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Abstract 

In this paper, we propose a probabilistic video-

based facial expression recognition method on 

manifolds. The concept of the manifold of facial 

expression is based on the observation that the images 
of all possible facial deformations of an individual 

make a smooth manifold embedded in a high 

dimensional image space. An enhanced Lipschitz 

embedding is developed to embed the aligned face 

appearance in a low dimensional space while keeping 

the main structure of the manifold. In the embedded 
space, a complete expression sequence becomes a path

on the expression manifold, emanating from a center 

that corresponds to the neutral expression. Each path 

consists of several clusters. A probabilistic model of 

transition between the clusters and paths is learned 
through training videos in the embedded space. The 

likelihood of one kind of facial expression is modeled 

as a mixture density with the clusters as mixture 

centers. The transition between different expressions is 

represented as the evolution of the posterior 

probability of the six basic paths. The experimental 
results demonstrate that the probabilistic approach 

can recognize expression transitions effectively. We 

also synthesize image sequences of changing 

expressions through the manifold model.  

1. Introduction 

Facial expression is one of the most powerful 

means for people to coordinate conversation and 

communicate emotions and other mental, social, and 

physiological cues. While people can recognize facial 

expressions easily even though the appearance of the 

expression varies a lot between different individuals, it 

is a challenging task for a computer to automatically 

determine expression due to the variation of facial 

expression across the human population and to the 

context-dependent variation even for the same 

individual.

Facial expressions can be classified in various ways 

– in terms of non-prototypic expressions such as 

“raised brows,” prototypic expressions such as 

emotional labels, or facial actions such as the Action 

Units defined in Facial Action Coding System (FACS) 

[1]. Psychologists claim that there are six kinds of 

universally recognized facial expressions: happiness, 

sadness, fear, anger, disgust, and surprise [2]. Existing 

expression analyzers [3,28,29] usually classify the 

examined expression into one of the basic emotion 

categories. This approach has two major limitations. 

First, it is not clear whether all facial expressions 

expressible by the human face can be classified under 

these six basic categories. For “blended” expressions, it 

may be more reasonable to classify them quantitatively 

into multiple emotion categories. Second, this 

approach does not consider the intensity scale of the 

different facial expressions. In addition, each person 

has his/her own maximal intensity of displaying a 

particular facial action. Many behavioral scientists 

perform facial expression classification through FACS 

encoding. FACS provides a linguistic description of all 

visually detectable facial changes in terms of 44 Action 

Units (AU). Using these rules, an expression can be 

decomposed into the specific AUs. Nevertheless, there 

are only five AUs with the option to score intensity on 

three-level scale (low, medium, and high). It is usually 

difficult to connect the combinations of AUs with the 

emotional expression in an analytical way due to the 

discrete nature of AUs.  

A key challenge in automatic facial expression 

analysis is to identify a global representation for all 

possible facial expressions that affords semantic 

analysis. In this paper, we explore the space of 

expression images and propose the manifold of 

expressions as a foundation for expression analysis. An 

image with N pixels can be considered a point in an N-

dimensional image space, and the variability of image 

classes can be represented as low-dimensional 

manifolds embedded in the image space. People

change facial expressions continuously over time. Thus 

all images of an individual’s facial expressions make a 

smooth manifold in the N-dimensional image space 

with the “neutral” face as the central reference point. 

The intrinsic dimension of this manifold is much lower 

than N. If we were to allow other factors of image 

variation, such as face pose and illumination, the 

intrinsic dimensionality of the manifold of expression 

would increase accordingly. 

On the manifold of expressions, similar expressions 

are points in the local neighborhood on the manifold. 

Sequences of basic emotional expressions become 
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paths on the manifold extended from the reference 

center, as illustrated in Figure 1. The blends of 

expressions lie between those paths, so they can be 

defined analytically by the positions of the basic paths. 

The analysis of the relationships between different 

facial expressions is facilitated on the manifold.  

Figure 1: Illustration of a 3D expression manifold. 

The reference center is defined by the neutral face. 

Image sequences from three different expressions 

are shown. The further a point is away from the 

reference point, the higher is the intensity of that 

expression.

It is a formidable task to learn the complete 

structure of the manifold of expressions in a high 

dimensional image space. To overcome this problem, 

our core idea is to embed the nonlinear manifold in a 

low dimensional space and recognize facial expression 

from video sequences probabilistically. Figure 2 

illustrates the overall structure of the system. 

