CS9840
Learning and Computer Vision
Prof. Olga Veksler

Lecture 3

Linear Machines
Information Theory (a little BIT)

Today

= Linear Classifier
= Mutual Information

= Next time:

= paper: “Object Recognition with Informative
Features and Linear Classification” by M. Naquet
and S. Ullman
= Ignore section of tree-augmented network




Last Time: Supervised Learning

= Training samples (or examples) X',X2,...X"
= Each example is typically multi-dimensional
= Xiy, Xy ..., Xiy are typically called features, X! is
sometimes called a feature vector

= How many features and which features do we

take?
= Know desired output for each example (labeled

samples) Y',Y2,...Y"

= This learning is supervised (“teacher” gives desired
outputs).

= Yiare often one-dimensional, but can be
multidimensional

Last Time: Supervised Learning

= Wish to design a machine f(X,W) s.t.
f(X,W) = true output value at X
= |n classification want f(X,W) = label of X

= How do we choose ?
= when we choose a particular f, we are making implicit
assumptions about our problem
= W is typically multidimensional vector of weights
(also called parameters) which enable the machine
to “learn”
=W = [wy,W,,...W,]




Training and Testing

= There are 2 phases, training and testing

= Divide all labeled samples X',X2,...X" into 2 sets,
training set and testing set

= Training phase is for “teaching” our machine
(finding optimal weights W)
= Testing phase is for evaluating how well our
machine works on unseen examples
= Training phase

= Find the weights W s.t. f(X,W) = Yi “as much as
possible” for the training samples X

= “as much as possible” needs to be defined
= Training can be quite complex and time-consuming

Loss Function

= How do we quantify what it means for the machine
f(X,W) do well in the training and testing phases?

= f(X,W) has to be “close” to the true output on X

= Define Loss (or Error) function L
= This is up to the designer (that is you)
= Typically first define per-sample loss L(X',Y,W)
= Some examples:
= for classification, L(X',Y\,W) = I[f(X,W) = Y],
where I[true] = 1, I[false] = 0
= we just care if the sample has been classified correctly
= For continuous Y, L(X,Y W) =|| f(Xi,W) -Yi |2,
= how far is the estimated output from the correct one?
= Then loss function L = X, L(X',Y|,W)
= Number of missclassified example for classification

= Sum of distances from the estimated output to the correct
output




Linear Machine, Continuous Y

= f(X,W) = wy+X,_
= W, is called bias
= |n vector form, if we let
X = (1,X4,Xs,...,Xg), then
fX,W) = WTX
= notice abuse of notation, | made
X=[1 X]
= This is standard linear
regression (line fitting)
= assume
LOXYLW) =[] (XL W) Y |2
= optimal W can be found by

solving linear system of
equations W* = [EX (X!)T]'1 ZYIX

1.2,..d WiX;

Linear Machine: binary Y

= sign(positive) = 1,
signgﬁegativg) =-1 \
= W, is called bias
= |n vector form, if we let
X = (1,X4,Xs,...,Xg) then
f(X,W) = sign(WTX)

WiX<0
X

decision boundary WX = 0




Perceptron Learning Procedure (Rosenblatt 1957)

= Let L(XL,Y\ W) = I[f(X',W) # Y']. How do we learn W?
= A solution:
= |terate over all training samples
= if f(X,W)=Y (correct label), do nothing
= else W =W + [Y-f(WTX)]X
X X
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Perceptron Learning Procedure (Rosenblatt 1957)

= Amazing fact: If the samples are linearly separable,
the perceptron learning procedure will converge to a
solution (separating hyperplane) in a finite amount of
time

= Bad news: If the samples are not linearly separable,
the perceptron procedure will not terminate, it will go
on looking for a solution which does not exist!

= For most interesting problems the samples are not
linearly separable
Is there a way to learn W in non-separable case?

= Remember, it’s ok to have training error, so we don’t have
to have “perfect” classification




Optimization

= Need to minimize a function of many variables
J(x) = J(X;50ey X))

= We know how to minimize J(x)
= Take partial derivatives and set them to zero

KB gradient
ox, J(x)

: =VJ(x)=0
E J(x)

= However solving analytically is not always easy
= Would you like to solve this system of nonlinear equations?
sin(x? + x3)+e¥ =0
{cos(xf +x)+ log(x? Ji=0
= Sometimes it is not even possible to write down an analytical
expression for the derivative, we will see an example later today

Optimization: Gradient Descent

= Gradient VJ(x) points in direction of steepest increase of
J(x),and -VJ(x) in direction of steepest decrease
one dimension two dimensions
400
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Optimization: Gradient Descent
J(x) Vx”)
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Gradient Descent for minimizing any function J(x)
set k=1 and x(" to some initial guess for the weight vector
while 7% vJ(x¥)[> e

choose learning rate n®

xtk+1)= x(k) — p (k) J(x) (update rule)
k=k+1

Optimization: Gradient Descent

= Gradient descent is guaranteed to find only a local
minimum
J(x)

@ —>@¢ >®

L4
xX() x(2 x3 XK global minimum

= Nevertheless gradient descent is very popular
because it is simple and applicable to any
differentiable function




Optimization: Gradient Descent

= Main issue: how to set parameter n (learning rate )
= |f pis too small, need too many iterations

J(x)
b'¢
J(x)
= If pis too large may

overshoot the minimum

and possibly never find it

(if we keep overshooting) o >o
x(1 x@

“Optimal” W with Gradient Descent

= [fwe let L(X,YL,W) = I[f(X|,W) # Y], then L(W) is the
number of missclassified examples
= Let Mbe the set of examples misclassified by W
M(W)={sample X' s.t. W' X' =Y’}
= Then L(W) = |[M(W)|, the size of M(W)

