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Abstract

Image understanding requires not only individually esti-

mating elements of the visual world but also capturing the

interplay among them. In this paper, we provide a frame-

work for placing local object detection in the context of the

overall 3D scene by modeling the interdependence of ob-

jects, surface orientations, and camera viewpoint.

Most object detection methods consider all scales and

locations in the image as equally likely. We show that with

probabilistic estimates of 3D geometry, both in terms of

surfaces and world coordinates, we can put objects into

perspective and model the scale and location variance in

the image. Our approach reflects the cyclical nature of the

problem by allowing probabilistic object hypotheses to re-

fine geometry and vice-versa. Our framework allows pain-

less substitution of almost any object detector and is easily

extended to include other aspects of image understanding.

Our results confirm the benefits of our integrated approach.

1. Introduction

Consider the street scene depicted on Figure 1. Most

people will have little trouble seeing that the green box

in the middle contains a car. This is despite the fact that,

shown in isolation, these same pixels can just as easily be in-

terpreted as a person’s shoulder, a mouse, a stack of books,

a balcony, or a million other things! Yet, when we look at

the entire scene, all ambiguity is resolved – the car is un-

mistakably a car. How do we do this?

There is strong psychophysical evidence (e.g. [3, 25])

that context plays a crucial role in scene understanding. In

our example, the car-like blob is recognized as a car be-

cause: 1) it’s sitting on the road, and 2) it’s the “right”

size, relative to other objects in the scene (cars, buildings,

pedestrians, etc). Of course, the trouble is that everything is

tightly interconnected – a visual object that uses others as its

context will, in turn, be used as context by these other ob-

jects. We recognize a car because it’s on the road. But how

do we recognize a road? – because there are cars! How does

one attack this chicken-and-egg problem? What is the right

framework for connecting all these pieces of the recognition

puzzle in a coherent and tractable manner?

In this paper we will propose a unified approach for mod-

eling the contextual symbiosis between three crucial ele-

Figure 1. General object recognition cannot be solved locally, but

requires the interpretation of the entire image. In the above image,

it’s virtually impossible to recognize the car, the person and the

road in isolation, but taken together they form a coherent visual

story. Our paper tells this story.

ments required for scene understanding: low-level object

detectors, rough 3D scene geometry, and approximate cam-

era position/orientation. Our main insight is to model the

contextual relationships between the visual elements, not in

the 2D image plane where they have been projected by the

camera, but within the 3D world where they actually re-

side. Perspective projection obscures the relationships that

are present in the actual scene: a nearby car will appear

much bigger than a car far away, even though in reality they

are the same height. We “undo” the perspective projection

and analyze the objects in the space of the 3D scene.

1.1. Background

In its early days, computer vision had but a single grand

goal: to provide a complete semantic interpretation of an

input image by reasoning about the 3D scene that gener-

ated it. Indeed, by the late 1970s there were several im-

age understanding systems being developed, including such
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Figure 2. Watch for pedestrians! In (b,d,f,g), we show 100 boxes sampled according to the available information. Given an input image (a),

a local object detector will expect to find a pedestrian at any location/scale (b). However, given an estimate of rough surface orientations

(c), we can better predict where a pedestrian is likely to be (d). We can estimate the camera viewpoint (e) from a few known objects in

the image. Conversely, knowing the camera viewpoint can help in predict the likely scale of a pedestrian (f). The combined evidence from

surface geometry and camera viewpoint provides a powerful predictor of where a pedestrian might be (g), before we even run a pedestrian

detector! Red, green, and blue channels of (c) indicate confidence in vertical, ground, and sky, respectively. Best viewed in color.

pioneering work as Brooks’ ACRONYM [4], Hanson and

Riseman’s VISIONS [9], Ohta and Kanade’s outdoor scene

understanding system [19], Barrow and Tenenbaum’s in-

trinsic images [2], etc. For example, VISIONS was an ex-

tremely ambitious system that analyzed a scene on many

interrelated levels including segments, 3D surfaces and vol-

umes, objects, and scene categories. However, because of

the heavy use of heuristics, none of these early systems were

particularly successful, which led people to doubt the very

goal of complete image understanding.

