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Abstract
Object identification (OID) is specialized recognition where
the category is known (e.g. cars) and the algorithm recog-
nizes an object’s exact identity (e.g. Bob’s BMW). Two spe-
cial challenges characterize OID. (1) Inter-class variation is
often small (many cars look alike) and may be dwarfed by il-
lumination or pose changes. (2) There may be many classes
but few or just one positive “training” examples per class.
Due to (1), a solution must locate possibly subtle object-
specific salient features (a door handle) while avoiding dis-
tracting ones (a specular highlight). However, (2) rules out
direct techniques of feature selection. We describe an on-
line algorithm that takes one model image from a known
category and builds an efficient “same” vs. “different” clas-
sification cascade by predicting the most discriminative fea-
ture set for that object. Our method not only estimates the
saliency and scoring function for each candidate feature, but
also models the dependency between features, building an
ordered feature sequence unique to a specific model image,
maximizing cumulative information content. Learned stop-
ping thresholds make the classifier very efficient. To make
this possible, category-specific characteristics are learned
automatically in an off-line training procedure from labeled
image pairs of the category, without prior knowledge about
the category. Our method, using the same algorithm for both
cars and faces, outperforms a wide variety of other methods.

1. Introduction
Object identification is specialized object recognition where
the category is known (e.g. faces or cars) and one must rec-
ognize the exact identity of objects. The classes to be dis-
tinguished are not categories, e.g. cars versus non-cars (the
problem of Object Categorization), but rather specific ob-
jects, like Bob’s BMW or Jen’s Ford. The hierarchical na-
ture of categories suggests a continuum between these two
problems: vehicles to cars to sedans to Phil’s sedan. In this
paper, we focus on the identification end of this continuum,
where the Object Identification (OID) problem poses differ-

Figure 1: An Identification Problem: Which cars match?
The two cars on the left were photographed from camera 1.
Which of the four images on the right, taken by camera 2,
match the cars on the left?

ent challenges than its coarser cousin, Object Categorization
(OC). Specifically, in OID problems (1) the inter-class vari-
ation is often small (many cars look alike), and this varia-
tion is often dwarfed by illumination or pose changes (see
Fig. 1); and (2) there are many classes (each object is a sep-
arate class) but few (in our case just one) positive “train-
ing” examples per class (e.g. one image representing “Bob’s
BMW”).

People are good at identifying individual objects from
familiar categories after seeing them only once. Consider
faces. We zero in on discriminative features for a person
such as a prominent mole or unusually thick eyebrows, yet
are not distracted by equally unusual but non-repeatable fea-
tures such as a messy strand of hair or illumination artifacts.
Domain specific expertise makes this possible: having seen
many faces one learns that a messy strand of hair is not of-
ten a reliable feature. Human vision researchers report that
acquisition of this expertise is accompanied by significant
behavioral and physiological changes. Diamond et al. [3]
showed that dog experts perform dog identification differ-
ently than non experts; Tarr et al. [12] argued that the brain’s
fusiform face area does visual processing of categories for
which expertise has been gained.

The processes that occur during Object Categorization
(OC) and Object Identification (OID) can be formally char-
acterized. In functional notation, the stages for OC are

1. (Off-line) trainer Tcat: class training images 7→ Ccat,
2. (On-line) classifier Ccat: test image 7→ class label.
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There is nothing novel here, just the standard paradigm of
statistical learning. It relies implicitly on having enough ex-
amples of each class to learn discriminative features.

For OID, we assume off-line access to plenty of examples
of the category (cars, dogs, faces). We then must develop an
on-line classifier for a future image of Bob’s BMW, given
only one example of it. We decompose the on-line process
into two stages: (a) producing an “identifier”, a classifier
specialized to reidentify a specific object based on a single
example of it, and (b) running the “identifier” on the incom-
ing data stream. These on-line stages are preceded by the
off-line process of learning category specific characteristics,
resulting in an “identifier generator”. Thus, the three stages
for OID are

1. (Off-line) trainer Tid: category training images 7→ Hid,
2. (On-line) identifier generatorHid: object image 7→ Cid,
3. (On-line) classifier Cid: test image 7→ {same, differ-

ent}.
We stress that step 1 learns category specific characteris-

tics, while step 2 creates an object specific classifier. Now
we address details.

