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Abstract

We present a component-based method and two global
methods for face recognition and evaluate them with re-
spect to robustness against pose changes. In the component
system we first locate facial components, extract them and
combine them into a single feature vector which is classi-
fied by a Support Vector Machine (SVM). The two global
systems recognize faces by classifying a single feature vec-
tor consisting of the gray values of the whole face image. In
the first global system we trained a single SVM classifier for
each person in the database. The second system consists of
sets of viewpoint-specific SVM classifiers and involves clus-
tering during training. We performed extensive tests on a
database which included faces rotated up to about ��Æ in
depth. The component system clearly outperformed both
global systems on all tests.

1. Introduction

Over the past 20 years numerous face recognition pa-
pers have been published in the computer vision commu-
nity; a survey can be found in [4]. The number of real-
world applications (e.g. surveillance, secure access, hu-
man/computer interface) and the availability of cheap and
powerful hardware also lead to the development of com-
mercial face recognition systems. Despite the success of
some of these systems in constrained scenarios, the general
task of face recognition still poses a number of challenges
with respect to changes in illumination, facial expression,
and pose.

In the following we give a brief overview on face recog-
nition methods. Focusing on the aspect of pose invariance
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we divide face recognition techniques into two categories:
i) global approach and ii) component-based approach.

i) In this category a single feature vector that repre-
sents the whole face image is used as input to a classifier.
Several classifiers have been proposed in the literature e.g.
minimum distance classification in the eigenspace [18, 20],
Fisher’s discriminant analysis [1], and neural networks [6].
Global techniques work well for classifying frontal views
of faces. However, they are not robust against pose changes
since global features are highly sensitive to translation and
rotation of the face. To avoid this problem an alignment
stage can be added before classifying the face. Aligning an
input face image with a reference face image requires com-
puting correspondences between the two face images. The
correspondences are usually determined for a small number
of prominent points in the face like the center of the eye,
the nostrils, or the corners of the mouth. Based on these
correspondences the input face image can be warped to a
reference face image. In [12] an affine transformation is
computed to perform the warping. Active shape models are
used in [10] to align input faces with model faces. A semi
automatic alignment step in combination with SVM classi-
fication was proposed in [9].

ii) An alternative to the global approaches is to clas-
sify local facial components. The main idea of component-
based recognition is to compensate for pose changes by al-
lowing a flexible geometrical relation between the compo-
nents in the classification stage. In [3] face recognition was
performed by independently matching templates of three fa-
cial regions (both eyes, nose and mouth). The configuration
of the components during classification was unconstrained
since the system did not include a geometrical model of the
face. A similar approach with an additional alignment stage
was proposed in [2]. In [23] a geometrical model of a face
was implemented by a 2-D elastic graph. The recognition
was based on wavelet coefficients that were computed on
the nodes of the elastic graph. In [14] a window was shifted
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over the face image and the DCT coefficients computed
within the window were fed into a 2-D Hidden Markov
Model.

We present two global approaches and a component-
based approach to face recognition and evaluate their ro-
bustness against pose changes. The first global method con-
sists of a face detector which extracts the face part from
an image and propagates it to a set of SVM classifiers
that perform the face recognition. By using a face detec-
tor we achieve translation and scale invariance. In the sec-
ond global method we split the images of each person into
viewpoint-specific clusters. We then train SVM classifiers
on each single cluster. In contrast to the global methods, the
component system uses a face detector that detects and ex-
tracts local components of the face. The detector consists of
a set of SVM classifiers that locate facial components and
a single geometrical classifier that checks if the configura-
tion of the components matches a learned geometrical face
model. The detected components are extracted from the im-
age, normalized in size and fed into a set of SVM classifiers.

The outline of the paper is as follows: Chapter 2 gives a
brief overview on SVM learning and on strategies for multi-
class classification with SVMs. In Chapter 3 we describe
the two global methods for face recognition. Chapter 4 is
about the component-based system. Chapter 5 contains ex-
perimental results and a comparison between the global and
component systems. Chapter 6 concludes the paper.

2. Support Vector Machine Classification

We first explain the basics of SVMs for binary classifi-
cation [21]. Then we discuss how this technique can be ex-
tended to deal with general multi-class classification prob-
lems.

