shows the final set of features selected (theethods, such as ICA, applied to image patches, but we
parameters of the regression stump are not shown) and tdained our results using supervised, discriminativehous
sharing matrix that specifies how the different features afgmilar to a neural network).
shared across the 21 object classes. Each column correspondhe generality of the features we find is in contrast to
to one feature and each row shows the features used for etieh claim in [36] that class-specific features (of internageli
object. A white entry in cell(¢, j) means that object uses complexity) are best. When training classifiers indepetigen
featurej. The features are sorted according to the numberwg find that class-specific features are indeed best, since

C. Feature sharing
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Fig. 12. Matrix that relates features to classifiers, whibbves which features are shared among the different objesset. The features are sorted from
left to right from more generic (shared across many objectshore specific. Each feature is defined by one filter, oneiadpatsk and the parameters of
the regression stump (not shown). These features were rctisa a pool of 2000 features in the first 40 rounds of boosting
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Fig. 13. Clustering of objects according to the number ofethdeatures. Objects that are close in the tree are objeatshare more features and therefore
share most of the computations when running the classifiersnages. This clustering is obtained by training jointly @jects, using 70 stumps and 50
training samples per object.

they are more discriminative and therefore fewer are needéat each object. This is what we observe when training the
However, in cases where we cannot afford to have a largame detector jointly with 20 other objects. The new feaure
number of features, it is better to use generic featuresgsir(Fig. 14c) are more generic (configuration of edges) which ca
they can be shared. be reused by other objects.

Fig. 14 illustrates the difference between class-specifit a
generic features. In this figure we show the features selecte
for detecting a traffic sign. This is a well-defined objecllE The number of features needed is approximately logarith-
with a very regular shape. When training a single detectBiC in the number of classes
using boosting, most of the features are class-specific (theODne important consequence of feature sharing is that the
selected features are pieces of the target object despite thumber of features needed grows sub-linearly with respect
the algorithm could chose pieces coming from other 20 objdat the number of classes. Fig. 15.a shows the number of
categories) and behave like a template matching deteater (&atures necessary (vertical axis) to obtain a fixed perdoica
Fig. 14b). But when we need to detect thousands of othes a function of the number of object classes to be detected
objects, we cannot afford to develop such specific featurfworizontal axis). When using’ independent classifiers, the
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Fig. 15. Comparison of the efficiency of class-specific aratesth features to
represent many object classes (in this experiment we usexbj2@t classes
by adding to previous 21 classes also frontal faces, pankiater, pot, paper
cup, bookshelf, desk, laptop, and fire hydrant). a) Total Imemof features
needed to reach a given classification performance for ellathjects (area
under the ROC equal to 0.95). The results are averaged a2€ogsining
sets and different combinations of objects. Error barsespond to 8%
interval. As we increase the number of objects to be reptedethe number
of features required to keep performance constant incrigassly for class-
specific features and sub-linearly for shared features. lpibér of features
allocated for each object class. When sharing featuresfetiieres become
less informative for a single class, and we therefore neede nfieatures
per class to achieve the same performance compared to usisgrspecific
features.
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Fig. 14. Specific vs. generic features for object detectj@hAn object with
very little intra-class variation. (b) When training an @mbndent detector,
the system learns template-like filters. (c) When trainexitlyp with 20 other
classes, the system learns more generic, wavelet-likesfilte

