CS9840
Learning and Computer Vision
Prof. Olga Veksler

Lecture 3

Linear Machines
Information Theory (a little BIT)

Today

= Linear Classifier
= Mutual Information

= Next time:

= paper: “Object Recognition with Informative
Features and Linear Classification” by M. Naquet
and S. Ullman
= Ignore section of tree-augmented network

Last Time: Supervised Learning

= Training samples (or examples) X',X2,...X"
= Each example is typically multi-dimensional
= Xiy, Xy ..., Xiy are typically called features, X! is
sometimes called a feature vector

= How many features and which features do we

take?
= Know desired output for each example (labeled

samples) Y',Y2,...Y"

= This learning is supervised (“teacher” gives desired
outputs).

= Yiare often one-dimensional, but can be
multidimensional

Last Time: Supervised Learning

= Wish to design a machine f(X,W) s.t.
f(X,W) = true output value at X
= |n classification want f(X,W) = label of X

= How do we choose ?
= when we choose a particular f, we are making implicit
assumptions about our problem
= W is typically multidimensional vector of weights
(also called parameters) which enable the machine
to “learn”
=W = [wy,W,,...W,]

Training and Testing

= There are 2 phases, training and testing

= Divide all labeled samples X',X2,...X" into 2 sets,
training set and testing set

= Training phase is for “teaching” our machine
(finding optimal weights W)
= Testing phase is for evaluating how well our
machine works on unseen examples
= Training phase

= Find the weights W s.t. f(X,W) = Yi “as much as
possible” for the training samples X

= “as much as possible” needs to be defined
= Training can be quite complex and time-consuming

Loss Function

= How do we quantify what it means for the machine
f(X,W) do well in the training and testing phases?

= f(X,W) has to be “close” to the true output on X

= Define Loss (or Error) function L
= This is up to the designer (that is you)
= Typically first define per-sample loss L(X',Y,W)
= Some examples:
= for classification, L(X',Y\,W) = I[f(X,W) = Y],
where I[true] = 1, I[false] = 0
= we just care if the sample has been classified correctly
= For continuous Y, L(X,Y W) =|| f(Xi,W) -Yi |2,
= how far is the estimated output from the correct one?
= Then loss function L = X, L(X',Y|,W)
= Number of missclassified example for classification

= Sum of distances from the estimated output to the correct
output

Linear Machine, Continuous Y

= f(X,W) = wy+X,_
= W, is called bias
= |n vector form, if we let
X = (1,X4,Xs,...,Xg), then
fX,W) = WTX
= notice abuse of notation, | made
X=[1 X]
= This is standard linear
regression (line fitting)
= assume
LOXYLW) =[] (XL W) Y |2
= optimal W can be found by

solving linear system of
equations W* = [EX (X!)T]'1 ZYIX

1.2,..d WiX;

Linear Machine: binary Y

= sign(positive) = 1,
signgﬁegativg) =-1 \
= W, is called bias
= |n vector form, if we let
X = (1,X4,Xs,...,Xg) then
f(X,W) = sign(WTX)

WiX<0
X

decision boundary WX = 0

Perceptron Learning Procedure (Rosenblatt 1957)

= Let L(XL,Y\ W) = I[f(X',W) # Y']. How do we learn W?
= A solution:
= |terate over all training samples
= if f(X,W)=Y (correct label), do nothing
= else W =W + [Y-f(WTX)]X
X X

.
",

-

L
s, e,

.
b
b
D

before after

Perceptron Learning Procedure (Rosenblatt 1957)

= Amazing fact: If the samples are linearly separable,
the perceptron learning procedure will converge to a
solution (separating hyperplane) in a finite amount of
time

= Bad news: If the samples are not linearly separable,
the perceptron procedure will not terminate, it will go
on looking for a solution which does not exist!

= For most interesting problems the samples are not
linearly separable
Is there a way to learn W in non-separable case?

= Remember, it’s ok to have training error, so we don’t have
to have “perfect” classification

Optimization

= Need to minimize a function of many variables
J(x) = J(X;50ey X))

= We know how to minimize J(x)
= Take partial derivatives and set them to zero

KB gradient
ox, J(x)

: =VJ(x)=0
E J(x)

= However solving analytically is not always easy
= Would you like to solve this system of nonlinear equations?
sin(x? + x3)+e¥ =0
{cos(xf +x)+ log(x? Ji=0
= Sometimes it is not even possible to write down an analytical
expression for the derivative, we will see an example later today

Optimization: Gradient Descent

= Gradient VJ(x) points in direction of steepest increase of
J(x),and -VJ(x) in direction of steepest decrease
one dimension two dimensions
400

200-

200

-400..
10

Optimization: Gradient Descent
J(x) Vx”)

s s@

— 0 e ¢ o

XD x2 x® x®

Gradient Descent for minimizing any function J(x)
set k=1 and x(" to some initial guess for the weight vector
while 7% vJ(x¥)[> e

choose learning rate n®

xtk+1)= x(k) — p (k) J(x) (update rule)
k=k+1

Optimization: Gradient Descent

= Gradient descent is guaranteed to find only a local
minimum
J(x)

@ —>@¢ >®

L4
xX() x(2 x3 XK global minimum

= Nevertheless gradient descent is very popular
because it is simple and applicable to any
differentiable function

Optimization: Gradient Descent

= Main issue: how to set parameter n (learning rate)
= |f pis too small, need too many iterations