We believe that the vision pioneers were simply ahead

of their time. They had no choice but to rely on heuris-

tics because they lacked the computational resources to

learn the relationships governing the structure of our visual

world. The advancement of learning methods in the last

decade brings renewed hope for a complete image under-

standing solution. However, the currently popular learning

approaches are based on looking at small image windows at

all locations and scales to find specific objects. This works

wonderfully for face detection [23, 29] (since the inside of

a face is much more important than the boundary) but is

quite unreliable for other types of objects, such as cars and

pedestrians, especially at the smaller scales.

As a result, several researchers have recently begun to

consider the use of contextual information for object de-

tection. The main focus has been on modeling direct re-

lationships between objects and other objects [15, 18], re-

gions [10, 16, 28] or scene categories [18, 24], all within

the 2D image. Going beyond the 2D image plane, Hoiem et

al. [11] propose a mechanism for estimating rough 3D scene

geometry from a single image and use this information as

additional features to improve object detection. From low-

level image cues, Torralba and Oliva [26] get a sense of the

viewpoint and mean scene depth, which provides a useful

prior for object detection [27]. Forsyth et al. [7] describe

a method for geometric consistency of object hypotheses in

simple scenes using hard algebraic constraints. Others have

also modeled the relationship between the camera parame-

ters and objects, requiring either a well-calibrated camera

(e.g. [12]), a stationary surveillance camera (e.g. [14]), or

both [8].

In this work, we draw on several of the previous tech-

niques: local object detection (based on Murphy et al. [18]),

3D scene geometry estimation [11], and camera viewpoint

estimation. Our contribution is a statistical framework that

allows simultaneous inference of object identities, surface

orientations, and camera viewpoint using a single image

taken from an uncalibrated camera.

1.2. Overview

To evaluate our approach, we have chosen a very chal-

lenging dataset of outdoor images [22] that contain cars and

people, often partly occluded, over an extremely wide range

of scales and in accidental poses (unlike, for example, the

framed photographs in Corel or CalTech datasets). Our goal

is to demonstrate that substantial improvement over stan-

dard low-level detectors can be obtained by reasoning about

the underlying 3D scene structure.

One way to think about what we are trying to achieve

is to consider the likely places in an image where an ob-



Figure 3. An object’s height in the image can be determined from

its height in the world and the viewpoint.

ject (e.g. a pedestrian) could be found (Figure 2). Without

considering the 3D structure of the scene, all image posi-

tions and scales are equally likely (Figure 2b) – this is what

most object detectors assume. But if we can estimate the

rough surface geometry in the scene, this information can

be used to adjust the probability of finding a pedestrian at

a given image location (Figure 2d). Likewise, having an

estimate of the camera viewpoint (height and horizon posi-

tion) supplies the likely scale of an object in the image (Fig-

ure 2f). Combining these two geometric cues together gives

us a rather tight prior likelihood for the location and scale

of a pedestrian, as in Figure 2g. This example is particu-

larly interesting because this is still only a prior – we have

not applied a pedestrian detector yet. Notice, as well, that

the pattern of expected pedestrian detections is very remi-

niscent of typical human eye-tracking experiments, where

subjects are asked to search for a person in an image.

Of course, just as scene and camera geometry can influ-

ence object detection, so can the detected objects alter the

geometry estimation. For example, if we know the loca-

tions/scales of some of the objects in the image, we can use

this to better estimate the camera viewpoint parameters (see

the 90% confidence bounds in Figure 2e). In general, our

aim is to combine all these pieces of evidence into a single

coherent image interpretation framework.

The rest of the paper will be devoted to exploring our

two primary conjectures: 1) 3D reasoning improves object

detection, even when using a single image from an uncali-

brated camera, and 2) the more fully the scene is modeled

(more properties, more objects), the better the estimates

will be. We will first describe the mathematics of projec-

tive geometry as it relates to our problem (Section 2). We

will then define the probabilistic model used for describing

the relationships within the 3D scene (Section 3) and how

it can be learned (Section 4). Finally, we present quantita-

tive and qualitative results demonstrating the performance

of our system on a difficult dataset (Section 5).

2. Scene Projection

Under a zero-skew, unit aspect ratio perspective camera

model, we can compute a grounded object’s height in the

scene, given only the camera height and horizon line (see

Figure 3). First, let’s rotate and translate our image coordi-

nates (u, v) to the coordinates (û, v̂) so that v̂ = 0 for every

point on the horizon and v̂ > 0 for every point below the

horizon. The world height y of a point can be recovered

from v̂ = (yc − y) f
z

where yc is the camera height, z is

the depth, and f is the camera focal length. Without loss of

generality, we define the object to rest on the plane y = 0.