complexity grows linearly, as expected. However, whenesthar ) ) ) )
features are used, the complexity seems to growge). (A F. Loss function for multiclass object detection
similar result has been reported by Krempp, Geman and AmitWe have given the same weight to all errors. But some mis-
([18]) using character detection as a test bed.) labelings might be more important than others. For instance
When the system is required to represent an increasiigs not a big error if a mug is mislabeled as a cup, or if a
number of object categories, each shared feature becorfi@d is mislabeled as a bottle. However, if a frontal view of a
less informative for a single object class and, thereforerem car is mislabeled as a door that could be hazardous. Changing
features are required for achieving the same detectiomperfthe loss function will have consequences for deciding which
mance than if we were using C|ass-5pecific features (|:|@)150bjects will share more features. The more features that are
However, the fact that we can allocate more features for eaghared by two objects, the more likely it is that they are goin
object by reusing features from other object classes gult to be confused at the detection stage.
a reduced set of features (Fig. 15.a). Fig. 15.b explains why
class-specific features are the preferred representatiem w IV. MULTIVIEW OBJECT DETECTION
studying representations for single object classes. Atjho  When building view invariant object detectors, the staddar
this is the goal of some computer vision applications (e.gapproach is to discretize the space of poses, and to imptemen
car detection), the human visual system is confronted withaaset of binary classifiers, each one tuned to a particulag pos
more general multiclass object recognition problem. (e.g., [30]). In this section, we discuss how to train a singl
Both graphs in Fig. 15 show a trade-off between theaultiview classifier that exploits features that are sha@wss
efficiency of the multiclass object representation and épea- views.
sentation of a single object class. A useful strategy woeltbb  One problem when discretizing the space of poses is to
devote class-specific features for classes of speciabsttdfor decide how fine the discretization should be. The finer the
instance, faces play an important role in human vision aad arsampling, the more detectors we will need and hence therlarge
IT contains cells selective for faces and parts of facesefathe computational cost. However, when training the detscto
specific features emerge when we indicate to the algoritfan thointly, the computational cost does not blow up in this way:
a larger efficiency is required for that object class (thidase If we sample too finely, we find that many of the views are
by increasing the penalty of classification errors for theefa quite similar, and hence can share many features.
class). The resulting visual dictionary contains genexatidres  In the case of multiple views, some objects have poses that
(shared across many object classes) and face-specificdeatlook very similar. For instance, in the case of a car, both
devoted to an efficient encoding of faces (see Section VI). frontal and back views have many common features, and both
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Fig. 17. a) Detection results on images from the PASCAL ctitten (cars test set 2, [8]). The classifier is trained on 18vsi of cars from the LabelMe

dataset (50 positive examples for each view and 12860 bagkdrsamples) and uses 300 shared features. The detectidts rare organized according to
the confidence of the detector (from high precision/low ltemalow precision/high recall). The first row are randomlglected among the most confident
detections. Each row represents a different point in theigion-recall curve. b) Precision-recall curves compmmaur algorithm with algorithms evaluated
during the PASCAL challenge.

detectors should share a lot of computations. However,én theneralization is poor and it is not a function of how many
case of a computer monitor, the front and back views afeatures are used by the classifier, see next section).ovisrsi
very different, and we will not be able to share features. OGrand 4 evaluate performances for same computational cost.
algorithm will share features as much as possible, but dnlyNote that if the algorithm can use as much training data as he
it does not hurt performance. wants, and use as many computations as needed, then there
Fig. 17 shows the detection results obtained on the PASCXY_'" not pe any difference between sharing and no sharing
dataset [8] which contains a challenging set of cars Wi{ﬁatures in this framework.
multiple views. We trained a set of classifief$(v, ¢, 6;),
for the car class and posg (with some tolerance). For V. LEARNING FROM FEW EXAMPLES MULTICLASS VS
those patches in which the detector is above the detection MULTIVIEW
threshold,maz; {H (v, c,0;)} > th, we can estimate the pose
of the object a® = argmazy, {H (v, c,6;)}. Fig. 17.a shows
some detection results ranked according to confidence of
detector. The different aspect ratios of the bounding box

correspond to the hypothesized car orientations.

Another important consequence of joint training is that the
% mount of training data required is reduced. Fig. 9 shows the
SC for the 21 objects trained with 20 samples per object,
&Rd also with only 2 samples per objects. When reducing the

amount of training, some of the detectors trained in isofati
Fig. 17.b compares performances with respect to othgerform worse than chance level (which will be the diagonal
algorithms from the PASCAL challenge [8]and also fronon the ROC), which means that the selected features were
[11]. Our algorithm is evaluated in four versions: 1) onenisleading. This is due to the lack of training data, whicht$iu
training sample per view, 800 features (rounds of boostinghe isolated method more. In the case where we are training
and no sharing (referenced in the figurespecific-1-80) 2) C object class detectors and we ha®Me positive training
one training sample/view, 100 features, and sharsitaed- examples for each class, by jointly training the detectoes w
1-100, 3) 50 training samples/view, 300 features, and nexpect that the performance will be equivalent to trainiaghe
sharing épecific-50-30f) and 4) 50 training samples/view,detector independently witlv¢ positive examples for each
300 features with sharingsifared-50-30p Versions 1 and class, withV < N¢ < NC'. The number of equivalent training
2 evaluate the ability of the algorithms to generalize fromamplesN¢ will depend on the degree of sharing between
few training examples (note that without sharing featuresbjects.



