Today

- New Machine Learning Topics:
 - Ensemble Learning
 - Bagging
 - Boosting
 - Next time two papers:
 - “Rapid Object Detection using a Boosted Cascade of Simple Features” by P. Viola and M. Jones from CVPR2001
 - “Detecting Pedestrians Using Patterns of Motion and Appearance” by P. Viola, M.J.Jones, D. Snow
Ensemble Learning: Bagging and Boosting

- So far we have talked about design of a single classifier that generalizes well (want to “learn” \(f(x) \))
- From statistics, we know that it is good to average your predictions (reduces variance)
- Bagging
 - reshaple your training data to create \(k \) different training sets and learn \(f_1(x), f_2(x), \ldots, f_k(x) \)
 - Combine the \(k \) different classifiers by majority voting
 \[
 f_{\text{FINAL}}(x) = \text{sign}\left[\sum_{i=1}^{k} \frac{1}{k} f_i(x) \right]
 \]
- Boosting
 - Assign different weights to training samples in a “smart” way so that different classifiers pay more attention to different samples
 - Weighted majority voting, the weight of individual classifier is proportional to its accuracy
 - Ada-boost (1996) was influenced by bagging, and it is superior to bagging

Bagging

- Generate a random sample from training set by selecting \(l \) elements (out of \(n \) elements available) with replacement
- Each classifier is trained on the average of 63.2% of the training examples
 - For a dataset with \(N \) examples, each example has a probability of \(1-(1-1/N)^N \) of being selected at least once in the \(N \) samples. For \(N \to \infty \), this number converges to \((1-1/e) \) or 0.632 [Bauer and Kohavi, 1999]
- Repeat the sampling procedure, getting a sequence of \(k \) independent training sets
- A corresponding sequence of classifiers \(f_1(x), f_2(x), \ldots, f_k(x) \) is constructed for each of these training sets, using the same classification algorithm
- To classify an unknown sample \(x \), let each classifier predict.
- The bagged classifier \(f_{\text{FINAL}}(x) \) then combines the predictions of the individual classifiers to generate the final outcome, frequently this combination is simple voting
Boosting: motivation

- It is usually hard to design an accurate classifier which generalizes well.
- However it is usually easy to find many “rule of thumb” weak classifiers.
 - A classifier is weak if it is only slightly better than random guessing.
- Can we combine several weak classifiers to produce an accurate classifier?
 - Question people have been working on since 1980’s.

Ada Boost

- Let’s assume we have 2-class classification problem, with \(y \in \{-1,1\} \).
- Ada boost will produce a discriminant function:
 \[
g(x) = \sum_{t=1}^{T} \alpha_t f_t(x)
\]
- where \(f_t(x) \) is the “weak” classifier.
- As usual, the final classifier is the sign of the discriminant function, that is \(f_{\text{final}}(x) = \text{sign}[g(x)] \).
Idea Behind Ada Boost

- Algorithm is iterative
- Maintains distribution of weights over the training examples
- Initially distribution of weights is uniform
- At successive iterations, the weight of misclassified examples is increased, forcing the weak learner to focus on the hard examples in the training set

More Comments on Ada Boost

- Ada boost is very simple to implement, provided you have an implementation of a “weak learner”
- Will work as long as the “basic” classifier $f_t(x)$ is at least slightly better than random
 - will work if the error rate of $f_t(x)$ is less than 0.5 (0.5 is the error rate of a random guessing classifier for a 2-class problem)
- Can be applied to boost any classifier, not necessarily weak
Ada Boost (slightly modified from the original version)

- $d(x)$ is the distribution of weights over the N training points $\sum d(x_i) = 1$
- Initially assign uniform weights $d_0(x_i) = 1/N$ for all x_i
- At each iteration t:
 - Find best weak classifier $f_t(x)$ using weights $d_t(x)$
 - Compute the error rate ε_t as $\varepsilon_t = \sum_{i=1}^{N} d_t(x_i) \cdot I[y_i \neq f_t(x_i)]$
 - Assign weight α_t to the classifier f_t's in the final hypothesis: $\alpha_t = \log ((1 - \varepsilon_t)/\varepsilon_t)$
 - For each x_i, $d_{t+1}(x_i) = d_t(x_i) \cdot \exp[\alpha_t \cdot I(y_i \neq f_t(x_i))]$
 - Normalize $d_{t+1}(x_i)$ so that $\sum_{i=1}^{N} d_{t+1}(x_i) = 1$
 - $f_{\text{FINAL}}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right]$
Ada Boost

