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= Linear Machines
= Start preparation for the first paper

= “Recognizing Action at a Distance” by A. Efros,

A.Berg, G. Mori, Jitendra Malik

= there should be a link to PDF file on our web site

= Next time:
= Discuss the paper and watch video
= Prepare for the second paper




Last Time: Supervised Learning

= Training samples (or examples) X',X2,...X"
= Each example is typically multi-dimensional
= Xiy, Xy ..., Xiy are typically called features, X! is
sometimes called a feature vector

= How many features and which features do we

take?
= Know desired output for each example (labeled

samples) Y',Y2,...Y"

= This learning is supervised (“teacher” gives desired
outputs).

= Yiare often one-dimensional, but can be
multidimensional

Last Time: Supervised Learning

= Wish to design a machine f(X,W) s.t.
f(X,W) = true output value at X
= |n classification want f(X,W) = label of X

= How do we choose ?
= when we choose a particular f, we are making implicit
assumptions about our problem
= W is typically multidimensional vector of weights
(also called parameters) which enable the machine
to “learn”
=W = [wy,W,,...W,]




Training and Testing

= There are 2 phases, training and testing

= Divide all labeled samples X',X2,...X" into 2 sets,
training set and testing set

= Training phase is for “teaching” our machine
(finding optimal weights W)
= Testing phase is for evaluating how well our
machine works on unseen examples
= Training phase

= Find the weights W s.t. f(X,W) = Yi “as much as
possible” for the training samples X

= “as much as possible” needs to be defined
= Training can be quite complex and time-consuming

Loss Function

= How do we quantify what it means for the machine
f(X,W) do well in the training and testing phases?

= f(X,W) has to be “close” to the true output on X

= Define Loss (or Error) function L
= This is up to the designer (that is you)
= Typically first define per-sample loss L(X',Y,W)
= Some examples:
= for classification, L(X',Y\,W) = I[f(X,W) = Y],
where I[true] = 1, I[false] = 0
= we just care if the sample has been classified correctly
= For continuous Y, L(X,Y W) =|| f(Xi,W) -Yi |2,
= how far is the estimated output from the correct one?
= Then loss function L = X, L(X',Y|,W)
= Number of missclassified example for classification

= Sum of distances from the estimated output to the correct
output




Linear Machine, Continuous Y

= f(X,W) = wy+X,_
= W, is called bias
= |n vector form, if we let
X = (1,X4,Xs,...,Xg), then
fX,W) = WTX
= notice abuse of notation, | made
X=[1 X]
= This is standard linear
regression (line fitting)
= assume
LOXYLW) =[] (XL W) Y |2
= optimal W can be found by

solving linear system of
equations W* = [EX (X!)T]'1 ZYIX

1.2,..d WiX;

Linear Machine: binary Y

= sign(positive) = 1,
signgﬁegativg) =-1 \
= W, is called bias
= |n vector form, if we let
X = (1,X4,Xs,...,Xg) then
f(X,W) = sign(WTX)

WiX<0
X

decision boundary WX = 0




Perceptron Learning Procedure (Rosenblatt 1957)

= Let L(XL,Y\ W) = I[f(X',W) # Y']. How do we learn W?
= A solution:
= |terate over all training samples
= if f(X,W)=Y (correct label), do nothing
= else W =W + [Y-f(WTX)]X
X X
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Perceptron Learning Procedure (Rosenblatt 1957)

= Amazing fact: If the samples are linearly separable,
the perceptron learning procedure will converge to a
solution (separating hyperplane) in a finite amount of
time

= Bad news: If the samples are not linearly separable,
the perceptron procedure will not terminate, it will go
on looking for a solution which does not exist!

= For most interesting problems the samples are not
linearly separable
Is there a way to learn W in non-separable case?

= Remember, it’s ok to have training error, so we don’t have
to have “perfect” classification




Optimization

= Need to minimize a function of many variables
J(x) = J(X;50ey X))

= We know how to minimize J(x)
= Take partial derivatives and set them to zero

KB gradient
ox, J(x)

: =VJ(x)=0
E J(x)

= However solving analytically is not always easy
= Would you like to solve this system of nonlinear equations?
sin(x? + x3)+e¥ =0
{cos(xf +x)+ log(x? Ji=0
= Sometimes it is not even possible to write down an analytical
expression for the derivative, we will see an example later today

Optimization: Gradient Descent

= Gradient VJ(x) points in direction of steepest increase of
J(x),and -VJ(x) in direction of steepest decrease
one dimension two dimensions
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Optimization: Gradient Descent
J(x) Vx”)
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Gradient Descent for minimizing any function J(x)
set k=1 and x(" to some initial guess for the weight vector
while 7% vJ(x¥)[> e

choose learning rate n®

xtk+1)= x(k) — p (k) J(x) (update rule)
k=k+1

Optimization: Gradient Descent

= Gradient descent is guaranteed to find only a local
minimum
J(x)

@ —>@¢ >®

L4
xX() x(2 x3 XK global minimum

= Nevertheless gradient descent is very popular
because it is simple and applicable to any
differentiable function