2.1. Binary Classification

SVMs belong to the class of maximum margin classi-
fiers. They perform pattern recognition between two classes
by finding a decision surface that has maximum distance to
the closest points in the training set which are termed sup-
port vectors. We start with a training set of points �� � ���,
� � �� �� � � � � � where each point �� belongs to one of
two classes identified by the label �� � ���� ��. Assum-
ing linearly separable data1, the goal of maximum margin
classification is to separate the two classes by a hyperplane
such that the distance to the support vectors is maximized.
This hyperplane is called the optimal separating hyperplane
(OSH). The OSH has the form:
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1For the non-separable case the reader is referred to [21].

The coefficients �� and the � in Eq. (1) are the solutions
of a quadratic programming problem [21]. Classification of
a new data point � is performed by computing the sign of
the right side of Eq. (1). In the following we will use
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to perform multi-class classification. The sign of 	 is the
classification result for �, and �	� is the distance from � to
the hyperplane. Intuitively, the farther away a point is from
the decision surface, i.e. the larger �	�, the more reliable the
classification result.

The entire construction can be extended to the case of
nonlinear separating surfaces. Each point � in the input
space is mapped to a point � � ���	 of a higher dimen-
sional space, called the feature space, where the data are
separated by a hyperplane. The key property in this con-
struction is that the mapping ���	 is subject to the condi-
tion that the dot product of two points in the feature space
���	 � ���	 can be rewritten as a kernel function 
����	.
The decision surface has the equation:

���	 �

��
���

����
�����	 
 ��

again, the coefficients �� and � are the solutions of a
quadratic programming problem. Note that ���	 does not
depend on the dimensionality of the feature space.

An important family of kernel functions is the polyno-
mial kernel:


����	 � �� 
 � � �	��

where 	 is the degree of the polynomial. In this case the
components of the mapping���	 are all the possible mono-
mials of input components up to the degree 	.

2.2. Multi-class classification

There are two basic strategies for solving �-class prob-
lems with SVMs:

i) In the one-vs-all approach � SVMs are trained. Each of
the SVMs separates a single class from all remaining classes
[5, 17].

ii) In the pairwise approach ��� � �	�� machines are
trained. Each SVM separates a pair of classes. The pairwise
classifiers are arranged in trees, where each tree node repre-
sents an SVM. A bottom-up tree similar to the elimination
tree used in tennis tournaments was originally proposed in
[16] for recognition of 3-D objects and was applied to face
recognition in [7]. A top-down tree structure has been re-
cently published in [15].

There is no theoretical analysis of the two strategies with
respect to classification performance. Regarding the train-
ing effort, the one-vs-all approach is preferable since only



� SVMs have to be trained compared to ��� � �	�� SVMs
in the pairwise approach. The run-time complexity of the
two strategies is similar: The one-vs-all approach requires
the evaluation of �, the pairwise approach the evaluation
of � � � SVMs. Recent experiments on person recogni-
tion show similar classification performances for the two
strategies [13]. Since the number of classes in face recogni-
tion can be rather large we opted for the one-vs-all strategy
where the number of SVMs is linear with the number of
classes.

3. Global Approach

Both global systems described in this paper consist of a
face detection stage where the face is detected and extracted
from an input image and a recognition stage where the per-
son’s identity is established.

3.1. Face detection

We developed a face detector similar to the one described
in [8]. In order to detect faces at different scales we first
computed a resolution pyramid for the input image and then
shifted a �
 � �
 window over each image in the pyramid.
We applied two preprocessing steps to the gray images to
compensate for certain sources of image variations [19]. A
best-fit intensity plane was subtracted from the gray values
to compensate for cast shadows. Then histogram equaliza-
tion was applied to remove variations in the image bright-
ness and contrast. The resulting gray values were normal-
ized to be in a range between 0 and 1 and were used as input
features to a linear SVM classifier. Some detection results
are shown in Fig. 1.

The training data for the face detector were generated by
rendering seven textured 3-D head models [22]. The heads
were rotated between ���Æ and ��Æ in depth and illumi-
nated by ambient light and a single directional light point-
ing towards the center of the face. We generated 3,590 face
images of size �
 � �
 pixels. The negative training set
initially consisted of 10,209 �
� �
 non-face patterns ran-
domly extracted from 502 non-face images. We expanded
the training set by bootstrapping [19] to 13,655 non-face
patterns.

3.2. Recognition

We implemented two global recognition systems. Both
systems were based on the one-vs-all strategy for SVM
multi-class classification described in the previous Chapter.