We first apply Active Wavelets Networks [5] on 

image sequences to normalize the variation due to 

scaling and face pose. An enhanced Lipschitz 

embedding [6,7] is developed to embed the aligned 

face appearance in the high dimensional space to a low 

dimensional space while keeping the main structure of 

the manifold. In Lipschitz embedding, a coordinate 

space is defined such that each axis corresponds to a 

reference set R, drawn from the input data set. 

Lipschitz embedding leads to good preservation of 

clusters in practical cases [8,9]. After Lipschitz 

embedding, the expression sequences in the gallery 

become paths emanating from the center, which is 

defined by the neutral expression. We learn the 

probabilistic model of transition between those paths 

from the gallery videos. The probe set includes videos 

of random expression changes, which may not begin or 

end with neutral expression. The duration and the 

intensity of the expression are varied. The transition 

between different expressions is represented as the 

evolution of the posterior probability of the basic 

paths. Our empirical study demonstrates that the 

probabilistic approach can recognize expression 

transitions effectively. We also synthesize image 

sequences of changing expressions through the 

manifold model.  

Figure 2: System diagram 

The remainder of this paper is organized as follows. 

We present the related work in Section 2. We then

discuss the properties of Lipschitz embedding in 

Section 3. The probabilistic model built on expression 

manifolds is described in Section 4. Section 5 presents 

the experiments we conducted on the manifold of 

facial expression. Section 6 concludes the paper with 

discussion. 

2. Related Literature 

Many researchers have explored the nature of the 

space of facial expressions. Shalif [10] examined the 

principal emotional variables in daily life by letting 

202 subjects judge the extent of emotional state 

expressed in photographs. He found that happiness and 

sadness are opposite directions of a single dimension 

which is the most prominent dimension in expression 

space, followed by fear, anger, etc. Schmidt and Cohn 

[11] measured 195 spontaneous smiles from 95 

individuals through facial electromyographic (EMG) 

data and found consistency in zygomaticus major

muscle activity over time. Zhang et al. [3] used a two-

layer perceptron to classify facial expressions. They 

found that five to seven hidden perceptrons are 

probably enough to represent the space of feature 

expressions. Chuang et al. [12] showed that the space 

of facial expression can be modeled with a bilinear 

model. Two formulations of bilinear models, 

asymmetric and symmetric, were fit to facial 

expression data.  

More recently, Seung [25] suggested representing 

the variability of images as low-dimensional manifolds 

embedded in image space. Roweis [26] showed that 

Locally Linear Embedding is able to learn the global 

structure of nonlinear manifolds, such as those 

generated by images of faces with only pose and 

illumination change. Tenenbaum et al. [18] introduced 
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Isomap to find meaningful low-dimensional structures 

hidden in the high-dimensional data that is guaranteed 

to converge asymptotically to the true structure. 

Kimmel et al. [32] used the invariant signature of 

manifolds for object recognition.  

Facial expression analysis can be performed from 

static images [3,30] or video sequences [28,29]. Bassili 

[15] suggested that motion in the image of a face 

would allow expression to be identified with minimal 

information about the spatial arrangement of features. 

Cohen et al. [16] proposed a new architecture of 

HMMs to segment and recognize facial expression 

from video sequence automatically. Probabilistic video 

analysis has gained significant attention since the 

seminal work of Isard and Blake [13]. They introduced 

a time series state space model parameterized by a 

tracking motion vector. Zhou and Chellappa [14] 

proposed a generic framework to track and recognize 

human face simultaneously by adding an identity 

variable to the state vector in the sequential importance 

sampling method. Lee et al. [4] proposed a video-based 

face recognition method using probabilistic appearance 

manifold. The nonlinear appearance is approximated 

by piecewise linear subspace and the connectivity 

between the subsets encodes the transition probability 

between images in them. 

In this paper, we analyze the space of expression 

through the manifold of expression. The manifold is 

learned from video sequences of basic facial 

expressions. We embed the manifold of the aligned 

face appearance from the high dimensional space to a 

low dimensional space through an enhanced Lipschitz 

embedding. The probabilistic model of the manifold is 

learned from gallery videos in the embedded space. 

The expression transition is represented as the 

evolution of the posterior probability of the basic paths 

on the manifold. 

3. Lipschitz Embedding 

Lipschitz embedding [6,7] is a powerful embedding 

method used widely in image clustering and image 

search. For a finite set of input data S , Lipschitz 

embedding is defined in terms of a set R of subsets of 

S , },...,,{ 21 kAAAR = . The subsets 
iA  are termed the 

reference sets of the embedding. Let );( Aod  be an 

extension of the distance function d  to a subset 

SA ⊂ , such that )},({min),( xodAod Ax∈= . An 

embedding with respect to R  is defined as a mapping 

F  such that ));();...,;();;(()( 21 kAodAodAodoF = . In 

other words, Lipschitz embedding defines a coordinate 

space where each axis corresponds to a subset SAi ⊂
of the objects, and the coordinate values of object o

are the distances from o  to the closest element in each 

of 
iA .

