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Abstract

Recently a fast and efficient face detection method has been devised [11],
which relies on the AdaBoost algorithm and a set of Haar Wavelet like fea-
tures. A natural extension of this approach is to use the same technique to lo-
cate individual features within the face region. However, we find that there is
insufficient local structure to reliably locate each feature in every image, and
thus local models can give many false positive responses. We demonstrate
that the performance of such feature detectors can be significantly improved
by using global shape constraints. We describe an algorithm capable of ac-
curately and reliably detecting facial features and present quantitative results
on both high and low resolution image sets.

1 Introduction
This paper addresses the problem of locating facial features (eyes, nose, mouth corners
and so on) in images of frontal faces. Locating such features is an important stage in many
facial image interpretation tasks (such as face verification, face tracking or face expression
recognition). We adopt the fast and efficient face finder recently described by Viola and
Jones [11] to locate the approximate position of each face in an image. We then use the
same method, trained on regions around facial feature points, to locate interior points on
the face. However, there is often insufficient local structure around each feature to train
really reliable feature finders. We find that when set with thresholds sufficient to locate
the true position reasonably frequently, such detectors produce many false positives. To
select the most suitable candidates we use statistical models of the configurations of the
points. We find that combining feature detectors with such statistical shape models gives
a significant improvement in both the reliability and the overall accuracy of the feature
detection system.

In the following we describe the approach in more detail, and demonstrate its appli-
cation to finding features in two data sets. Though demonstrated on faces, the approach is
clearly applicable to a wide variety of image interpretation tasks.

2 Background
Face detection has received much attention within the computer vision community, see
[7] for a survey or Viola [11] which describes the fast and efficient face detection method
used in this paper.



Facial feature detection methods generally model two types of information. The first
is local texture around a given feature, for example the pixel values in a small region
around an eye. The second is the geometric configuration of a given set of facial features,
e.g. both eyes, the nose, mouth etc. Many different methods of modelling this shape and
texture information present in the human face have been proposed.

Burl et. al.[1] use multi-oriented, multi-scale Gaussian derivative filters to model the
texture around key points on the face. The shape is modelled using the shape statistics
of Dryden and Mardia [3]. The most likely shape, found by combining the feature de-
tections, is declared the best match to the face. Therefore the likelihood of each feature
detection is ignored when comparing two possible feature point configurations, only the
shape information is used.

A well known approach due to Wiskott et. al.[13] uses ”Gabor Jet” feature detectors
and models the distribution of facial features with a graph structure. The quality of fit
function for such a model has two parts. The first is the sum of the Gabor jet detector
responses. The second is the similarity between the inter-features distances compared to
the graph model. These two metrics are combined with a manually adjusted weighting.
Hence shape and feature detection are combined in an arbitrary way.

A faster and simpler method is due to Feris et. al.[9]. Here a two stage hierarchy
of Gabor wavelet networks is used. The first localises the whole face, the second stage
searches for individual features. The approximate shape of the face predicted from the
first stage is used to guide the feature detection, hence shape is not modelled explicitly
and only local image structure is used.

Other methods for facial feature detection have been proposed. For example, neural
networks [10], steerable filters [4] and colour space methods [6]. However, none of these
method use shape, which we believe to be an integral part of facial feature detection and
feature detection in general. Knowledge of face shape is needed to provide robustness to
any system, because local feature detectors are inherently noisy.

Cootes et. al.[2] combine shape and texture modelling in the active appearance model
(AAM) approach to face matching. The shape and texture are combined in a PCA space.
The model searches a new image iteratively by using the shape and texture to drive the
model parameters. Given a good enough initialisation the AAM converges to the correct
solution, but otherwise is prone to local minima. The method outlined in this paper could
be used to seed the AAM.

The method proposed in this paper utilises the successful feature detection method
due to Viola [11] combined with the statistical shape models of Dryden and Mardia [3].
Local AdaBoost templates are used to localise each feature that are swift to compute.
However, used individually these feature detectors are shown to be insufficient. A shape
model must be used to constrain the configuration of a set of candidate feature points.
An efficient search algorithm is introduced that allows the facial feature detections to be
grouped and tested. This method avoids local minima, by searching many possible feature
point configurations. The method allows for feature detector failures by predicting the
positions of missing features using the shape model.



3 Methodology
3.1 Face detection
To build a system capable of automatically labelling features on the face it is first neces-
sary to localise the face in the image. We apply the recent method due to Viola and Jones
[11].