First we need to pick a family of classifiers Cid. Moti-
vated by the success of patch (a.k.a. part or fragment) based
representations ([13, 14]) for OC, we use them for OID as
well. Specifically, we develop an OID system whose gen-
erated classifier Cid (step 3) is a patch-based classification
cascade similar to that of Vidal-Naquet et al. [13], where
evidence from features is accumulated incrementally until a
“same” or “different” decision can be made. The tricky part
is to giveHid the ability to pick out object specific discrim-
inative features (e.g. a prominent door handle in one car, a
roof rack in another). But how can we know that a patch
containing a prominent door handle is discriminative, based
on a single image, when we have never seen a door handle
exactly like it before?

The core of our approach is to use hyper-features, which
are generic position and appearance characteristics of a
patch. Examples include location of a patch, edge contrast
in the patch and the dominant oriented energy in the patch.
We might, in the process of becoming a car identification
expert, expect to learn that patches about half-way up with
strong edge contrast and a dominant horizontal orientation
are particularly informative. When given the specific ex-
ample of Bob’s BMW, the identifier generator Hid could
produce an object-specific cascade with the first test based
on the patch containing the door handle. Whereas for Jen’s
Ford, the same set of hyper-features will result in a different
ordering of salient patches, resulting in a different classifi-
cation cascade with the first test using a patch containing the
roof rack (see Fig. 3).

More precisely, to instantiate Cid (step 2), the function
Hid is given a single image of the object (e.g. Bob’s BMW)
and produces a sequence of patches ordered from most infor-

mative to least, that maximizes the cumulative information
content. This sequence is object-specific, and may empha-
size different parts of each object.

The off-line training Tid (step 1), given a set of im-
age pairs from the category, each pair labeled “same” or
“different,” produces a class-specific Hid by learning (a) a
saliency and scoring model for image patches as a function
of patch characteristics like position and appearance (hyper-
features), (b) a dependency model between image patches
based on similarity of their hyper-features, and (c) a set of
thresholds for the cascade. The specific hyper-features used
are themselves automatically selected during this training
step from a large pool of candidate patch characteristics.

In contrast to some other “one-shot” learning algorithms
[11, 4], where off-line training involves finding priors for a
fixed model, our Tid actually learns how to identify an arbi-
trary number of good features for the given category. Thus
our final classifier Cid, while always a cascade of image
patches taken from the model object, will have a different
set of patches (in size, location, and count) for each object.
To score a patch from a model image and its correspondent
in a test image, our technique uses generalized linear mod-
els (GLMs) to estimate a generative model for the dissimi-
larity between patch pairs. “Same” and “different” distribu-
tions based on the hyper-features of the patch are estimated.
These distributions are used both to estimate the saliency of
a patch (by computing the expected mutual information be-
tween the dissimilarity and decision variables) and to score
a patch pair by comparing the likelihood under the same and
different distributions. By estimating bivariate “same” and
“different” distributions for neighboring patches, we model
the dependency relationships, allowing us to compute a se-
quence of patches with high joint information content.

Section 2 summarizes our previously published work on
using hyper-features for visual identification [5]. That work
had a serious limitation: it assumed that the patches were
independent. This assumption is clearly false, especially
for nearby and overlapping patches. To make that system
work, we allowed only a single patch size and added a sim-
ple penalty term for a patch that was not a local maximum.
Here we allow the system to pick patches of varying sizes,
forcing us to model the patch dependencies. This model
and its estimation from the training data is described in Sec-
tion 3. With this dependency model, we build the cascade in
Section 4 by finding stopping thresholds for making “same”
or “different” decisions. Section 5 details our extensive ex-
periments on car and face data sets.

2. Learning Hyper-Features
We begin by outlining the basic components of our system,
some of which were previously detailed in [5]. As the main
focus of this paper is modeling patch dependency (Section 3)
and building the classification cascade (Section 4), we only

2



summarize these components and ask the reader to refer to
[6] for additional details and motivations for our choices.
We describe the training (Tid), identifier generating (Hid),
and classification (Cid) functions in reverse order, starting
with the final form of the object-specific classifier. In the
following, we assume that all images are known to contain
objects of the given category (e.g. cars or faces) and have
been brought into rough correspondence (see Section 5 for
details).