The object’s height can be recovered from v̂1

v̂1−v̂2

= yc

y
,

where v̂1 is the bottom and v̂2 is the top of the object. To

get v̂ from pixel coordinates, we simply compute the dis-

tance of the horizon line to the point. In this paper, since

photographs typically have little roll, we define the horizon

line by the image row v0. Letting vi and hi denote the bot-

tom position and height of an object in the image, we have

the following relationship:

yi =
hiyc

vi − v0
. (1)

From equation 1, we can compute the image height hi of

an object given its image position vi, 3D height yi, and the

viewpoint (v0, yc). Of course, for an uncalibrated camera,

we do not know the viewpoint or the object’s true height

a priori. However, since people do not take photos in a

completely random manner and since objects have a small

range of possible 3D sizes, we can estimate an informative

distribution of viewpoint and object size and, from it, derive

a distribution for hi given vi.

In our paper, we assume that all objects of interest rest

on the ground plane. While this assumption may seem re-

strictive (cannot find people on the rooftops), humans seem

to make the same assumption (we don’t notice the security

standing on the rooftops at political rallies unless we specif-

ically look for them). If the ground is sloped, as in Figure 2,

the coordinates and parameters are computed with respect

to that slope, and the relationship between viewpoint and

objects in the image still holds.

3. Modeling the Scene

We want to determine the viewpoint, object identities,

and surface geometry of the scene from an image. We could

estimate each independently, but our estimates will be much

more accurate if we take advantage of the interactions be-

tween the scene elements. We consider the objects (e.g.,

cars, pedestrians, background) and geometric surfaces to

each produce image evidence. The viewpoint, defined by

the horizon position in the image and the camera height,

directly affects the position and size of the objects in the

image. In turn, the objects directly affect nearby geometric

surfaces. We assume that local geometric surfaces are inde-

pendent given their corresponding object identities and that

the object identities are independent given the viewpoint.

In Figure 4, we represent these conditional independence



Figure 4. Graphical model of conditional independence for view-

point θ, object identities o, and the 3D geometry of surfaces g

surrounding the objects. Viewpoint describes the horizon position

in the image and the height of the camera in the 3D scene (in rela-

tion to the objects of interest). Each image has n object hypothe-

ses, where n varies by image. The object hypothesis oi involves

assigning an identity (e.g., pedestrian or background) and a bound-

ing box. The surface geometry gi describes the 3D orientations of

the ith object surface and nearby surfaces in the scene.

assumptions in a graphical model, denoting objects as o,

surface geometries as g, object evidence as eo, geometry

evidence as eg , and the viewpoint as θ.

Our model implies the following decomposition:

P (θ,o,g|e) ∝ P (θ)
∏

i

P (oi|θ)
P (oi|eo)

P (oi)
P (gi|oi)

P (gi|eg)

P (gi)

(2)

The proportionality Equation 2 is with respect to terms of

the observed evidence (e = {eo, eg}) that are constant

within an image.

Our approach allows other researchers to easily integrate

their own detectors into our framework. When interactions

among elements of the scene are defined, each addition to

the framework adds evidence that can be used to improve

estimation of the other elements.

3.1. Viewpoint

The viewpoint θ involves two variables: the horizon po-

sition in the image v0 and the camera height (in meters) yc.

We consider camera height and horizon position to be inde-

pendent a priori so that P (θ) = P (v0)P (yc). We investi-

gated using image statistics, including vanishing points [13]

and surface geometry [11], as evidence for the horizon po-

sition but found that a simple Gaussian prior performed just

as well. Similarly, for the camera height yc, we estimate a

prior distribution using kernel density estimation over the

yc values (computed based on objects of known height in

the scene) in a set of training images.

Figure 5 displays the viewpoint prior (e) and an example

of the revised likelihood (f) when object and surface geome-

try evidences are considered. A priori, the most likely cam-

era height is 1.67m, which happens to be eye level for a

typical adult male, and the most likely horizon position is

0.50. While the viewpoint prior does have high variance, it

is much more informative than the uniform distribution that

is implicitly assumed when scale is considered irrelevant.