The Viola-Jones Detector consists of three parts. The first is an efficient method of
encoding the image data known as an ”integral image”. This allows the sum of pixel
responses within a given sub-rectangle of an image to be computed quickly and is vital
to the speed of the Viola-Jones Detector . The second element is the application of a
boosting algorithm known as AdaBoost [5] to select appropriate features that can form
a template to model human face variation. The third part is a cascade of classifiers that
speeds up the search by quickly eliminating unlikely face regions.

We implemented the full Viola-Jones Detector to localise the face in the image. The
output of the face detector is a image region containing the face, which is then examined
to predict the location of the internal face features. The facial feature detection method
described here uses individual feature patch templates to detect points on the face. These
feature models are described in more detail in section 3.2. For efficiency, the same integral
image is used for both the initial face detection stage and the subsequent facial feature
detection.

3.2 Feature Point Models
The facial feature models are constructed using the same method as each individual level
of the Viola-Jones Detector cascade. The method of building an AdaBoost template from
simple Haar wavelet like features is described by Viola and Jones [12]. The method
requires a set of positive and negative image regions. In the work of Viola and Jones the
positive examples are human faces and the negative examples are regions known not to
contain a human face. In this paper the positive examples are image patches centred on a
particular facial feature and the negative examples are image patches randomly displaced
a small distance from the same facial feature.

Note that when building a face template (for face detection) using this method and
classification problems in general, a major problem is producing a representative training
set. The space of possible faces is extremely large, however the space of all possible
non-face images is even larger. This problem is solved by Viola and Jones by using
false positives from the earlier versions of the cascade. However with local feature point
models the non-feature texture is simply modelled by the region surrounding the given
feature.

Our training set consists of 995 faces with manual annotated landmarks for key facial
features, some examples are shown in figure 1. Note the training set contains a significant
amount of head rotation and examples of closed eyes. Some examples image patches used
to build the right eye model are shown in figure 2.

Figure 1: Example training images



Figure 2: The positive and negative training examples for the right eye feature model

Local models are built for four features on the face namely the left and right eyes and
the left and right corners of the mouth. The first few features selected by AdaBoost for
the right eye feature model are shown in figure 3.

f1 f2 f3 f4 f5 f6 f7 f8

Figure 3: Features selected by AdaBoost, overlaid on an example from the training set

Additionally the probability of each feature response is approximated, by learning the
distribution of responses to both positive and negative examples. The probability of a
given feature response, r, matching the correct point within the search window, P(F |r), is
given by equation 1.

P(F |r) =
p(r|F)P(F)

p(r|F)P(F)+(1−P(F))p(r|B) (1)

Here p(r|F) is the probability density of a given response at the true feature location,
this is estimated by creating a histogram of responses to a positive verification set. p(r|B)
is the probability density of a given response away from the true feature location and is
similarly estimated using a histogram learnt from a negative verification set. P(F) is the
prior probability of a correct feature match and is estimated as P(F) = 1/n, where n is the
number of points evaluated by the feature detector within the search region.

For each feature detector a suitable threshold T f is learnt from a verification set, so
if P(F |r) > T f , a feature candidate is accepted. The discriminating power of these local
feature detectors is investigated in section 5.2.

3.3 Shape Constraints
A set of candidate feature points is tested using shape constraints in two ways. Firstly a
shape model is fitted to the set of points and the likelihood of the shape assessed. Secondly
limits are set on the orientation, scale and position of a set of candidate feature points
relative to the orientation, scale and position implied by the global face detector.

The shape model is built using methods developed by Dryden and Mardia [3] and
fitted to a set of unseen points using a least squares fit algorithm. Following [3] we
assume that after aligning the points into a common co-ordinate frame, the distribution is
a multi-variate Gaussian, the parameters of which can be estimated from the training set.
Thus for any new points we can estimate the probability density of a given shape p s(x).
A suitable threshold Ts is learnt from a verification set and used to distinguish plausible
from implausible configurations, so if p s(x) > Ts, the shape is accepted, otherwise it is
discarded.



To fit a shape model to a set of points it is also necessary to compute the transformation
(i.e. orientation, scale and translation) from the model frame to a given set of candidate
points. The transformation to the mean points predicted by the global search is also
computed. These two transformations are compared and limits imposed on the scale
difference smax, angle difference θmax and translations xmax and ymax. The limits are set
with knowledge of the accuracy of the global search. In this paper the limits used are
smax = 10%, θmax = 10o and xmax = ymax = 10% of the global search region.