With a suitable definition of the reference set R ,

the distance of all pairs of data points in the embedding 

space is bounded [17]. So Lipschitz embedding works 

well when there are multiple clusters in the input data 

set [8,9]. In our algorithm, we preserve the intrinsic 

structure of the expression manifold by combining 

Lipschitz embedding and the main feature of Isomap 

[18]. Given a video gallery covering six basic facial 

expressions, there are six “paths” from the neutral 

image to the six sets of images with the basic 

expressions at apex on the manifold. In Figure 1, the 

apex sets in 3D space are illustrated as the points 

within the circles. Each path is composed of many 

small steps (the difference between consecutive 

frames). Different “paths” contain information on how 

the expressions evolve. The comparative positions 

between those paths correspond to the relationship 

between different expressions.   

The distance function in Lipschitz embedding 

reflects the distance between points on the manifold. 

The crucial property that we aim to retain is which 

points are close to each other and which are far from 

each other. Due to the essential nonlinear structure of 

the expression manifold, the classical approaches of 

multidimensional scaling (MDS) and PCA fail to 

detect the true degrees of freedom of the face data set. 

Tenenbaum et al. [18] seek to preserve the intrinsic 

geometry of the data by capturing the geodesic 

manifold distance between all pairs of data points. For 

neighboring points, input-space distance provides a 

good approximation to geodesic distance. For faraway 

points, geodesic distance can be approximated by 

adding up a sequence of “short hops” between 

neighboring points. This shortest path can be computed 

efficiently by the Dijkstra Algorithm [19]. The details 

of geodesic distance computation can be found in [18]. 

For our experiments, we used six reference sets, 

each of which contains only the images of one kind of 

basic facial expression at its apex. The embedded space 

is six dimensional. The distance function is the 

geodesic manifold distance. After we apply the 

enhanced Lipschitz embedding to the gallery set, there 

are six basic paths in the embedded space, emanating 

from the center that corresponds to the neutral image. 

The images with blended expression lie between the 

basic paths. In the embedded space, expressions can be 

recognized by using the probabilistic model described 

in the next section. 
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4. Probabilistic model on the expression 

manifold 

In this section, we present the details of the 

probabilistic model on the manifold of expression. The 

goal of the probabilistic model is to exploit the 

temporal information in video sequences. Expression 

recognition is performed on the manifold constructed 

for each individual. 

4.1. Learn the priors from the gallery 

We apply an enhanced Lipschitz embedding to the 

gallery. The gallery contains videos with only one kind 

of expression each. Assume there are K  image 

sequences for each kind of basic expression 

}6,...,1{, =SS . The embedded vector for the ith 

image in the jth video sequence for expression S  is 
6

,, RI ijs ∈ , },...,1{ Kj = . By K-means clustering 

technique, all points are grouped into clusters 

rnc n ,...,1, = . We compute a cluster frequency 

measure

)6,..1,,...,1,&(# 2

1,,

1

,,2,1 ==∈∈= + SKjcIcIT n

ijs

n

ijsnn

The prior )|( 12 nn ccp is learned as 

=
=

otherwisescaleT

T
ccp

nn

nnnn

,*

0,
)|(

2,1

2,112
δ

whereδ is a small empirical number. Scale andδ are

selected such that 1)|(
2

12 =
n

nn ccp .

The prior )|( Scp is assigned according to the 

expression intensity of the cluster center, varying from 

0 to 1. For example, the index of the “anger” 

expression is 1. When the image of a cluster center 

shows anger intensely, there is less ambiguity for the 

frames in the cluster to be classified as anger. 

Therefore the corresponding cluster has a higher 

)1|( =Scp .

By Bayes’ rule, 

=

S

SpScp

SpScp
cSp

)()|(

)()|(
)|(

.

For time series ,...1,0=t , the transition between 

different expressions can be computed as the transition 

between the clusters: 
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Due to the small variation within a cluster, 
1−tS  and 

tS  are conditionally independent given 1−tc .

4.2. Expression Recognition 

Given a probe video sequence in the embedded 

space ,...1,0, =tIt
, the expression recognition can be 

represented as the evolution of the posterior 

probability )|( :0:0 tt ISp .

We assume statistical independence between prior 

knowledge on the distributions )|( 00 Icp and )|( 00 ISp .