3.2. Objects

An object candidate oi consists of a type ti ∈
{object, background} (e.g. “pedestrian”) and a bounding

box bboxi = {ui, vi, wi, hi} (lower-left coordinate, width,

and height, respectively). The object term of our scene

model is composed as follows:

P (oi|eo, θ) ∝
P (oi|eo)

P (oi)
P (oi|θ) (3)

Our window-based object detector outputs the class-

conditional log-likelihood ratio at each position and scale

(with discrete steps) in the image. From these ratios and

a prior P (oi), we can compute the probability of an object

occurring at a particular location/scale:

P (ti = obj, bboxi|Ii) =
1

1 + exp[−ci − log P (oi)
1−P (oi)

]
(4)

where ci is the log-likelihood ratio estimated by the detec-

tor, based on local image information Ii at the ith bounding

box. Typically, researchers perform non-maxima suppres-

sion, assuming that high detection responses at neighboring

positions could be due to an object at either of those posi-

tions (but not both). Making the same assumption, we also

apply non-maxima suppression, but we form a point distri-

bution out of the non-maxima, rather than discarding them.

An object candidate is formed out of a group of closely

overlapping bounding boxes.1 The candidate’s likelihood

P (ti = obj|eo) is equal to the likelihood of the highest-

confidence bounding box, and the likelihoods of the loca-

tions given the object identity P (bboxi|ti = obj, eo) are

directly proportional to P (ti = obj, bboxi|I). After thresh-

olding to remove detections with very low confidences from

consideration, a typical image will contain several dozen

object candidates (determining n), each of which has tens

to hundreds of possible position/shapes.

An object’s height depends on its position when given

the viewpoint. Formally, P (oi|θ) ∝ p(hi|ti, vi, θ) (the

proportionality is due to the uniformity of P (ti, vi, wi|θ)).
From Equation 1, if yi is normal, with parameters {µi, σi},

then hi conditioned on {ti, vi, θ} is also normal, with para-

meters
µiyi(vo−vi)

yc

and
σiyi(vo−vi)

yc

.

3.3. Surface Geometry

Most objects of interest can be considered as vertical sur-

faces supported by the ground plane. Estimates of the local

1Each detector distinguishes between one object type and background
in our implementation. Separate candidates are created for each type of
object.



(a) Image (b) Ground (e) Viewpoint: Prior (g) Car Detections: Local (h) Ped Detections: Local

(c) Vertical (d) Sky (f) Viewpoint: Full (i) Car Detections: Full (j) Ped Detections: Full

Figure 5. We begin with geometry estimates (b,c,d), local object detection confidences (g,h), and a prior (e) on the viewpoint. Using our

model, we improve our estimates of the viewpoint (f) and objects (i,j). In the viewpoint plots, the left axis is camera height (meters), and the

right axis is horizon position (measured from the image bottom). The viewpoint peak likelihood increases from 0.0037 a priori to 0.0503

after inference. At roughly the same false positive (cars:cyan, peds:yellow) rate, the true detection (cars:green, peds:red) rate doubles when

the scene is coherently modeled.

surface geometry could, therefore, provide additional evi-

dence for objects. To obtain the rough 3D surface orien-

tations in the image, we apply the method of [11] (we use

the publicly available executable), which produces confi-

dence maps for three main classes: “ground”, “vertical”,

and “sky”, and five subclasses of “vertical”: planar, fac-

ing “left”, “center”, and “right”, and non-planar “solid” and

“porous”. Figure 5(b,c,d) displays the confidence maps for

the three main surface labels.

We define gi to have three values corresponding to

whether the object surface is visible in the detection win-

dow and, if so, whether the ground is visible just below

the detection window. For example, we consider a car’s

geometric surface to be planar or non-planar solid and a

pedestrian’s surface to be non-planar solid. We can com-

pute P (gi|oi) and P (gi) by counting occurrences of each

value of gi in a training set. If oi is background, we con-

sider P (gi|oi) ≈ P (gi). We estimate P (gi|eg) based on

the confidence maps of the geometric surfaces. In experi-

ments, we found that the average geometric confidence in

a window is a well-calibrated probability for the geometric

value.

3.4. Inference

Inference is well-understood for tree-structured graphs

like our model (Figure 4). We use Pearl’s belief propa-

gation2 algorithm [20] from the Bayes Net Toolbox [17].