If any of the constraints are broken then the given set of candidate points is rejected
and will not be accepted as a face candidate.

3.4 Shape guided feature detection
We analyse the training set to determine the range of variation in position of the features
relative to the bounding box found by the full face detector. During search, having found
the full face region we scan each relevant sub-region for plausible candidates. The feature
detectors each return a list of candidate points that pass a threshold T f on the probability
of a correct match P(F |r). The list of candidate points need to be combined into face
candidates and the best face candidate selected.

A simple method of selecting the best combination of points is to threshold the de-
tector responses, form all possible candidates and select the face candidate with the high-
est set of feature responses P(F |r) that also passes the constraints imposed by the shape
model. However, an obvious problem with this approach is the combinatorial explosion
that results if too many candidate points are returned for too many feature points. For
example with 7 feature points each returning 9 candidate locations and allowing for miss-
ing features, the number of possible face candidates is (9+ 1) 7 = 107. It is infeasible to
evaluate this number of candidates in a sensible amount of time.

Algorithm 1 (Shape guided search)

1. Order the feature candidates for each feature detector, largest response first.

2. Set i = 1

3. Restrict the search for a face candidate to the best i responses of each detector.

4. If a feature detector has less than i point candidates then it is allowed a wildcard.

5. Ensure that each face candidate contains at least one candidate point that is the ith

response of a detector 1

6. Form all face candidates and test each with the shape model.

7. If no face candidate passes the shape constraint set i = i+1 and go to step 3.

8. Rank all face candidates that pass the shape constraint, by the number of detected
feature points and then by the probability pset of the set of feature points. Here
pset =

∏
x P(F|rx) for each feature response rx. 2

9. If the best candidate has missing features these are predicted using the shape model.

1This ensures that point sets from previous iterations of i are not re-evaluated
2Note this ranking scheme means that a candidates set with 4 points is always ranked higher than any candi-

date with only 3 points



We wish to find the best candidate, using the feature responses and the shape con-
straints, but also limit the combinatorial explosion. This is achieved in three ways. The
first is simply by limiting the number of feature points n p. The second is by restricting the
number of points any one feature detector can return n max. The third method is to employ
an efficient search method as described in algorithm 1.

The aim of algorithm 1 is to select the highest scoring candidate with the maximum
number of feature points that satisfy the shape constraint. The algorithm will always find
the best candidate for a given value of i, i.e. when allowed to select from the first i point
candidates of each detector. The procedure makes searching tractable by ignoring weaker
point candidates and returns the same candidates as a full search.

The main parameters used in algorithm 1 are the number of feature points n p and
the maximum number of candidate points retained by each feature detector n max. In this
paper, np = 4 and the features used are the centre of both eyes and the corners of the
mouth, while nmax=5.

These parameters mean that a point set must be found from the top five point candidate
returned by each feature detector. If a feature detector returns less than 5 point candidates,
because the probability of any correct match is too low, then a wildcard will eventually be
used for that feature. In practice these values for n p and nmax give good results and reduce
the processing time relative to a full search of all possible point candidates.

4 Experiments
There are two data sets used to test the feature detection algorithm. The first is a subset
of the XM2VTS data set [8], consisting of 1817 frontal faces taken from photo sessions
1-4. The images are taken under controlled conditions against a flat background, but the
data set does contain people with facial hair and wearing glasses. The second data set
is a smaller set (212 images) taken with a cheap web camera in our lab. The images are
low quality and contain background clutter, making the face detection task much more
challenging than with the XM2VTS data. Also, there is more head rotation which makes
the task of facial feature detection more difficult. Example images from both data sets are
shown in figure 4.

Figure 4: Example test set images

We apply the global search to each test image and return the highest ranking global
candidate. We consider the global search to be successful if the mean distance from the
found eye positions (as predicted by the global face template) to the true eye positions
(annotated manually) is less than 30% of the true inter-occular distance. To concentrate
on the feature detection, we discard those examples in which the global search failed this
threshold. Global search failed on eleven of the XM2VTS images (11/1817=0.6%) and
twenty of the webcam images (20/212=9.4%), which were not included in the analysis of
feature detection performance below.



When evaluating the feature search, we measure the positional error of each feature
and express it as a proportion of the inter-occular distance.