2.1. Classifier Cid
The classifier Cid decides if a test (a.k.a. right) image IR is
the same (C = 1) or different (C = 0) than the model (a.k.a.
left) image IL it was trained for.

Patches. Our classifier consists of a sequence of im-
age patches from the probe image IL and denoted FLj for
1 ≤ j ≤ m. Unlike our previous algorithm from [5], these
patches can have different sizes and resolutions (by using
different levels of a Gaussian pyramid). Generally speak-
ing, larger patches are sampled at lower resolutions, keeping
the complexity of the patches approximately constant. The
gray-scale (we currently don’t use color information) pix-
els of the patch are encoded by applying a first derivative
Gaussian odd-symmetric filter at four orientations (horizon-
tal, vertical, and two diagonal), giving four signed numbers
per pixel.

Matching. Each encoded patch FLj is matched to an
equally sized area in the test image IR, by searching for
the most similar patch FRj within some small neighbor-
hood around the expected location (according to the coarse
alignment). The distance function that this search mini-
mizes is one minus the normalized correlation dj = 1 −
CorrCoef(FLj , F

R
j ) between the encoded patches. The ap-

pearance distance dj is used as evidence for deciding if IL

and IR are the same (C = 1) or different (C = 0).
Likelihood Ratio Score. To convert dj to a score,

Cid stores probability distributions P (Dj |C = 1) and
P (Dj |C = 0) for each patch and computes the log likeli-
hood ratio. (Note: dj refers to the specific measured distance
for a given model and test image, while Dj denotes the ran-
dom variable from which dj is a sample). After m patches
have been matched, assuming independence, we score the
match between images IL and IR using the sum of log like-
lihood ratios of matched patches:

R =

m∑

j=1

log
P (Dj = dj |C = 1)

P (Dj = dj |C = 0)
. (1)

To compute this, we must evaluate P (Dj = dj |C = 1)
and P (Dj = dj |C = 0). In our system, both of these
will take the form of gamma distributions Γ(dj ; θ

C=1
j ) and

Γ(dj ; θ
C=0
j ), where the parameters θC=1

j and θC=0
j are de-

fined as part of the classifier Cid for each patch and are set

byHid based on hyper-features.
Making a Decision. In [5], Cid matched a fixed number

of patches (m), computed the score R by Eq. 1, and com-
pared it to a threshold λ. R > λ meant that IL and IR

are the same. Otherwise they are declared different. In Sec-
tion 4 of this paper, we define a cascade from the sequence
of patches by applying thresholds after each patch has been
matched.

To summarize, the classifier Cid is defined by a sequence
of patches of varying sizes (denoted FLj ) taken from the
probe image IL. Additionally, a pair of parameters ΘC=1

j

and ΘC=0
j that define the distributions P (Dj |C = 1) and

P (Dj |C = 0) are associated with each patch.

2.2. Classifier GeneratorHid

The classifier generatorHid must take in a single model im-
age IL of a new object from the given category and pro-
duce a sequence of patches FL1 , ..., FLm and their associ-
ated gamma distribution parameters, ΘC=1

1 , ...,ΘC=1
m and

ΘC=0
1 , ...,ΘC=0

m , for scoring based on the appearance dis-
tance measurement dj (which is measured when the patch
FLj is matched to a location in a test image IR).

Estimating ΘC=1
j and ΘC=0

j . Since being able to es-
timate a good ΘC=1

j and ΘC=0
j for any patch j is also the

key to picking good patches, we start with this step. Con-
ceptually, we want ΘC

j to be influenced by what patch FLj
looks like and where it is on the object (see the discussion
of hyper-features in Section 1). First, we extract a prede-
fined set of hyper-features from the patch such as [x pos,
x pos2, size, resolution, contrast3, vertical energy, ...].
Let Zj = [Z1, ..., Zl]

T be a vector of these hyper-features for
patch j, and let ΘC

j be parameterized as Θ = {µj , γj}. Now
we define a generalized linear model (GLM) [10], which
links these hyper-features Z to the gamma distribution (Γ())
model for P (Dj |C = 1) and P (Dj |C = 0):