Once the model is defined and its parameters estimated, as

described above, it can answer queries, such as “What is

the expected height of this object?” or “What are the mar-

ginal probabilities for cars?” or “What is the most probable

2To simplify the BP algorithm, we quantize all continuous variables
(v0 and yc into 50 and 100 evenly-spaced bins); oi is already discrete due
to sliding window detection.

explanation of the scene?”. In this paper, we report results

based on marginal probabilities from the sum-product algo-

rithm. Figure 5 shows how local detections (g,h) improve

when viewpoint and surface geometry are considered (i,j).

4. Training

Viewpoint. To estimate the priors for θ, we manually

labeled the horizon in 60 outdoor images from the LabelMe

database [22]. In each image, we labeled cars (including

vans and trucks) and pedestrians (defined as an upright

person) and computed the maximum likelihood estimate

of the camera height based on the labeled horizon and the

height distributions of cars and people in the world. We

then estimated the prior for camera height using kernel

density estimation (ksdensity in Matlab).

Objects. Our baseline car and pedestrian detector uses a

method similar to the local detector of Murphy, Torralba,

and Freeman [18]. We used the same local patch template

features but added six color features that encode the aver-

age L*a*b color of the detection window and the differ-

ence between the detection window and the surrounding

area. The classifier uses a logistic regression version of

Adaboost [5] to boost eight-node decision tree classifiers.

For cars, we trained two views (front/back: 32x24 pixels

and side: 40x16 pixels), and for pedestrians, we trained one

view (16x40 pixels). Each were trained using the full PAS-

CAL dataset [1].

To verify that our baseline detector has reasonable per-

formance, we trained a car detector on the PASCAL chal-

lenge training/validation set, and evaluated the images in

test set 1 using the criteria prescribed for the official com-

petition. For the sake of comparison in this validation ex-

periment, we did not search for cars shorter than 10% of



the image height, since most of the official entries could not

detect small cars. We obtain an average precision of 0.423

which is comparable to the best scores reported by the top

3 groups: 0.613, 0.489, and 0.353.

To estimate the height distribution of cars

(in the 3D world), we used Consumer Reports

(www.consumerreports.org) and, for pedestrians, used

data from the National Center for Health Statistics

(www.cdc.gov/nchs/). For cars, we estimated a mean

of 1.59m and a standard deviation of 0.21m. For adult

humans, the mean height is 1.7m with a standard deviation

of 0.085m. Alternatively, the distribution of (relative)

object heights and camera heights could be learned simulta-

neously using the EM algorithm if the training set includes

images that contain multiple objects.

Surface Geometry. P (gi|oi) was found by counting the oc-

currences of the values of gi for both people and cars in the

60 training images from LabelMe. We set P (gi) to be uni-

form, because we found experimentally that learned values

for P (gi) resulted in the system over-relying on geometry.

This over-reliance may be due to our labeled images (gen-

eral outdoor) being drawn from a different distribution than

our test set (streets of Boston) or to the lack of a modeled

direct dependence between surface geometries. Further in-

vestigation is required.

5. Evaluation

Our test set consists of 422 random outdoor images from

the LabelMe dataset [22]. The busy city streets, sidewalks,

parking lots, and roads provide realistic environments for

testing car and pedestrian detectors, and the wide variety of

object pose and size and the frequency of occlusions make

detection extremely challenging. In the dataset, 60 images

have no cars or pedestrians, 44 have only pedestrians, 94

have only cars, and 224 have both cars and pedestrians. In

total, the images contain 923 cars and 720 pedestrians.

We detect cars with heights as small as 14 pixels and

pedestrians as small as 36 pixels tall. To get detection con-

fidences for each window, we reverse the process described

in Section 3.2. We then determine the bounding boxes of

objects in the standard way, by thresholding the confidences

and performing non-maxima suppression.

Our goal in these experiments is to show that, by

modeling the interactions among several aspects of the

scene and inferring their likelihoods together, we can do

much better than if we estimate each one individually.

Object Detection Results. Figure 6 plots the ROC curves

for car and pedestrian detection on our test set when

different subsets of the model are considered. Figure 7

displays and discusses several examples. To provide an

estimate of how much other detectors may improve under

Cars Pedestrians

1FP 5FP 10FP 1FP 5FP 10FP

+Geom 6.6% 5.6% 7.0% 7.5% 8.5% 17%

+View 8.2% 16% 22% 3.2% 14% 23%

+GeomView 12% 22% 35% 7.2% 23 % 40%

Table 1. Modeling viewpoint and surface geometry aids object de-

tection. Shown are percentage reductions in the missed detection

rate while fixing the number of false positives per image.