= L(W) is piecewise constant, M(W)
gradient descent is useless —




“Optimal” W with Gradient Descent

= Better choice:
Lw)= 3w x)y

X'eM

Xe 2,
= |f X is misclassified, (WTX)Y <0 +*

= Thus L(W,X,Y') >0

= L(W,X\,Y!) is proportional
to the distance of
misclassified example to e
the decision boundary L(W)

= L(W)=XL(W,X.Y)) is
piecewise linear and thus
suitable for gradient decent - w

Batch Rule
Lw,x,Y')= S (wTx)y

XeM

Gradientof Lis VL(W)= > (- X)Y

XeM
= M are samples misclassified by W
= [t is not possible to solve VL(W) =0 analytically

Update rule for gradient descent: xtk*1)= x(W—p (k) v 4(x)

Thus gradient decent batch update rule for L(W) is:
w k) — w4 ﬂ(k) Z XY

YeM
It is called batch rule because it is based on all

misclassified examples




Single Sample Rule

» Thus gradient decent single sample rule for L(W) is:
w k+) — y k) +7](k)(XY)

= apply for any sample X misclassified by W
= must have a consistent way of visiting samples

Convergence
= |f classes are linearly separable, and n® is fixed to a
constant, i.e. p" =p@=...=p® =c (fixed learning rate)

= both single sample and batch rules converge to a correct
solution (could be any W in the solution space)

= |f classes are not linearly separable:

= Single sample algorithm does not stop, it keeps looking for
solution which does not exist

= However by choosing appropriate learning rate,
heuristically stop algorithm at hopefully good stopping point

7% >0 as k —
= for example, %) 77(1)
Kk

= for this learning rate convergence in the linearly separable
case can also be proven
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Learning by Gradient Descent

Suppose we suspect that the machine has to have functional
form f(X,W), not necessarily linear

Pick differentiable per-sample loss function L(X1,Y!,W)
We need to find W that minimizes L = X, L(X,YL,W)
Use gradient-based minimization:

= Batch rule: W =W - nVL(W)

= Or single sample rule: W =W - nVVL (XY W)

Important Questions

How do we choose the feature vector X?

How do we split labeled samples into training/testing
sets?

How do we choose the machine f(X,W)?
How do we choose the loss function L(X1,Y,W)?
How do we find the optimal weights W?
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Information theory

Information Theory regards information as only those
symbols that are uncertain to the receiver

only infrmatn esentil to understnd mst b tranmitd

Shannon made clear that uncertainty is the very commodity
of communication

The amount of information, or uncertainty, output by an

information source is a measure of its entropy
In turn, a source's entropy determines the amount of bits per

symbol required to encode the source's information

Messages are encoded with strings of 0 and 1 (bits)

Information theory

= Suppose we toss a fair die with 8 sides

need 3 bits to transmit the results of each toss
1000 throws will need 3000 bits to transmit

= Suppose the die is biased
= side A occurs with probability 1/2, chances of throwing B are 1/4,

C are 1/8, D are 1/16, E are 1/32, F 1/64, G and H are 1/128
Encode A=0,B=10,C =110, D =1110,..., soon until G =
1111110, H= 1111111

We need, on average, 1/2+2/4+3/8+4/16+5/32+6/64+7/128+7/128
= 1.984 bits to encode results of a toss

1000 throws require 1984 bits to transmit
Less bits to send = less “information”

Biased die tosses contain less “information” than unbiased die
tosses (know in advance biased sequence will have a lot of A’s)

What'’s the number of bits in the best encoding?

= Extreme case: if a die always shows side A, a sequence of
1,000 tosses has no information, 0 bits to encode
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Information theory

if a die is fair (any side is equally likely, or uniform distribution),

for any toss we need log(8) = 3 bits

Suppose any of n events is equally likely (uniform distribution)
= P(x) = 1/n, therefore -log P = -log(1/n) = log n

In the “good” encoding strategy for our biased die example,

every side x has -log p(x) bits in its code

Expected number of bits is

—Zp Jlog p(x

Shannon’s Entropy

Hlp(x)]= -3 p(x)log p(x ;p(X)logﬁ

= How much randomness (or uncertainty) is there in the value
of signal x if it has distribution p(x)

= For uniform distribution (every event is equally likely), H[x] is
maximum

= |f p(x) = 1 for some event x, then H[x] =
= Systems with one very common event have less entropy than
systems with many equally probable events
= Gives the expected length of optimal encoding (in binary
bits) of a message following distribution p(x)
= doesn’t actually give this optimal encoding
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Conditional Entropy of X given Y

Hlx|y]= gy:p(x,y)log p():l - —gyj p(x,y)log p(x|y)

= Measures average uncertainty about x when
y is known
= Property:
= H[x] = H[x|y], which means after seeing new

data (y), the uncertainty about x is not
increased, on average

Mutual Information of Xand Y

I[x,y]=H(x)-H(x | y)

= Measures the average reduction in uncertainty
about x after y is known

= or, equivalently, it measures the amount of
information that y conveys about x
= Properties
= 1(xy) = 1(y,x)
= |(x,y) >0
= If x and y are independent, then I(x,y) =0
= [(x,x) = H(x)
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MI for Feature Selection

I[x,c]=H(c)-H(c|x)

= Let x be a proposed feature and ¢ be the
class

= If I[x,c] is high, we can expect feature x be
good at predicting class ¢
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