P (Dj |Z,C) = Γ(dj ; α
µ
C · Zj, α

γ
C · Zj), (2)

where the second and third arguments to Γ() are mean
µ and shape γ parameters. Each α (there are four of
these αµC=0, α

γ
C=0, α

µ
C=1, α

γ
C=1) is a vector of parameters

of length l that weights each hyper-feature monomial Zi.
The key point to notice is that given a hyper-feature encod-
ing (the definition of which patch characteristics to extract)
and the linear weights α, we can estimate the distributions
P (Dj |C = 1) and P (Dj |C = 0) for any probe image patch
FLj , based on its position and appearance.

Estimating Saliency. If we define the saliency of a patch
as the amount of information about the decision C likely
to be gained if the patch were to be matched, then it is
straightforward to estimate saliency given P (Dj |C = 1)
and P (Dj |C = 0). Intuitively, if P (Dj |C = 1) and
P (Dj |C = 0) are similar distributions, we don’t expect
much useful information from a value of dj . On the other
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hand, if the distributions are very different, then dj can tell
us a great deal about our decision. Formally, this can be
measured as the mutual information between the decision
variable C and the random variable Dj . Formally, this can
be measured as the mutual information between the decision
variable C and the random variable Dj (we assume equal
priors on C, P (C = 0) = P (C = 1) = 0.5):

I(Dj ;C) = H(Dj)−H(Dj |C).

Here H() is Shannon entropy. The key fact to notice is
that this measure can be computed just from the estimated
distribution of Dj (which, in turn, were estimated from the
position and appearance of the model patch F Lj ) before the
patch has been matched.

Finding Good Patches. The above mutual information
formula allows us to estimate the saliency of any patch. Thus
defining a sequence of patches to examine in order, from
among all candidate patches, is straightforward: for each
candidate patch estimate the distributionsP (Dj |C) from the
hyper-features; compute the mutual information I(Dj ;C);
sort the patches by I(Dj ;C); and take the top m patches.
The problem with this procedure is that the patches are not
independent: once we have matched a patch F Lj , the amount
of additional information we are expected to derive from
matching a patch FLi that overlaps FLj is less then I(Di;C)
would suggest. We discuss a solution to this problem in Sec-
tion 3.

However, assuming that this dependency problem can be
solved, we have a complete algorithm for generating the
classifier Cid from a single image, given a definition of the
hyper-features to extract (the patch statistics Z) and the lin-
ear weights α.

2.3. Off-line Training Tid
The task of the off-line training step Tid is to define the
hyper-feature encoding Z and to learn the weights α that
link this encoding to the distributions P (Dj |C = 1) and
P (Dj |C = 0). This step is given a large collection of image
pairs from the category, where each left-right image pair is
labeled as “same” or “different”. A large number of patches
FLj are sampled from the left images and matched to the
right images (by finding the best matching FRj ) in the same
manner as during classification Cid (see Matching in Sec-
tion 2.1), and the appearance distance dj is recorded. For
each patch, a large set of candidate hyper-features are also
extracted from the position and appearance of the left patch
FLj . This data gives rise to 2 generalized linear regression
problems: one for the “same” (C = 1) set and one for the
“different” (C = 0) set. Our solution involves (1) a fea-
ture selection step which finds a hyper-feature encoding (Z)
by choosing a small subset from the candidate set of hyper-
features, and (2) a maximum likelihood estimation step to fit
αµC=1, α

γ
C=1 and αµC=0, α

γ
C=0.

Figure 2: Patch Correlations. On each image, the patches most
correlated with the white-circled patch are shown. Notice that in
the left image, where the patch sits in an area with a highly visible
horizontal structure, the most correlated patches all lie along the
horizontal features. Contrast this with the right image, showing
correlation of patches with a patch sitting on a wheel, where the
most correlated patches are those that strictly overlap the white-
circled patch.