The first system had a linear SVM for every person in the
database. Each SVM was trained to distinguish between all
images of a single person (labeled 
�) and all other images

Figure 1. The upper two rows are example im-
ages from our training set. The lower two
rows show the image parts extracted by the
SVM face detector.

in the training set (labeled ��). For both training and test-
ing we ran the face detector on the input image to extract
the face. We re-saled the face image to ��� �� pixels and
converted the gray values into a feature vector 2. Given a set
of � people and a set of � SVMs, each one associated to one
person, the class label � of a face pattern � is computed as
follows:

� �

�

 if 	���	 
 � � �
� if 	���	 
 � 	 �

(3)

with 	���	 � ��� �	���	�
�

��� �

where 	���	 is computed according to Eq. (2) for the SVM
trained to recognize person �. The classification threshold is
denoted as �. The class label � stands for rejection.

Changes in the head pose lead to strong variations in the
images of a person’s face. These in-class variations com-
plicate the recognition task. That is why we developed a
second method in which we split the training images of each
person into clusters by a divisive cluster technique [11]. The
algorithm started with an initial cluster including all face
images of a person after preprocessing. The cluster with
the highest variance is split into two by a hyperplane. The
variance of a cluster is calculated as:

�� � ���
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�
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2We applied the same preprocessing steps to generate the features as
for the face detector described.



where � is the number of faces in the cluster. After the par-
titioning has been performed, the face with the minimum
distance to all other faces in the same cluster is chosen to
be the average face of the cluster. Iterative clustering stops
when a maximum number of clusters is reached3. The av-
erage faces can be arranged in a binary tree. Fig. 2 shows
the result of clustering applied to the training images of a
person in our database. The nodes represent the average
faces; the leaves of the tree are some example faces of the
final clusters. As expected divisive clustering performs a
viewpoint-specific grouping of faces.

We trained a linear SVM to distinguish between all im-
ages in one cluster (labeled
�) and all images of other peo-
ple in the training set (labeled��)4. Classification was done
according to Eq. (3) with � now being the number of clus-
ters of all people in the training set.

Figure 2. Binary tree of face images generated
by divisive clustering.

4. Component-based Approach

The global approach is highly sensitive to image vari-
ations caused by changes in the pose of the face. The
component-basedapproach avoids this problem by indepen-
dently detecting parts of the face. For small rotations, the
changes in the components are relatively small compared
to the changes in the whole face pattern. Changes in the
2-D locations of the components due to pose changes are
accounted for by a learned, flexible face model.

3In our experiments we divided the face images of a person into four
clusters.

4This is not exactly a one-vs-all classifier since images of the same
person but from different clusters were omitted.

4.1. Detection

We implemented a two-level component-based face de-
tector which is described in detail in [8]. The principles
of the system are illustrated in Fig. 3. On the first level,
component classifiers independently detected facial com-
ponents. On the second level, a geometrical configuration
classifier performed the final face detection by combining
the results of the component classifiers. Given a �
 � �

window, the maximum continuous outputs of the compo-
nent classifiers within rectangular search regions around the
expected positions of the components were used as inputs
to the geometrical configuration classifier. The search re-
gions have been calculated from the mean and standard de-
viation of the components’ locations in the training images.
We also provided the geometrical classifier with the precise
positions of the detected components relative to the upper
left corner of the �
 � �
 window. The 14 facial compo-
nents used in the detection system are shown in Fig. 4 (a).
The shapes and positions of the components have been auto-
matically determined from the training data in order to pro-
vide maximum discrimination between face and non-face
images; see [8] for details about the algorithm. The training
set was the same as for the whole face detector described in
the previous Chapter.

Output of
Nose Classifier

First Level:
Component
Classifiers

Output of
Eye Classifier

Output of
Mouth Classifier

Second Level:
Detection of
Configuration of
Components

Classifier

Classifier

Figure 3. System overview of the component-
based face detector using four components.
On the first level, windows of the size of the
components (solid lined boxes) are shifted
over the face image and classified by the com-
ponent classifiers. On the second level, the
maximum outputs of the component classi-
fiers within predefined search regions (dotted
lined boxes) and the positions of the detected
components are fed into the geometrical con-
figuration classifier.



(a) (b)

Figure 4. (a) shows the 14 components of our
face detector. The centers of the components
are marked by a white cross. The 10 compo-
nents that were used for face recognition are
shown in (b).