J(x)
b'¢
J(x)
= If pis too large may

overshoot the minimum

and possibly never find it

(if we keep overshooting) o >o
x(1 x@

“Optimal” W with Gradient Descent

= [fwe let L(X,YL,W) = I[f(X|,W) # Y], then L(W) is the
number of missclassified examples
= Let Mbe the set of examples misclassified by W
M(W)={sample X' s.t. W' X' =Y’}
= Then L(W) = |[M(W)|, the size of M(W)

= L(W) is piecewise constant, M(W)
gradient descent is useless —

“Optimal” W with Gradient Descent

= Better choice:
Lw)= 3w x)y

X'eM

Xe 2,
= |f X is misclassified, (WTX)Y <0 +*

= Thus L(W,X,Y') >0

= L(W,X\,Y!) is proportional
to the distance of
misclassified example to e
the decision boundary L(W)

= L(W)=XL(W,X.Y)) is
piecewise linear and thus
suitable for gradient decent - w

Batch Rule
Lw,x,Y')= S (wTx)y

XeM

Gradientof Lis VL(W)= > (- X)Y

XeM
= M are samples misclassified by W
= [t is not possible to solve VL(W) =0 analytically

Update rule for gradient descent: xtk*1)= x(W—p (k) v 4(x)

Thus gradient decent batch update rule for L(W) is:
w k) — w4 ﬂ(k) Z XY

YeM
It is called batch rule because it is based on all

misclassified examples

Single Sample Rule

» Thus gradient decent single sample rule for L(W) is:
w k+) — y k) +7](k)(XY)

= apply for any sample X misclassified by W
= must have a consistent way of visiting samples

Convergence
= |f classes are linearly separable, and n® is fixed to a
constant, i.e. p" =p@=...=p® =c (fixed learning rate)

= both single sample and batch rules converge to a correct
solution (could be any W in the solution space)

= |f classes are not linearly separable:

= Single sample algorithm does not stop, it keeps looking for
solution which does not exist

= However by choosing appropriate learning rate,
heuristically stop algorithm at hopefully good stopping point

7% >0 as k —
= for example, %) 77(1)
Kk

= for this learning rate convergence in the linearly separable
case can also be proven

10

Learning by Gradient Descent

Suppose we suspect that the machine has to have functional
form f(X,W), not necessarily linear

Pick differentiable per-sample loss function L(X1,Y!,W)
We need to find W that minimizes L = X, L(X,YL,W)
Use gradient-based minimization:

= Batch rule: W =W - nVL(W)

= Or single sample rule: W =W - nVVL (XY W)

Important Questions

How do we choose the feature vector X?

How do we split labeled samples into training/testing
sets?

How do we choose the machine f(X,W)?
How do we choose the loss function L(X1,Y,W)?
How do we find the optimal weights W?

11

Information theory

Information Theory regards information as only those
symbols that are uncertain to the receiver

only infrmatn esentil to understnd mst b tranmitd

Shannon made clear that uncertainty is the very commodity
of communication

The amount of information, or uncertainty, output by an

information source is a measure of its entropy
In turn, a source's entropy determines the amount of bits per

symbol required to encode the source's information

Messages are encoded with strings of 0 and 1 (bits)

Information theory

= Suppose we toss a fair die with 8 sides

need 3 bits to transmit the results of each toss
1000 throws will need 3000 bits to transmit

= Suppose the die is biased
= side A occurs with probability 1/2, chances of throwing B are 1/4,

C are 1/8, D are 1/16, E are 1/32, F 1/64, G and H are 1/128
Encode A=0,B=10,C =110, D =1110,..., soon until G =
1111110, H= 1111111

We need, on average, 1/2+2/4+3/8+4/16+5/32+6/64+7/128+7/128
= 1.984 bits to encode results of a toss

1000 throws require 1984 bits to transmit
Less bits to send = less “information”

Biased die tosses contain less “information” than unbiased die
tosses (know in advance biased sequence will have a lot of A’s)

What'’s the number of bits in the best encoding?

= Extreme case: if a die always shows side A, a sequence of
1,000 tosses has no information, 0 bits to encode

12

Information theory

if a die is fair (any side is equally likely, or uniform distribution),

for any toss we need log(8) = 3 bits

Suppose any of n events is equally likely (uniform distribution)
= P(x) = 1/n, therefore -log P = -log(1/n) = log n

In the “good” encoding strategy for our biased die example,

every side x has -log p(x) bits in its code

Expected number of bits is

—Zp Jlog p(x

Shannon’s Entropy

Hlp(x)]= -3 p(x)log p(x ;p(X)logﬁ

= How much randomness (or uncertainty) is there in the value
of signal x if it has distribution p(x)

= For uniform distribution (every event is equally likely), H[x] is
maximum

= |f p(x) = 1 for some event x, then H[x] =
= Systems with one very common event have less entropy than
systems with many equally probable events
= Gives the expected length of optimal encoding (in binary
bits) of a message following distribution p(x)
= doesn’t actually give this optimal encoding

13

Conditional Entropy of X given Y

Hlx|y]= gy:p(x,y)log p():l - —gyj p(x,y)log p(x|y)

= Measures average uncertainty about x when
y is known
= Property:
= H[x] = H[x|y], which means after seeing new

data (y), the uncertainty about x is not
increased, on average

Mutual Information of Xand Y

I[x,y]=H(x)-H(x | y)

= Measures the average reduction in uncertainty
about x after y is known

= or, equivalently, it measures the amount of
information that y conveys about x
= Properties
= 1(xy) = 1(y,x)
= |(x,y) >0
= If x and y are independent, then I(x,y) =0
= [(x,x) = H(x)

14

MI for Feature Selection

I[x,c]=H(c)-H(c|x)

= Let x be a proposed feature and ¢ be the
class

= If I[x,c] is high, we can expect feature x be
good at predicting class ¢

15