Optimization: Gradient Descent

= Main issue: how to set parameter n (learning rate )
= |f pis too small, need too many iterations

J(x)
b'¢
J(x)
= If pis too large may

overshoot the minimum

and possibly never find it

(if we keep overshooting) o >o
x(1 x@

“Optimal” W with Gradient Descent

= [fwe let L(X,YL,W) = I[f(X|,W) # Y], then L(W) is the
number of missclassified examples
= Let Mbe the set of examples misclassified by W
M(W)={sample X' s.t. W' X' =Y’}
= Then L(W) = |[M(W)|, the size of M(W)

= L(W) is piecewise constant, M(W)
gradient descent is useless —




“Optimal” W with Gradient Descent

= Better choice:
Lw)= 3w x)y

X'eM

Xe 2,
= |f X is misclassified, (WTX)Y <0 +*

= Thus L(W,X,Y') >0

= L(W,X\,Y!) is proportional
to the distance of
misclassified example to e
the decision boundary L(W)

= L(W)=XL(W,X.Y)) is
piecewise linear and thus
suitable for gradient decent - w

Batch Rule
Lw,x,Y')= S (wTx)y

XeM

Gradientof Lis VL(W)= > (- X)Y

XeM
= M are samples misclassified by W
= [t is not possible to solve VL(W) =0 analytically

Update rule for gradient descent: xtk*1)= x(W—p (k) v 4(x)

Thus gradient decent batch update rule for L(W) is:
w k) — w4 ﬂ(k) Z XY

YeM
It is called batch rule because it is based on all

misclassified examples




Single Sample Rule

» Thus gradient decent single sample rule for L(W) is:
w k+) — y k) +7](k)(XY)

= apply for any sample X misclassified by W
= must have a consistent way of visiting samples

Convergence
= |f classes are linearly separable, and n® is fixed to a
constant, i.e. p" =p@=...=p® =c (fixed learning rate)

= both single sample and batch rules converge to a correct
solution (could be any W in the solution space)

= |f classes are not linearly separable:

= Single sample algorithm does not stop, it keeps looking for
solution which does not exist

= However by choosing appropriate learning rate,
heuristically stop algorithm at hopefully good stopping point

7% >0 as k —
= for example, %) 77(1)
Kk

= for this learning rate convergence in the linearly separable
case can also be proven
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Learning by Gradient Descent

Suppose we suspect that the machine has to have functional
form f(X,W), not necessarily linear

Pick differentiable per-sample loss function L(X1,Y!,W)
We need to find W that minimizes L = X, L(X,YL,W)
Use gradient-based minimization:

= Batch rule: W =W - nVL(W)

= Or single sample rule: W =W - nVVL (XY W)

Important Questions

How do we choose the feature vector X?

How do we split labeled samples into training/testing
sets?

How do we choose the machine f(X,W)?
How do we choose the loss function L(X1,Y,W)?
How do we find the optimal weights W?
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Background Preparation for Paper

= Paper:“Recognizing Action at a Distance” by A. Efros,
A.Berg, G. Mori, Jitendra Malik

= Optical Flow Field (related to motion field)
= Correlation

Optical flow
" ., ’ .
o—> 3 o o
first image I, second image I,

= How to estimate pixel motion from image I; to image 1,7

= Solve pixel correspondence problem

= given a pixel in I,, look for nearby pixels of the same
color in I,
= Key assumptions

= color constancy: a pointin I, looks the same in 1,

= For grayscale images, this is brightness
constancy

= small motion: points do not move very far
= This is called the optical flow problem

12



Optical Flow Field

Optical Flow and Motion Field

= QOptical flow field is the apparent motion of
brightness patterns between 2 (or several) frames
in an image sequence

= Why does brightness change between frames?

= Assuming that illumination does not change:

= changes are due to the RELATIVE MOTION between
the scene and the camera

= There are 3 possibilities:
= Camera still, moving scene
= Moving camera, still scene
= Moving camera, moving scene

13



Motion Field (MF)

= The MF assigns a velocity vector to each pixel in
the image

= These velocities are INDUCED by the RELATIVE
MOTION between the camera and the 3D scene

= The MF is the projection of the 3D velocities on
the image plane

Examples of Motion Fields
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(a) Translation perpendicular to a surface. (b) Rotation about axis
perpendicular to image plane. (c) Translation parallel to a surface at a
constant distance. (d) Translation parallel to an obstacle in front of a
more distant background.
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Optical Flow vs. Motion Field

= Recall that Optical Flow is the apparent motion of

brightness patterns

= We equate Optical Flow Field with Motion Field
= Frequently works, but now always:

()

A smooth sphere is rotating
under constant illumination.
Thus the optical flow field is
zero, but the motion field is
not

A fixed sphere is illuminated
by a moving source—the
shading of the image
changes. Thus the motion
field is zero, but the optical
flow field is not

Optical Flow vs. Motion Field

= Often (but not always) optical flow corresponds to the

true motion of the scene
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Computing Optical Flow: Brightness
Constancy Equation