Figure 3: The Ten Most Informative Patches. The ten rectan-
gles on each object show the top ten patches our algorithm selected
for the classification cascade for that object. The face model seems
to prefer features around the eyes, while the car models tend to like
wheels. Notice, however, that even within a category each cascade
is unique, highlighting interesting appearance features for that ob-
ject. The patches are color coded according to their order, from
dark red (1) to dark blue (10).

3. Modeling Pairwise Relationships
Between Patches

In Section 2, we described our model to score a probe im-
age patch FLj and its best match FRj by modeling the distri-
bution of their distance in appearance, Dj , conditioned on
the match variable C. Furthermore, in Section 2.2, we de-
scribed how to infer the saliency of the patch FLj for match-
ing based on these distributions. As we noted in that section,
this works for picking the first patch, but is not optimal for
picking subsequent patches: once we have already matched
and recorded the score of the first patch, the amount of in-
formation gained from a nearby patch is likely to be small,
because their scores are likely to be correlated. Intuitively,
the next chosen patch would ideally be a highly salient patch
whose information about C is as independent as possible
from the first patch. Similarly, the third patch should con-
sider both the first and the second patches.

Let FL(k) represent the kth patch picked for the cascade
and let FL(1...n) denote the first n of these patches. As-
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sume we have already picked patches FL(1...n) and we wish
to choose the next one, FL(n+1), from the remaining set of
FLj ’s. We would like to pick the one that maximizes the
information gain or the conditional mutual information:

I(D(n+1);C|D(1...n)) = I(D(1...n+1);C)− I(D(1...n);C).

This quantity is difficult to estimate, due to the need to
model the joint distribution of all D(1...n) patches. How-
ever, note that the information gain of a new feature is upper
bounded by the information gain of that feature relative to
any single feature that has already been chosen. That is,

I(D(n+1);C|D(1...n)) ≤ min
1≤i≤n

I(D(n+1);C|D(i)). (3)

Thus, rather than maximizing the full information gain,
we select the new feature that maximizes this upper bound
on the amount of “new” information:

arg max
j

min
i
I(Dj ;C|D(i)), (4)

where i varies over the already chosen patches, and j
varies over the remaining patches. This formulation (Eq. 4)
follows that of Vidal-Naquet et al. [13].

3.1. Dependency Model
To compute (4), we need to estimate conditional mutual in-
formations of the form

I(Dj ;C|D(i)) = I(Dj , D(i);C)− I(D(i);C).

In Section 2.2, we showed that we can determine the
second term, I(D(i);C), from the estimated gamma dis-
tributions for P (D(i)|C = 1) and P (D(i)|C = 0). Sim-
ilarly, to calculate I(Dj , D(i);C), we need an estimate
of the bivariate distributions for P (D(i), Dj |C = 1) and
P (D(i), Dj |C = 0). If the D(i) and Dj are independent
conditioned on C, then these are straightforward to compute
from the known marginal distribution parameters for D(i)

and Dj . To model the dependent case, we employ Kibble’s
bivariate gamma distribution [8], which has four parameters:
K(µ1, µ2, γ, ρ), 0 < ρ < 1. µ1 and µ2 are mean parameters
for the marginals, and γ is a dispersion parameter for both
marginals (the formulation requires these to be equal). ρ is
the correlation between D(i) and Dj , and varies from 0, in-
dicating full independence of the marginals, to 1, in which
the marginals are completely correlated.

To make this formulation work, the marginal distribution
parameters must be constrained to be equal (µC=1

j = µC=1
(i) ,

as well as γC=1
j = γC=1

(i) )1. Therefore, for the computation
of the conditional mutual information of Dj conditioned on

1More precisely the γ’s must be equal (this is a requirement of Kibble’s

formulation), while the µ’s must satisfy
µC=1
j

µC=1
(i)

=
µC=0
j

µC=0
(i)

D(i), we force the marginal distribution of the already cho-
sen patch (D(i)) to be equal to the marginal distribution of
the patch currently being considered (Dj). Given that our
method for comparing all patches is the same, namely nor-
malized correlation, this usually means a very minor per-
turbation to the estimated distribution of D(i) when the two
patches are strongly correlated. On the other hand, when the
marginals are originally fairly different, the two patches tend
to be uncorrelated. In this case, the exact shapes of D(i)’s
distributions are less relevant to the computation of Eq. (4).
Since we are always setting the first two parameters of Kib-
ble’s distribution to be the same, we will henceforth write it
with three parameters (e.g. K(µC=0

j , γC=0
j , ρ)).