4.2. Recognition

To train the face recognizer we first ran the component-
based detector over each image in the training set and ex-
tracted the components. From the 14 original we kept 10 for
face recognition, removing those that either contained few
gray value structures (e.g. cheeks) or strongly overlapped
with other components. The 10 selected components are
shown in Fig. 4 (b). Examples of the component-based face
detector applied to images of the training set are shown in
Fig. 5. To generate the input to our face recognition clas-
sifier we normalized each of the components in size and
combined their gray values into a single feature vector 5. As
for the first global system we used a one-vs-all approach
with a linear SVM for every person in the database. The
classification result was determined according to Eq. (3).

Figure 5. Examples of component-based face
detection. Shown are face parts covered by
the 10 components that were used for face
recognition.

5Before extracting the components we applied the same preprocessing
steps to the detected ��� �� face image as in the global systems.

5. Experiments

The training data for the face recognition system were
recorded with a digital video camera at a frame rate of about
5 Hz. The training set consisted of 8,593 gray face images
of five subjects from which 1,383 were frontal views. The
resolution of the face images ranged between 
� � 
� and
�������pixels with rotations in azimuth up to about
��Æ.
The test set was recorded with the same camera but on a
separate day and under different illumination and with dif-
ferent background. The set included 974 images of all five
subjects in our database. The rotations in depth was again
up to about 
��Æ.

Two experiments were carried out. In the first experi-
ment we trained on all 8,593 rotated and frontal face im-
ages in the training set and tested on the whole test set.
This experiment contained four different tests: Global ap-
proach using one linear SVM classifier for each person, us-
ing one linear SVM classifier for each cluster, using one
second degree polynomial SVM classifier for each person,
and component-based approach using one linear SVM clas-
sifier for each person.

Figure 6. ROC curves when trained and tested
on frontal and rotated faces.

In the second experiment we trained only on the 1,383
frontal face images in the training set but tested on the
whole test set. This experiment contained three different
tests: Global approach using one linear SVM classifier for
each person, using one linear SVM classifier for each clus-
ter, and component-based approach using one linear SVM
classifier for each person.

The ROC curves of these two experiments are shown in
Fig. 6 and Fig. 7, respectively. Each point on the ROC curve
corresponds to a different value of the classification thresh-
old � from Eq. (3). At the end points of the ROC curves



Figure 7. ROC curves when trained on frontal
faces and tested on frontal and rotated faces.

the rejection rate is 0. Some results of the component-based
recognition system are shown in Fig 8.

There are three interesting observations:

� In both experiments the component system clearly out-
performed the global systems. This although the face
classifier itself (5 linear SVMs) was less powerful than
the classifiers used in the global methods (5 non-linear
SVMs in the global method without clustering, and ��
linear SVMs in the method with clustering).

� Involving clustering lead to a significant improvement
of the global method when the training set included
rotated faces. This is because clustering generates
viewpoint-specific clusters that have smaller in-class
variations than the whole set of images of a person.
The global method with clustering and linear SVMs
was also superior to the global system without clus-
tering and a non-linear SVM (see Fig. 6). This shows
that a combination of weak classifiers trained on prop-
erly chosen subsets of the data can outperform a single,
more powerful classifier trained on the whole data.

� Adding rotated faces to the training set improves the
results of the global method with clustering and the
component method. Surprisingly, the results for the
global method without clustering got worse. This indi-
cates that the problem of classifying faces of one per-
son over a large range of views is too complex for a
linear classifier. Indeed, the performance significantly
improved when using non-linear SVMs with second-
degree polynomial kernel.

Figure 8. Examples of component-based face
recognition. The first 3 rows and the first im-
age in the last row show correct identification.
The last two images in the bottom row show
misclassifications due to strong rotation and
facial expression.

6. Conclusion

We presented a component-based technique and two
global techniques for face recognition and evaluated
their performance with respect to robustness against pose
changes. The component-based system detected and ex-
tracted a set of 10 facial components and arranged them in a
single feature vector that was classified by linear SVMs. In
both global systems we detected the whole face, extracted
it from the image and used it as input to the classifiers. The
first global system consisted of a single SVM for each per-
son in the database. In the second system we clustered the
database of each person and trained a set of view-specific
SVM classifiers.

We tested the systems on a database which included
faces rotated in depth up to about ��Æ. In all experiments
the component-based system outperformed the global
systems even though we used more powerful classifiers (i.e.
non-linear instead of linear SVMs) for the global system.
This shows that using facial components instead of the
whole face pattern as input features significantly simplifies
the task of face recognition.
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