Using the overall state vector ),( ttt cSx = , the 

transition probability can be computed as: 

)|()|()|( 111 −−− = tttttt ccpSSpxxp              (1) 

We define the likelihood computation as follows 

)|()],(
2

1
exp[

)|()|(

),|(

2
ScpuId

ScpcIp

ScIp

c
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−∝

=

where 
cu  is the center of cluster c ,

cσ  is the variation 

of cluster c .

Given this model, our goal is to compute the 

posterior )|( :0 tt ISp . It is in fact a probability mass 

function (PMF) since 
tS only takes values from 1 to 6. 

The marginal probability )|,( :0 ttt IcSp  is also a PMF 

for the same reason. 

Using Equation (1), the Markov property, statistical 

independence, and time recursion in the model, we can 

derive:
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Equation (2): 
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which can be computed by the priors and the likelihood 

ticSIp iii ,...,1),,|( = . This gives us the probability 
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distribution of the expression categories, given the 

image sequence. 

4.3. Synthesis of dynamic expressions 

The manifold model can also be used to synthesize 

an image sequence with changing expressions. Given 

expression S , we keep the indexing ,,...,1 rll

,6,...,1=l  and r is the number of the clusters, such 

that: 

)|()...|()|( 21 lScplScplScp rlll =<=<=

For expression l , there are k gallery videos that 

begin from the neutral expression, pass the apex, and 

end with the neutral expression. We set the first video 

sequence as a template. Then we apply dynamic time 

warping [22] to the following 1−k image sequences. 

Thus we have a standard time index for all k videos. 

For every cluster along the path l , we can measure the 

duration of the cluster by the range of time index of the 

images within the cluster. Note we compute the time 

range for increasing and decreasing expression 

separately since a cluster may cover both types of 

images at the same time. The time range for each 

cluster is .,...,1, riwi =  The average time range of all 

clusters is w .

The algorithm for synthesizing an image sequence 

from expression A to expression B is listed in Figure 3. 

The critical part is to find a trajectory that maximizes 

the probability of the transitions between the clusters 

Ar and Br. The optimal trajectory is computed by 

dynamic programming [31]. The correlations between 

consecutive frames are maximized locally at the same 

time. To eliminate the jitter and redundancy in the 

image sequence, we keep a cache for recently appeared 

frames. If the same frame from the gallery appearances 

more than twice in the passed n frames, it should be 

removed from the final video sequence. n is an 

empirical window width. 

Input: 

The beginning expression category: }6,...,1{∈A

The ending expression category: }6,...,1{∈B

The length of synthesized video sequence: fnum

The embedded vectors of r cluster centers: 

riRd i ,...,1,6 =∈
Output: 

  Image sequence P

Function: 

)( xfloor : return the maximum integer no more 
than x  . 

),( zdfindnear : return the nearest z  points to 
the embedded vector d  on the learned manifold. 

)(dGetRaw : return the corresponding face image 
to the embedded vector d .

correlation(x, y): return the correlation between two 
images. 

)/( wfnumfloorT = ;

rAn =1
; {the cluster with strongest expression A }

rT Bn = ; {the cluster with strongest expression B }

))|()...|(max(arg],...,[ 121

12

nnnn

T ccPccPnn TT −=− ;

;0=count

for i = 1 to 1−T

);(
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);1,(
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1

1
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for k = 1 to 5 

));(()(_ kcandiGetRawkimcandi =
corr(k)=correlation(comp, candi_im(k)); 

if )1( ==k
then ;1=se
            );(max kcorr=

else if max))(( >kcorr

;kse =
);(max kcorr=

 end 

                  end 

                  end

            

);(

);(_

;1

secandifbegin

seimcandiP

countcount

count

=
=

+=

end 

end

return countiPi ,...,1, =

Figure 3: Expression Synthesis algorithm 

5. Experimental results 

In this section, we present our empirical studies on 

five subjects. In our experiments, subjects were 

instructed to perform a series of facial expressions 

representing happiness, sadness, anger, surprise, fear, 

and disgust.  The subjects repeated the series seven 

times for each gallery set. The probe set includes video 

sequences in which the subjects can change their 
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expression randomly. It was not necessary to begin or 

end with a neutral expression. The duration and the 

intensity of the expression are varied. We maintained 

constant illumination during the experiments and the 

subjects’ faces are all near frontal view.