3.2. Predicting Patch Correlations from
Hyper-Feature Differences

Given the above formulation, we have reduced the problem
of finding the next best patch, FL(n+1), to the problem of
estimating the correlation parameter ρ of Kibble’s bivariate
gamma distribution for any pair of patches FL(i) (one of the n
patches already selected) and FLj (a candidate for FL(n+1)).
The intuition is that patches that are nearby and overlapping
or that lie on the same underlying image features (for exam-
ple the horizontal line on the side of the car in Figure 2) are
likely to be highly correlated, whereas two patches that are
of different sizes and far away from one another are likely to
be less so.

We model ρ, the last parameter of K(µC=1
j , γC=1

j , ρ)

and K(µC=0
j , γC=0

j , ρ), similarly to our GLM estimate of
its other parameters (see Section 2.2): we let ρ be a lin-
ear function of the difference of various hyper-features of
the two patches, FL(i) and FLj . Clear candidates for these
covariates are the difference in position and size of the
two patches, as well as some image-based features such as
the difference in the amount of contrast within each patch.
To ensure 0 < ρ < 1, we use a sigmoid link function
ρ = (1 − exp(β ·Y))−1, where Y is our vector of hyper-
feature differences and β is the GLM parameter vector.

Given a data set of patch pairs FL(i) and FLj and associated
distances d(i) and dj (found by matching the “left” patches
to a “right” image of the same or of a different object), we
estimate the linear coefficients β. This is done by maxi-
mizing the likelihood ofK(µC=1

j , γC=1
j , ρ) using data taken

from image pairs that are known to be the “same” (µC=1
j and

γC=1
j are estimated from FLj by the method of Section 2.3

and are fixed for this optimization). and K(µC=0
j , γC=0

j , ρ)
using data taken from “different” image pairs. Also sim-
ilarly to Section 2.3, we choose the encoding of Y auto-
matically, by the method of forward feature selection [7]
over candidate hyper-feature difference variables. As antic-
ipated, the top ranked variables encoded differences in posi-
tion, size, contrast, and orientation energy. Our final model

5



uses the top 10 variables.

4. Building the Cascade
Now that we have a model for patch dependence, we can cre-
ate a sequence of patches FLj (see Section 2.2) that, when
matched, collectively capture the maximum amount of in-
formation about the decision C (same or different?). The
sequence is ordered so that the first patch is the most infor-
mative, the second slightly less so and so on. The final step
of creating a cascade is to define early stopping thresholds
on the log likelihood ratio sum R that can be applied after
each patch in the sequence has been matched and its score
added to R (see Section 2.1).

We assume that we are given a global threshold λ (see
Section 2.1) that defines a global choice between selectivity
and sensitivity. What remains is the definition of thresh-
olds at each step, λC=1

(k) and λC=0
(k) , which allow the system

to accept (declare “same”) if R > λC=1
(k) or reject (declare

“different”) if R ≤ λC=1
(k) , otherwise continue by matching

patch k+1. To learn these thresholds, we runHid on the left
images and the resulting classifier Cid on the right images of
our training data set. This will produce a performance curve
for each choice of k, the number of patches included in the
classification score, including k = m, the sum for which λ is
defined. Our goal for the cascade is for it to make decisions
as early as possible (tight thresholds) but, on the training set,
never make a mistake on any pair which was correctly clas-
sified using all m patches and the threshold λ. These two
constraints exactly define the thresholds λC=1

(k) and λC=0
(k) .