IN PRESS, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINENTELLIGENCE 13

the MacBrain Face Stimulésdatabase (Fig. 19). There are
16 emotions and 40 faces per emotion. We use 5 faces of
o & 1 each class to build the feature dictionary (2000 featuies).

SurprisedOpen Sad_O-pen SadClose NervousOpen NervousClose HappyExtreme HappyOpen Happ-yClosé tralnlng we used 20 addItIOI’la| faces and 1000 backg round

@ a aa@ : a patches selected randomly from images. The test is pertbrme

on the remaining faces and additional background patches.
FcarO‘;cn FearClose  DisgustOpen Disgus(Cloéc CalmOpen  CalmClose  AngryOpen AngryClose

The joint classifier is trained to differentiate the facesrthe
background (detection task) and also to differentiate betw
Fig. 19. Example of the emotions used. the different emotions (recognition task).

Fig. 20 shows the features selected and the sharing between
the different emotion categories. The first 5 features aaeesh
across all classes. Therefore, they contribute exclusteethe

To get an estimate of how much largéf© is compared . . :
g . . 9 P task of detection and not to the recognition. For instarntte, t
to N, we ran two experiments in which the classes have

different degrees of similarity. In the first experiment, uged smiling-face detector will have a collection of featureatthre

12 different object classes; in the second, we use 12 difterd "€"¢ toal .fac?s’ as part of th_e dlffl_culty of the clasatiien
; . : : .15 in the localization of the face itself in a cluttered sceflee

views of a car (see previous section). For this comparlsolpainin of a specific class detector will benefit from havin

we used 600 features in the dictionary, and 1000 negative g b 9

examples in the two experiments. We used for training aea(amples from other expressions. Note that the featured use

test images from the LabelMe dataset. or the recognition (|.e._, not shared among all classes) als
contribute to the detection.

Intuitively, we expect that more features will be shared Fig. 21 summarizes the performances of the system on
in the multview case than in the mudiass case. The ex- getection and emotion recognition. The efficiency of thelfina
periment confirms this intuition. Specifically, we find thagystem will also be a function of the richness of the dictigna
in the multiclass case, each feature was shared amongst -4mage features used. Here we use image patches and
classes on average, whereas in the multiview case, eaehdeal,malized correlation for computing image features, as in
was shared amongst 7 classes on average. In Fig. 18, \ye previous sections.
see that that in the multiclass cas¥;y ~ 2.1N (i.e., We  Recently it has become popular to detect objects by detect-
need to double the size of the training set to get the sam@ heir parts, and checking that they satisfy certainiapat
performance out of class-specific features), and that in thgnstraints (see e.g., [12], [10]). Our algorithm implicidoes
multiview case,N¢ ~ 4.8N (i.e., joint training effectively s: the spatial mask is a way of requiring that the fragment
increases the training set by almost a factor of 5). occurs in the desired place. However, the fragments that are

chosen do not have any special semantic meaning [36]. For
example, Fig. 20 shows the features we learn for faces; they

do not have a clean correspondence with nameable parts like
VI. FEATURE SHARING APPLIED TO FACE DETECTION AND eyes, nose, mouth, etc.

RECOGNITION
VIl. RELATED WORK

Feature sharing may be useful in systems requiring differ-We first discuss work from the computer vision literature,
ent levels of categorization. If we want to build a systerand then discuss work from the machine learning community.
to perform both class detection (e.g. faces vs. background)
and instance-level categorization (e.g., recognitionpefcgic
faces), a common approach is to use a two stage system: _ _
first stage is built by training a generic class detector @t~ 1here has been a large amount of work on object detection
any face), and the second stage is built by trainingadeﬂicaf"nd classification. Here we only mention results that are

classifier to discriminate between specific instances,(ey. concerned with multi-class object detection in clutter.
face vs. all others). Perhaps the closest previous work is by Krempp, Geman

By applying the feature sharing approach, we can tra?nnd Amit [18]. They present a system that learns to reuse

one classifier to solve both tasks. The algorithm will find thBa.rtS fqr detecting several .ObJeCt categories. The system i
tfained incrementally by adding one new category at eagh ste

commonalities between the object instances, deriving iene nd adding new parts as needed. They apply their system to

class features (sha_red_ar_non_g all instances) and spe_cuﬁs C%‘etecting mathematical characters on a background compose
features (used for discriminating among classes). Thigiges

. . : of other characters. They show that the number of parts grows
a natural solution that will adapt the degree of featureisbar I .
. . o logarithmically with respect to the number of classes, as we
as a function of intra-class variability.

