CS840a Learning and Computer Vision
Course Outline -- Fall 2006

Course Description

Traditionally, researchers in the field of computer vision have been hand-crafting appropriate physical/statistical models of objects/natural scenes for building computer vision systems. Recent advances in imaging and computing technology make it possible to capture and process large amounts of visual data efficiently. This lead to increasing use of machine learning techniques for model learning in computer vision. A model learned from large visual datasets is less likely to be brittle than a model hand-crafted by a designer. In this course, we will explore recent sucessful computer vision methods based on machine learning. The course will be organized as a combination of lectures by the instructor and paper presentation by the students. Each student will have to do one or two paper presentations, as well as a final programming project.

Topics covered in this course will be selected from the following:


A course on computer vision or image processing; strong programming skills in C or C++; familiarity with statistics, calculus, linear algebra. Students lacking these requirements should speak with the instructor for obtaining permission to enroll.


Olga Veksler
Office: MC361
Email: my_first_name@csd.uwo.ca
Lectures: Wednesday 10:30-12:30 am
Lecture Room: MC316
Office Hours: Wed 1-2pm or by appointment.


There will be no required textbook in this course. The course will be based on papers that I will hand out for reading. For reference, students can use the following books:

Course Website


Student Evaluation

Grades will be based on:

Final Project

I will provide a list of final projects. A student may choose from the provided list or design his/her own project (with my permission). Each project should be individual work. Students should select their final project by November 2, and the final project written report and the code is due on December 7.

Paper/Project Presentation

Students will be judged on the quality of their presentation. Here are some notes to help you make a good presentation:

Ethical Conduct

Plagiarism:Students must write their essays and assignments in their own words. Whenever students take an idea, or a passage from another author, they must acknowledge their debt both by using quotation marks where appropriate and by proper referencing such as footnotes or citations. Plagiarism is a major academic offence (see Scholastic Offence Policy in the Western Academic Calendar).