5. Results and Conclusion
The goal of this work was to create an identification system
that could be applied to different categories, where the algo-
rithm would automatically learn (based on off-line training
examples) how to select category-specific salient features
from a new image. In this section, we demonstrate that after
category training, our algorithm is in fact able take a single
image of a novel object and solely based on it create a highly
effective “same” vs. “different” classification cascade of im-
age patches. Specifically, we wish to show that for visual
identification each of the following leads to an improvement
in performance in terms of accuracy and/or computational
efficiency:

1. breaking the object up into patches (a.k.a parts, frag-
ments), matching each one separately and combining
the results,

2. differentiating patches by estimating a scoring and
saliency function for each patch (based on its hyper-
features),

3. modeling the dependency between patches to create a
sequence of patches to be examined in order, and

Figure 4: Example Model-Test Classifications. Each pair of
images shows a model and a test image, which has been labeled as
“same” or “different” by our algorithm. The patches that were used
in the cascade for that test image are indicated for each pair, where
the order is color coded from red to blue. The first 3 rows show
correct classification results. For cars, false-negative errors (not
shown) primarily occur with darker cars where the main source of
features are the illumination artifacts that can vary greatly between
the images, while false-positive errors tend to involve very similar
vehicles (e.g. same make and model). Two typical face errors are
shown in the last row: the large variations in pose, lighting, ex-
pression and image resolution make the face data set very difficult.
Note: the model for the person wearing sunglasses in the last row
is the only one whose first patch in the cascade is not on the eye.

4. applying early termination thresholds to the patch se-
quence to create the cascade.

We tested our algorithm on two different data sets: (1)
cars from 2 cameras with significant pose differential, and
(2) faces from news photographs. Examples from these two
data sets are shown in Figure 3, with the top 10 patches of the
classification cascade, and Figure 4, with model-test classi-
fication results. For each data set, a different automatic pre-
processing step was applied to detect objects and approxi-
mately align them. After this, the same identification algo-
rithm was applied to both sets. For lack of space, we de-
tail our experiments on data set 1, and only summarize the
results for data set 2. Qualitatively, our results are consis-
tent in showing that each of the above aspects of our sys-
tem improves the performance, and that the overall system
is both efficient and effective. In the last section, we com-
pare our system to Lowe’s technique [9], which does not use
category-specific learning.

5.1. Cars
358 unique vehicles (179 training, 179 test) were extracted
using a blob tracker from 1.5 hours of video from two cam-
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Figure 5: Precision vs. Recall Using Different Numbers of
Patches. These are precision vs. recall curves for our full model.
Each curve represents the performance tradeoff between precision
and recall, when the system uses a fixed number of patches. The
lowest curve uses only the single most informative patch, while the
top curve uses up to 100 patches. The 85% recall rate, where the
different models of Figure 6 are compared, is noted by a vertical
black dashed line. A magenta X, at recall = 84.9 and precision =
84.8, marks the performance of the cascade model.

eras located one block apart. The pose of the cameras rela-
tive to the road (see Figure 1) was known from static cam-
era calibration, and alignment included warping the sides of
the vehicles to be approximately parallel to the image plane.
Within training and testing sets, about 2685 pairs (true to
false ratio of 1:15) of mismatched cars were formed from
non-corresponding images, one from each camera. These
included only those car pairs that were superficially simi-
lar in intensity and size. Using the best whole image com-
parison method we could find (normalized correlation on
blurred filter outputs) on this set produces 14% false pos-
itives at a 15% miss rate. This data set is available from
www.cs.berkeley.edu/∼ferencz/vid.

Figure 6 compares several versions of our model by plot-
ting the false-positive rate (y-axis) with a fixed miss rate of
15% (85% recall), for a fixed budget of patches (x-axis). The
85% recall point was selected based on Figure 5, by picking
the equal error point given the 1 to 15 true-to-false ratio.
The Random Order curve uses our hyper-feature model for
scoring, but chooses the patches randomly. By comparing
this curve to its neighbors, notice the performance gain as-
sociated with differentiating patches based on hyper-features
both for scoring (No Hyper-Features vs. Random Order) and
for patch selection (Random Order vs. Mutual Information).
Comparing Mutual Information vs. Conditional MI shows
that modeling patch dependence is important for choosing
a small number of patches (see range 5-20) that together
have high information content (Section 3). Comparing Po-
sition Only (which only uses positional hyper-features) vs.