To illustrate the feature sharing approach, we have trainedDevelopment of the MacBrain Face Stimulus Set was oversgeNitn

a system to do face detection and emotion recognition (th@tenham and supported by the John D. and Catherine T. MawAr
Foundation Research Network on Early Experience and BrawveDpment.

S_ame approach Wlll_gpply for other 'ntr.a_'CIaISS discrimora Please contact Nim Tottenham at tott0006@tc.umn.edu fae nmformation
like person recognition, gender classification, etc.). Ve uconcerning the stimulus set.

%eMuIti—cIass object detection
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Fig. 18. Detection performance as a function of number aittg examples per class. (a) 12 objects of different catego(b) 12 views of the same object
class. Sharing features improves the generalization wlwertrining samples are available, especially when thesetahave many features in common (case
b). The boosting procedure (both with class-specific andesheatures) is run for as many rounds as necessary to actmaximal performance on the test

set.

AngryClose -
AngryOpen |-
CalmClose
CalmOpen
DisgustClose
DisgustOpen |
FearClose -
FearOpen |-
HappyClose |-
SurprisedOpen
HappyOpen -
NervousClose -
NervousOpen
SadClose [
SadOpen |- ‘

Generic features Intra-class specific features
(Detection) (Detection and recognition)

Fig. 20. Sharing matrix for face detection and emotion di@ssion. This matrix shows the features selected usingoB@ds of boosting. The (face) generic
features are used to distinguish faces from non-faces dfitetetask), while the intra-class specific features penfdroth detection (distinguish faces from
the background) and recognition (distinguish among fategesies). Here, the degree of sharing is larger than thenghabtained in the multiclass and
multiview experiments.

have found. However, they do not jointly optimize the shared Fei-Fei, Fergus and Perona [9] propose a model based on
features, and they have not applied their technique to redie geometric configuration of parts; each part is represent
world images. as a local PCA template. They impose a prior on the model
A related piece of work is by Amit, Geman and Fian [3]parameters for each class, which encourages each class to be
They describe a system for multiclass and multi-pose objegitmilar, and allows the system to learn from small sample
detection in a coarse-to-fine search. They model the josizes. However, this is a generative model, not a discritiviea
distribution of poses b_etwgen different object_s_in ordegéo one, and has run-time complexit . where d is the
better results than using independent classifiers. Thelf CT N

search yields candidate locations which are then validat8gmper of interest point detections and is the number of
using a generative model. model parts. Hence it is too expensive to detect objects in
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1 —
AngryClosel 55145 0 0 5 0 0 0 0 0 5 9 9 0
0.98¢------ k- Shared features AngryOpent 9 640 0 5 50 0 500 509 0
096 CalmClosef 0 0 45 180 0 0 0 0 0 0 270 0 9
CalmOpenf 0 0 14 320 0 0 9 0 0 5 18230 0
0.94 DisgustCloser 145 5 5 459 0 0 0 0 5 0 0 9 5
° 09 » DisgustOpent 9 9 5 0 5 500 0 0 9 50 0 5 5
g = FerCloset 0 0 9 505 6850005005
£ 09 . S FeaOpent 0 0 0 50 0 18550 180 0 5 0 0
2 Class-specific E  HappyClosef 0 0 0 0 5 5 5 0 410 369 0 0 0
a 0.88 features SurprisedOpenf 0 0 0 0 0 5 0 235640 0 5 0 0
086 HappyOpent 0 0 0 0 145 0 0 9 0 730 0 0 0
NervousClosef 0 536 9 0 55 0 0 0 0 275 9 0
0.84 NervousOpenf 0 5 5 9 0 5 0 0 0 0 5 36360 0
0.82 SadCloser 9 5 0 0 5 59 5 0 0 0 145 450
SadOpenf 0 0 0 559 0 000009 0 73
08 605 T 15 2 25 3 35 4 45 5 2 4 6 8 10 12 1415

False alarms rate x 10 -3 Assigned class
a) b)

Fig. 21. This figure evaluates the performances of the jdedsifier by splitting both tasks, detection and recognitia) ROC for face detection and, b)
confusion matrix for emotion classification with 30 sharedtfires and 15 emotion categories. The numbers correspqretdentages.

really cluttered images. hidden layer is naturally shared amongst the output classes
The algorithm proposed in this paper is also related to the

LeCun, Huang, and Bottou [21] use Convolutional Neur%ea of error correcting output codes (ECOC) developed by