5 Results
5.1 FROC curve for individual feature detectors

Figure 5 shows the free receiver operator characteristic (FROC) curve, plotting true pos-
itive rate against number of false positives per region, for eye and mouth detectors on
the XM2VTS data. It demonstrates that the eye centres are more reliably found than the
mouth corners. All four detectors are noisy, and individually are not sufficiently reliable.
However, by constraining the search, more accurate detections can be made.
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Figure 5: FROC curves for the individual feature point detectors, tested on a subset of the
XM2VTS database

5.2 Facial feature detection accuracy

For each image we can calculate the mean positional error for all features, m e. Fig-
ures 6(a), 6(b) show the cumulative probability distributions for m e for the XM2VTS and
webcam data sets respectively. We show results for three different methods of feature
detection, as follows.

1. Mean position predicted from full face match (no feature search) (dotted line).

2. Most probable feature response in each region(no shape constraints) (dashed line)

3. Best combination of features using shape constraints (solid line).

The results on the XM2VTS data set (Figure 6(a) ) show that the raw feature search
actually gives worse results than assuming the features are in their mean positions. How-
ever, using shape constraints to select the best combination of features leads to signifi-
cantly better performance for almost all cases.

The reasons for the success of the shape constrained method and the poor performance
of the unconstrained search can be investigated by examining the proportion of successful
searches for individual features. Figures 7(a) and 7(b) show the cumulative distribution
of errors for the right eye and right mouth corner respectively.



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
XMTVTS −av dist

Distance metric

P
ro

p 
of

 fa
ce

 c
an

di
da

te
s

global cand pts
predicted pts− no shape constraints
predicted pts− with shape constraints

(a) XM2VTS Data Set
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(b) Webcam Data Set

Figure 6: Average mean positional error(me) of all 4 features
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(a) Right Eye
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Figure 7: Detection accuracy for individual eye and mouth features on the XM2VTS
database

These graphs demonstrate that the eye position is better localised using feature search
than raw prediction from the mean, but that for eyes the additional shape constraints do
not make a significant difference. However, with mouth corners the individual feature
search is poor, but is greatly improved by the use of shape constraints.

Similar results have been obtained for the left eye and mouth corner, and for experi-
ments on the webcam data, see figure 6(b). Example search results are shown in figure 8.

5.3 Speed of the feature detector
Timings were carried out on a set of 320*262 pixel images, using modest hardware, a
500Mhz PII processor. The speed of the system is dependent on the pixel values in the
image, but can broadly be broken down as shown in table 1.

The time to find the best point candidate stage varies greatly, because it implements
the search strategy outlined in algorithm 1. If the best feature responses form a legal shape



Global search ∼ 250ms
Local feature search ∼ 100ms

Find best point candidate set ∼ 0−150ms

Table 1: Search times using 500Mhz PII processor

then the search exits immediately, but otherwise more possibilities need to be investigated.
The whole search time therefore varies 350-500ms i.e. < 0.5 secs.

6 Summary and Conclusions
The graphs of figure 6 show that shape constrained search significantly improves on the
feature detection accuracy possible when using only the best response from each feature
detector. For features that exhibit large variation in location and appearance on the face,
such as the corners of the mouth, local image structure is not enough to allow reliable
detection. The shape of a set of feature points must be used as a constraint to remove
false matches.

A method is proposed (see algorithm 1 ) to search the space of possible feature point
combinations in an efficient manner. After the shape constrained search has taken place on
the XM2VTS data set, the average feature distance is within 5% of the eye separation for
65% of faces, 10% for 85% of faces and 15% for 90% of faces and the method improves
the initial feature points predicted by the global search detector in 88.8% of cases. Similar
results are observed when applying the search to more difficult images, which contain
more head pose variation. The method is also quick requiring less than 0.5 secs for a
320*262 image on a 500Mhz PII processor.

In the above we have described results for only four feature points. We have performed
further experiments with seven points (adding the nose and eyebrows), and obtained sim-
ilar results in terms of the improvement obtained by using the shape constraints.

Figure 7(a) demonstrates that the shape constraints do not significantly improve the
positional accuracy of the eyes location compared to simply selecting the best feature
match. This suggests that the best strategy is to accept the best feature match for each
eye, which will significantly reduce the complexity of the search for combinations of other
candidate points. In further work we will investigate using alternative feature detectors
and the use of a multi-resolution approach to obtain more accurate estimates of feature
positions.

In conclusion, the method is fast, robust and reliable, and significantly improves on
the feature candidates provided by the global search. Though demonstrated on faces, the
approach is clearly applicable to a wide variety of image interpretation tasks.
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