= Let P be a moving point in 3D:
= At time t, P has coordinates (X(1), Y(#),Z(1))

= Let p=(x(1),y(1)) be the coordinates of its image
at time t

= Let E(x(f),y(1),T) be the brightness at p at time .
= Brightness Constancy Assumption:

= As P moves over time, E(x(f),y(1),f) remains
constant

Computing Optical Flow: Brightness
Constancy Equation

E(x(t),y(t),t) = Constant

Taking derivative wrt time:

dE(x(t),y(t),t) _
dt -

O

OFEdx . OEdy , OF
Ox dt Oy dt ot

=0
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Computing Optical Flow: Brightness
Constancy Equation

1 equation with 2 unknowns

OFEdx A OFEdy , OF

=0
8:13dt+ 8ydt+ ot
Let
VE — %—g (Frame spatial gradient)
Jy
_ d—f (optical flow)
v=| 4y
dt
and E, — 8_E (derivative across frames)
T ot

Computing Optical Flow: Brightness
Constancy Equation

= How to get more equations for a pixel?

= Basic idea: impose additional constraints
= most common is to assume that the flow field is smooth locally
= one method: pretend the pixel’s neighbors have the same (u,v)
= |f we use a 5x5 window, that gives us 25 equations per pixel!

E(p)+VE(p,)-[u v]=0

( 1) E (p1) Et( 1)

£ )| [0 | £le)

E,(pzs) E, (pzs) E,(p,s)
matrix E vector d vector b
25x2 2x1 25x1
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Video Sequence

* Picture from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Optical Flow Results

Lucas-Kanade
without pyramids

Fails in areas of large
motion

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Revisiting the small motion assumption

= |s this motion small enough?

= Probably not—it’s much larger than one pixel (2"
order terms dominate)

= How might we solve this problem?

Reduce the resolution!
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Coarse-to-fine optical flow estimation

u=1.25 pixels -

u=2.5 pixels -

u=10 pixels,,/

Gaussian pyramid of image H Gaussian pyramid of image I

Iterative Refinement

= lterative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-
Kanade equations
2. Warp H towards | using the estimated flow field
- use image warping techniques
3. Repeat until convergence

20



Coarse-to-fine optical flow estimation

-_. run iterative L-K ._-
S lwarp & upsample
.—’ run |terat|ve L-K +~—;

/
/

Gaussian pyramid of image H

Gaussian pyramid of image 1

Optical Flow Results

Lucas-Kanade with Pyramids

A e

From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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from Gary Bradski and Sebastian Thrun

Other Concepts to Review

= Convolution is the operation of applying a “kernel” to each pixel
of an image

image
Ti|Taz|Xus| Tua|Xus | Tus| I17|Xis Tus
Iz1|Xaz|Xa3| I24|Das| Q26| I27| D28 Ras Kk;(rnz
I21|Xa2| 33| Ia4|Xas | Xae| Iav| Xas Tas 1 kaz|Kas
Kz [Kz2Kzs
Tai|Tuz|Xas| Ta4|Xas|Nas| Taz|Tas Tas

ISI ISZ 153 154 ISS Iﬁﬁ IS? ISR IS']
II&J. II&Z Iliﬁ Ilﬂ II&S Ilili II&? I\’IS II59

= Result of convolution has the same dimension as the image

= For example:
Osr = Iyr K1+ 15 Kig+ Lig K1+ Tgr Koy +1eg Kgg + Jog Kog
= Convolution is frequently denoted by *, for example I"K




Other Concepts to Review

= Gaussian smoothing (blurring): convolution operator that is used to
“blur' images and removes small detail and noise from an image

4 16| 26| 16| 4

— | 7| 26| 41| 26| 7

4 | 16| 26| 16| 4

Smoothing by Averaging

1 al 7] a4l 1 (11|11
4| 16| 26| 18] 4 1 111111111
1
T 7|28 4 28| 7 — 11111711
25
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Other Concepts to Review

= Image gradient: points in the direction of the most rapid
increase in intensity of image f

I_v -l K vi= (28]

vi=[0%]
= Sobel operator to 7 0 RILIR
compute gradient: gl210]2 g 91910
101 -1]-2(-1
of of
ox ay
= Results:
Other Concepts to Review
= Cross- correlatlon d
)=> f(i)g
i=1
= measures similarity between images (or image regions) f

and g
= works OK if there is no change in intensity

= Normalized cross correlation, more
popular in image processing
= |nsensitive to linear |rr11tenf3|tydchanges D
between image patches f and g
s -}

3 (7()-7Xa(i)-3)

NCC(f,g) = i=t

$00-175 60-0)]

i=1

24



Next Time

= Paper:“Recognizing Action at a Distance” by A. Efros,
A.Berg, G. Mori, Jitendra Malik

= When reading the paper, think about following:

= Your discussion should have the following:
= very short description of the problem paper tries to solve
= What makes this problem difficult?

= Short description of the method used in the paper to
solve the problem

= What is the contribution of the paper (what new does it
do)?

= Do the experimental results look “good” to you?
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