Mean Median

Prior 10.0% 8.5%

+Obj 7.5% 4.5%

+ObjGeom 7.0% 3.8%

Table 2. Object and geometry evidence improve horizon estima-

tion. Mean/median absolute error (as percentage of image height)

are shown for horizon estimates.

Horizon Cars (FP) Ped (FP)

Car 7.3% 5.6 7.4 — —

Ped 5.0% — — 12.4 13.7

Car+Ped 3.8% 5.0 6.6 11.0 10.7

Table 3. Horizon estimation and object detection are more accurate

when more object models are known. Results shown are using the

full model in three cases: detecting only cars, only pedestrians,

and both. The horizon column shows the median absolute error.

For object detection we include the number of false positives per

image at the 50% detection rate computed over all images (first

number) and the subset of images that contain both cars and people

(second number).

our framework, we report the percent reduction in false

negatives for varying false positive rates in Table 1. When

the viewpoint and surface geometry are considered, about

20% of cars and pedestrians missed by the baseline are

detected for the same false positive rate! The improvement

due to considering the viewpoint is especially amazing,

since the viewpoint uses no direct image evidence. Also

note that, while individual use of surface geometry esti-

mates and the viewpoint provides improvement, using both

together improves results further.

Horizon Estimation Results. By performing inference

over our model, the object and geometry evidence can also

be used to improve the horizon estimates. We manually

labeled the horizon in 100 of our images that contained

both types of objects. Table 2 gives the mean and median

absolute error over these images. Our prior of 0.50 results

in a median error of 0.085% of the image height, but

when objects and surface geometry are considered, the

median error reduces to 0.038%. Notice how the geometry

evidence provides a substantial improvement in horizon

estimation, even though it is separated from the viewpoint

by two variables in our model.

More is Better. Intuitively, the more types of objects

that we can identify, the better our horizon estimates will



Figure 6. Considering viewpoint and surface geometry improves results over purely local object detection. The left two plots show object

detection results using only local object evidence (Obj), object and geometry evidence (ObjGeom), objects related through the viewpoint

(ObjView), and the full model (ObjViewGeom). On the right, we plot results using the Dalal-Triggs local detector [6].

be, leading to improved object detection. We verify this

experimentally, performing the inference with only car

detection, only pedestrian detection, and both. Table 3

gives the accuracy for horizon estimation and object detec-

tion when only cars are detected, when only pedestrians

are detected, and when both are detected. As predicted,

detecting two objects provides better horizon estimation

and object detection than detecting one.

Dalal-Triggs Detector. To support our claim that any lo-

cal object detector can be easily improved by plugging it

into our framework, we performed experiments using the

Dalal-Triggs detector [6] after converting the SVM outputs

to probabilities using the method of [21]. We used code,

data, and parameters provided by the authors, training an

80x24 car detector and 32x96 and 16x48 (for big and small)

pedestrian detectors . The Dalal-Triggs local detector is cur-

rently among the most accurate for pedestrians, but it’s ac-

curacy (Figure 6) improves considerably with our frame-

work, from 57% to 66% detections at 1 FP per image.

6. Discussion

In this paper, we have provided a “skeleton” model of

a scene – a tree structure of camera, objects, and surface

geometry. Our model-based approach has two main ad-

vantages over the more direct “bag of features/black box”

classification method: 1) subtle relationships (such as that

object sizes relate through the viewpoint) can be easily rep-

resented; and 2) additions and extensions to the model are

easy (the direct method requires complete retraining when-

ever anything changes).

To add a new object to our model, one needs only to

train a detector for that object and supply the distribution of

the object’s height in the 3D scene. Our framework could

also be extended by modeling other scene properties, such

as scene category. By modeling the direct relationships of

objects and geometry (which can be done in 3D, since per-

spective is already part of our framework) further improve-

ment is possible.

As more types of objects can be identified and more

aspects of the scene can be estimated, we hope that our

framework will eventually grow into a vision system

that would fulfill the ambitions of the early computer

vision researchers – a system capable of complete image

understanding.
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