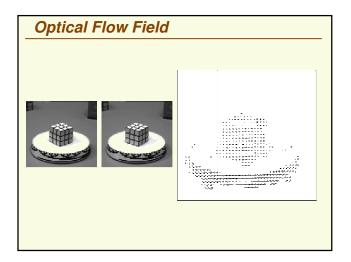
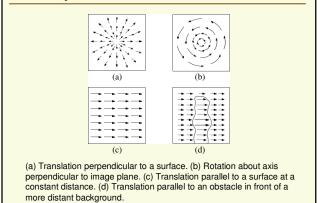


Lecture 2


Some Concepts from Computer Vision Some Slides are from Cornelia, Fermüller, <u>Mubarak</u> <u>Shah</u>,

Gary Bradski, Sebastian Thrun

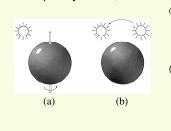
Outline


- Some Concepts in Image Processing/Vision
 - Optical Flow Field (related to motion field)
 - Correlation
- Next time:
 - "Recognizing Action at a Distance" by A. Efros, A.Berg, G. Mori, Jitendra Malik
 - Also maybe: "80 million tiny images: a large dataset for non-parametric object and scene recognition", A. Torralba, R. Fergus, W. Freeman
 - there should be a link to PDF file on our web site
 - Discuss the paper and watch video

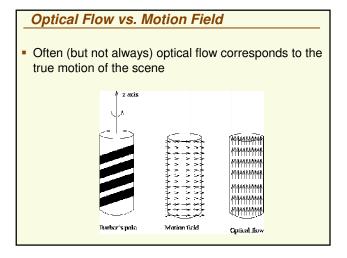
Optical Flow and Motion Field

- Optical flow field is the apparent motion of brightness patterns between 2 (or several) frames in an image sequence
- Why does brightness change between frames?
- Assuming that illumination does not change:
 - changes are due to the RELATIVE MOTION between the scene and the camera
 - There are 3 possibilities:
 - Camera still, moving scene
 - Moving camera, still scene
 - Moving camera, moving scene

Examples of Motion Fields

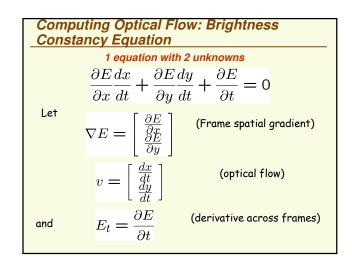


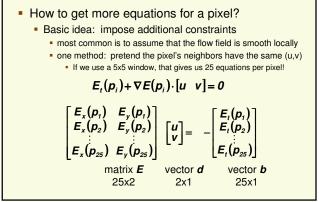
Motion Field (MF)

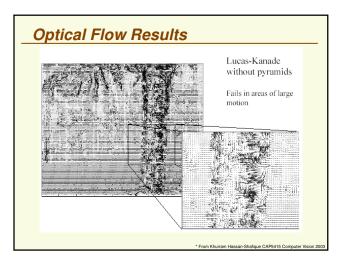

- The MF assigns a velocity vector to each pixel in the image
- These velocities are INDUCED by the RELATIVE MOTION between the camera and the 3D scene
- The MF is the <u>projection</u> of the 3D velocities on the image plane

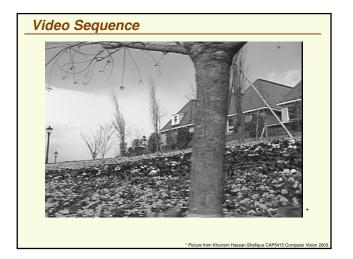
Optical Flow vs. Motion Field

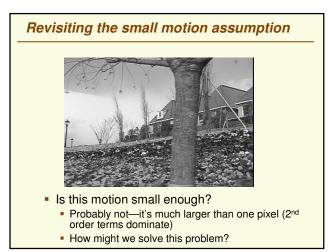
- Recall that Optical Flow is the apparent motion of brightness patterns
- We equate Optical Flow Field with Motion Field
 Frequently works, but now always:

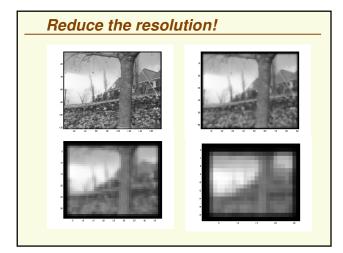

- (a) A smooth sphere is rotating under constant illumination. Thus the optical flow field is zero, but the motion field is not
- (b) A fixed sphere is illuminated by a moving source—the shading of the image changes. Thus the motion field is zero, but the optical flow field is not