Networks in order to learn to class_ify s_everal toy_objects Bietterich and Bakiri [7]. This is a way of converting binary
backgrounds of moderate complexity. Since the hidden 8yejjassifiers into multi-class classifiers [2]. The idea of ECO

are shared by all the classes, they learn common features. W&, construct a code matrix with entries in{—1,0, +1}
discuss this in more detail below, when we discuss multi-tag o o

| , here is one row per class and one column for each subset
earning.

being considered. A binary classifier is fit for each column;

More recently, Bernstein and Amit [5] show that one caff'e 1's in the column specify which classes to group together
use clustering (EM applied to a mixture of bernoulli-protlu@S Positive examples, and thel’s specify which classes to
models) to discover 'features’, or little patches, which taen treat as negative examples; the 0 classes are ignored. &iven
serve as a universal dictionary for subsequent generatigsic €xamplev, each column classifier is applied to produce a bit-
fiers. In particular, the codebook or dictionary is condeddy VECION.(f1(v), ..., fn(v)), wheren is the number of columns.
clustering patches of binary oriented-edge filtered images The estimated class label is the one corresponding to the row
images are then recoded in terms of which codeword occiygich is closest in Hamming distance to this bit-vector.
where; a new mixture model, one per class, is then fit this The goal is to design encodings for the classes that are
transformed data. However, the dictionary of patches iseshaesistant to errors (misclassifications of the individuas)o
across classes. They demonstrate results on handwritsizs, di There are several possible code matricesy(ligs sizel'x C',
Latex symbols and the UIUC car-side dataset. Transferridgd has+1 on the diagonal and-1 everywhere else; this
knowledge between objects to improve generalization hes afOrresponds to one-against-all classification /(2s size'x

been studied in several recent papers [4], [17], [34]. g in which each column corresponds to a distinct pair of

labelszy, zo; for this column,u has+1 in row z;, —1 in row
z and 0 in all other rows; this corresponds to building all pair
of i vs j classifiers [15]. (3} has sizeC' x2¢ —1, and has one
column for every non-empty subset; this is the complete.case
(4) p is designed randomly and is chosen to ensure that the
rows are maximally dissimilar (i.e., so the resulting codes h

B. Multi-class classification good error-correcting properties). Allwein et. al. [2] shthat

3An additive model of boosted stumps is like a 2 layer perceptwhere
the m’th hidden unit acts like a weighted linear threshold urit;, (v) =

As mentioned in the introduction, the insight that Iearnin@@f > 0) + b. The main (jifference from s_tandard multi-layer percep:ron
i the learning procedure: instead of learning all pararaes¢ once using

to solve multiple tasks at c_>nce_ is eaSi_er than SOIV_ing therggckpropagation (gradient descent), the parameters areeld sequentially
separately has been exploited in the field of “multiple taslsing weighted least squares plus exhaustive search ghhboosting can

Iearning” [6] or “inductive transfer” [32]_ The vast majtyi be viewed as gradient descent in a function space [13].)dotige, boosting

. .. _ig orders of magnitude faster than backprop. It is also memreml in the
of this work has focused on the case where the classmers se that the weak learners do not have to be simple linesshtbld units

be learned is a feedforward neural network. In this case, t{decision stumps).
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the popular one-against-all approach is often suboptimal,
that the best code matrix is problem dependent. Our algorith
learns the best possible subset to use at each round. Anoﬁ:@r
difference between our approach and the ECOC framework is
how we use the column (subset) classifiers. In ECOC, thEyl
classify an example by running each column classifier, am]
looking for the closest matching row in the code matrix. In
our algorithm, we add the output of the individual column
(subset) classifiers together, as in a standard additiveemod[l?’]
(14]

El

VIIl. CONCLUSION [15]

We have introduced an algorithm for multi-class object
detection that shares features across objects. The resalt 16l
classifier that runs faster (since it computes fewer feajure
and requires less data to train (since it can share datasaci®g
classes) than independently trained classifiers. In pdatic
the number of features required to reach a fixed level g
performance grows sub-linearly with the number of classes,
as opposed to the linear growth observed with independerﬁlg]
trained classifiers.

We have applied the algorithm to the problem of multi-
class, multi-view object detection in clutter. The jointigined [20)
classifier significantly outperforms standard boostingi¢ivis
a state-of-the-art method for this problem) when we contrfsi]
for computational cost (by ensuring that both methods use
the same number of features). We believe the computatigp
of shared features will be an essential component of object
recognition algorithms as we scale up to large numbers [%]
object classes.
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