5.1. Preprocessing 

To reduce the variation due to scaling and face 

poses, we first applied Active Wavelets Networks 

(AWN) [5] on the image sequence for face registration 

and facial feature localization. The key idea of AWN is 

to replace the PCA-based texture model in Active 

Appearance Models (AAM) [23] with a wavelet 

network representation. More details about AWN can 

be found in [5].  Figure 4 shows the face model used in 

this paper. It is slightly modified from the model of 

AAM-API, a C++ implementation of the Active 

Appearance Model framework [24]. From the gallery, 

about 60 images are selected as the training set, which 

covers the six kinds of basic expressions. The 

localizations of all the other images are completely 

automatic.  

Figure 4: Facial landmarks (58 points) 

Figure 5: An expression manifold projected on its 
first three dimensions. Points with different colors 
represent images with different expression. Anger: 
red; Disgust: green; Fear: blue; Sad: cyan; Smile: 
pink; Surprise: yellow. The black points represent 
60 cluster centers.  

The positions of points on eyebrow and eye contour 

are used to align the face position. The positions of 

points on face contour are used to normalize the faces 

to the same size. The aligned face appearance is used 

as the input of Lipschitz embedding. Figure 5 is a 

manifold projected on its first three dimensions for 

visualization purpose. The number of clusters for K-

means algorithm is chosen such that there is no 

dramatic expression variation within a cluster. 

The appearance of different subjects could be 

aligned through a common 3D face model. Currently, 

we build a separate manifold for each subject. These 

manifolds share a similar “skeleton” shape, but vary in 

reference set positions and path directions. With 

warped appearance data, the subjects from different 

subjects can be aligned through linear or nonlinear 

alignment [27]. 

5.2. Facial expression recognition 

The probe set contains video sequences in which 

subjects changed their expression randomly. The 

sequences were recorded at 30 fps and stored at a 

resolution of 320x240. All results in this paper were 

obtained on a Xeon 2.8GHz CPU. The complete 

process, including alignment, embedding, and 

recognition, runs at 5 fps. 

A supplementary video1
 demonstrates the 

recognition results on the probe set. Overlaid graphical 

bars indicate the posterior probability of the basic 

expressions, as shown in Figure 6. The learned 

manifold is visualized with the embedded vector of the 

current frame (a black point) at the same time. During 

the expression transition, the black point “walks” from 

one expression path to another.  The viewpoint of the 

manifold is changed concurrently for better 

visualization. Figure 6 shows some sample images 

from the submitted video. The first image is during a 

transition from fear to surprise. The second image is 

during a transition from anger to disgust. The third 

image and the fourth image are sadness and happiness 

respectively. The bar figures indicate the expression 

transition correctly.  

5.3. Expression Synthesis 

With the manifold model, we synthesize image 

sequences of aligned face appearance with changing 

expressions. There are about 6000 images from 42 

video sequences (seven for each basic expression) in 

each gallery set. The lengths of synthesized image 

sequences are around 200.  

Figures 7 and 8 show some selected images (every 

20th frame) from the synthesized sequences. The 

trajectories with the maximum transition probability 

between clusters reflect the expression change 

correctly. 

                                                          
1

Available at http://ilab.cs.ucsb.edu/demos/cvpr04.m2v 
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Figure 6: Facial expression recognition result with 
manifold visualization  

6. Conclusions and Discussions 

In this paper, we proposed the concept of the 

manifold of facial expressions. The expression 

manifold provides a global representation for all 

possible facial expressions and affords semantic 

analysis. It shows promise as a unified framework for 

facial expression analysis. To explore the structure of 

the expression manifold in high dimensional image 

space, we apply an enhanced Lipschitz embedding to 

the aligned face appearance data. In the embedded 

space, the expression sequences become paths on the 

expression manifold. Each path consists of several 

clusters. A probabilistic model of transition between 

the paths and clusters is learned through training 

videos. The likelihood of one kind of facial expression  

Figure 7: 12 frames selected from a transition from 
anger to happiness.  

Figure 8: 12 frames selected from a transition from 
surprise to disgust.

is modeled as a mixture density with the clusters as the 

mixture center. The transition between different 

expressions is represented as the evolution of the 

posterior probability of the six basic paths. 

The experiments results on the probe sets 

demonstrate that the expression transition can be 

recognized effectively. We also synthesize image 

sequences of changing expressions through the 

manifold model. Our experimental results show that 

manifold methods provide an analytical way to analyze 

the relationship between different expressions, and to 

recognize blended expressions.  

We will evaluate and quantify the results more 

systematically with many more subjects in future work.

Another future research direction is to consider 

variation on face pose and illumination [20, 21], which 

will add more degrees of freedom to manifold of 

expression. How these factors affect the intrinsic 
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geometry of expression manifold will be a challenging 

topic for future study. 
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