Recall Rate 60% 70% 80% 90%
PCA + MahCosine 82% 73% 62% 59%
Filter + NormCor 83% 73% 67% 57%

No Hyper-Features 86% 73% 68% 62%
Random 10 Patches 79% 71% 64% 60%

Top 1 CMI Patch 86% 76% 69% 63%
Top 50 CMI Patches 92% 84% 75% 67%

CMI Cascade 92% 84% 76% 66%

Table 1: Precision vs. Recall for Faces.
Each column denotes the precision associated with a given recall
rate along the P-R curve. PCA + MahCosine and Filter + NormCor
are whole face comparison techniques. PCA + MahCosine is the
best curve produced by [2], which implements PCA and LDA al-
gorithms with face-specific preprocessing. Filter + NormCor uses
the same representation and comparison method as our patches, but
applied to the whole face. The last 4 all use our patch based system
with hyper-features. The last 3 uses conditional mutual informa-
tion based patch selection, where the number of patches allowed is
set to 1, 50, and variable (cascade), respectively.

Conditional MI (which uses both positional and appearance
hyper-features) shows that patch appearance characteristics
are significant for both scoring and saliency estimation. Fi-
nally, the cascade performs (1.02% error, with mean of 4.3
patches used) as well as the full model and better than any
of the others, even when these are given an unlimited com-
putation budget.

Figure 5 shows another way to look at the performance of
our full model given a fixed patch (computation) budget (the
Conditional MI curve of Figure 6 represents the intersection
of these curves with the 85% recall line). The cascade per-
formance is also plotted here (follow the black arrow).

5.2. Faces
We used a subset of the “Faces in the News” data set de-
scribed in [1], where the faces have been automatically de-
tected from news photographs and registered by their algo-
rithm. Our training and test sets each used 103 different peo-
ple, with two images per person. This is an extremely dif-
ficult data set for any identification algorithm, as these face
images were collected in a completely uncontrolled manner
(news photographs). Table 1 summarizes our results for run-
ning the same algorithm as above on this set. Note the same
pattern as above: the patch based system generally outper-
forms whole object systems (here we compare against state
of the art PCA and LDA algorithms with face specific pre-
processing using CSU’s implementation [2]); estimating a
scoring and saliency function through hyper-features greatly
improves the performance of the patch based system; the
cascades, using less than 6 patches on average, performs as
well as always using the best 50 patches (performance actu-
ally declines above 50 patches).
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Figure 6: Comparing Performance of Different Models. The
curves plot the performance of various models, as measured by the
false-positive rate (fraction of different pairs labeled incorrectly as
same), at a fixed recall rate of 85%. The y-axis shows the log
error rate, while the x-axis plots the log number of patches the
models were allowed to use (up to a max of 100). As the number
of patches increases, the performance improves until a point, after
which it levels off and, for the models that order patches according
to information gain, even decreases (when non-informative patches
begin to pollute the score). The (red) model that does not use hyper-
features (i.e. uses the same distributions for all patches), performs
very poorly compared to the hyper-feature versions, even when it is
allowed to use 100 patches. The second curve from the top uses our
hyper-feature model to score the patches, but random selection to
pick the patch order. The position only model uses only position-
based hyper-features for selecting patch order (i.e. it computes a
fixed patch order for all cars). The light blue model sorts patches
by mutual information, without considering dependencies. The last
curve shows our full model based on selecting patches according
to their conditional mutual information, using both positional and
image-based hyper-features. Finally, the magenta X at 4.3 patches
and 1.02% error shows the performance of the cascade model.

5.3. Comparison to SIFT
In the previous sections, we have shown that each step of
our algorithm improves the classification performance. But
how does our system compare with other leading methods?
While an in-depth comparison is beyond the scope of this
paper, we compared our results to David Lowe’s technique
applied to our car identification problem. We used a version
of his algorithm described in [9] with no category-specific
learning. At the 85% recall point, that algorithm produced
a false-positive error rate of over 20% on our data set (com-
pared to our 1.02%). Limiting the area and rotation of the
matching SIFT features given the approximate alignment
that is used in our algorithm did not improve these results
significantly. In addition to the obvious lack of category-
specific training, the poor performance of Lowe’s algorithm

on this data may be due to the design of the SIFT features.
Specifically, we found that due to the nature of the problem,
where distinct objects can look very similar except for a few
subtle differences, features that were developed to be robust
to small differences (such as SIFT) do not perform well.
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