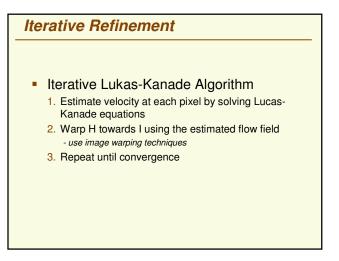

Computing Optical Flow: Brightness Constancy Equation E(x(t), y(t), t) = ConstantTaking derivative wrt time: $\frac{dE(x(t), y(t), t)}{dt} = 0$ $\frac{\partial E}{\partial x}\frac{dx}{dt} + \frac{\partial E}{\partial y}\frac{dy}{dt} + \frac{\partial E}{\partial t} = 0$

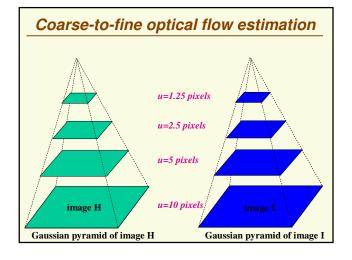

Computing Optical Flow: Brightness Constancy Equation

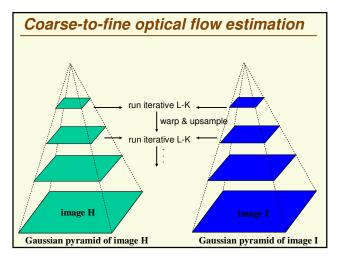

- Let **P** be a moving point in 3D:
 - At time t, P has coordinates (X(t), Y(t), Z(t))
 - Let p=(x(t), y(t)) be the coordinates of its image at time t
 - Let E(x(t), y(t), t) be the brightness at p at time t.
- Brightness Constancy Assumption:
 - As **P** moves over time, **E**(**x**(**t**), **y**(**t**), **t**) remains constant

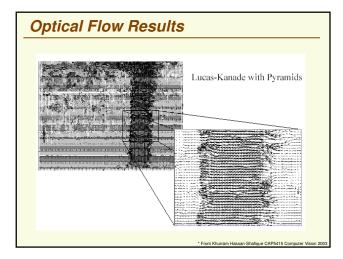


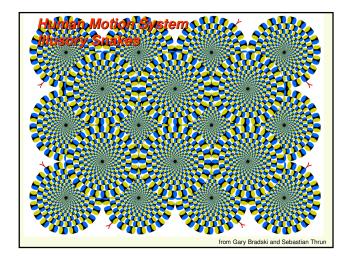


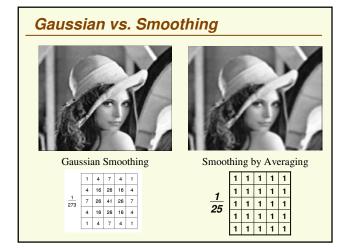


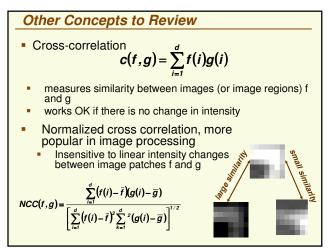


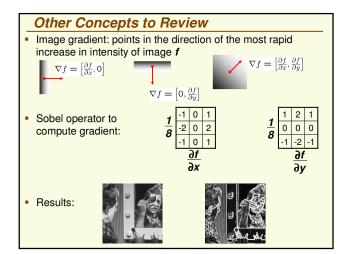











of an imag									Ŭ	a "kernel" to each pix
				in	nag	е				
	In	I 12	I13	I 14	I 15	I10	In	I 18	I 19	
	121	In	I 23	T 24	I 25	I 26	T27	Ĩ 28	I 29	kernel
	Ізт	Iz	I 35	134	I 38	I :66	Ist	I 38	I 39	K11 K12 K13
	I 41	I 42	I43	1 44	I45	I46	I47	I 48	I49	K21 K22 K23
	Ist	Isz	IÞS	1.4	Iss	I.o	Ise	I 58	I 59	
	Isi	I 62	Iøs	164	Ias	Ію	Isz	I 68	I 69	
 Result of c 	onv	olu	tior	n ha	as ti	ne	san	ne o	dim	ension as the image
 For examp 	le:									0
		K_{1}	1 +	lea F	K 19-	$\vdash I_{s}$	${}_{n}K$	19 +	Isa .	$K_{21} + I_{68}K_{22} + I_{69}K_{23}$

Other Concepts to Review • Gaussian smoothing (blurring): convolution operator that is used to blur' images and removes small detail and noise from an image • • • • • • • • • • • • • • • • • • •											
	<u>1</u> 273	1	4	7	4	1					
		4	16	26	16	4					
		7	26	41	26	7					
		4	16	26	16	4					
		1	4	7	4	1					

Next Time

- Paper: "Recognizing Action at a Distance" by A. Efros, A.Berg, G. Mori, Jitendra Malik
 - Also maybe: "80 million tiny images: a large dataset for nonparametric object and scene recognition", A. Torralba, R. Fergus, W. Freeman
- When reading the paper, think about following:
 - What is the problem paper tries to solve
 - What makes this problem difficult?
 - What is the method used in the paper to solve the problem
 - What is the contribution of the paper (what new does it do)?
 - Do the experimental results look "good" to you?