At each iteration t:
- Find best weak classifier \(f_t(x) \) using weights \(d_t(x) \)
- Compute \(\epsilon_t \), the error rate as:
 \[\epsilon_t = \sum d_t(x_i) \cdot I[y_i \neq f_t(x_i)] \]
- Assign weight \(\alpha_t \) the classifier \(f_t \)'s in the final hypothesis:
 \[\alpha_t = \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) \]
- For each \(x_i \), \(d_{t+1}(x_i) = d_t(x_i) \cdot \exp[\alpha_t \cdot I(y_i \neq f_t(x_i))] \)
- Normalize \(d_{t+1}(x_i) \) so that \(\sum d_{t+1}(x_i) = 1 \)
- \(f_{\text{FINAL}}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right] \)

Since the weak classifier is better than random, we expect \(\epsilon_t < 1/2 \)

Ada Boost

At each iteration t:
- Find best weak classifier \(f_t(x) \) using weights \(d_t(x) \)
- Compute \(\epsilon_t \), the error rate as:
 \[\epsilon_t = \sum d_t(x_i) \cdot I[y_i \neq f_t(x_i)] \]
- Assign weight \(\alpha_t \) the classifier \(f_t \)'s in the final hypothesis:
 \[\alpha_t = \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) \]
- For each \(x_i \), \(d_{t+1}(x_i) = d_t(x_i) \cdot \exp[\alpha_t \cdot I(y_i \neq f_t(x_i))] \)
- Normalize \(d_{t+1}(x_i) \) so that \(\sum d_{t+1}(x_i) = 1 \)
- \(f_{\text{FINAL}}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right] \)

Recall that \(\epsilon_t < 1/2 \)
- Thus \((1 - \epsilon_t)/\epsilon_t > 1 \Rightarrow \alpha_t > 0 \)
- The smaller is \(\epsilon_t \), the larger is \(\alpha_t \), and thus the more importance (weight) classifier \(f_t(x) \) gets in the final classifier:
 \[f_{\text{FINAL}}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right] \]
Ada Boost

- At each iteration t:
 - Find best weak classifier $f_t(x)$ using weights $d_t(x)$
 - Compute ε_t, the error rate as
 $\varepsilon_t = \sum d_t(x_i) \cdot I(y_i \neq f_t(x_i))$
 - Assign weight α_t the classifier f_t's in the final hypothesis
 $\alpha_t = \log \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)$
 - For each x_i, $d_{t+1}(x_i) = d_t(x_i) \cdot \exp[\alpha_t \cdot I(y_i \neq f_t(x_i))]$
 - Normalize $d_{t+1}(x_i)$ so that $\sum d_{t+1}(x_i) = 1$
 - $f_{\text{FINAL}}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right]$

- Weight of misclassified examples is increased and the new $d_{t+1}(x_i)$'s are normalized to be a distribution again

AdaBoost Example

from "A Tutorial on Boosting" by Yoav Freund and Rob Schapire

Original Training set: equal weights to all training samples

Note: in the following slides, $h_t(x)$ is used instead of $f_t(x)$, and D instead of d
AdaBoost Example

ROUND 1

ε₁ = 0.30
α₁ = 0.42

D₁

ROUND 2

ε₂ = 0.21
α₂ = 0.65

D₂
AdaBoost Example

ROUND 3

$$f_{\text{FINAL}}(x) = \text{sign} \left(0.42 + 0.65 + 0.92 \right)$$
AdaBoost Comments

- It can be shown that the training error drops exponentially fast, if each weak classifier is slightly better than random

\[
Err_{\text{train}} \leq \exp(-2\sum_t \gamma_t^2)
\]

- Here \(\gamma_t = \epsilon_t - 1/2 \), where \(\epsilon_t \) is classification error at round \(t \) (weak classifier \(f_t \))

AdaBoost Comments

- But we are really interested in the generalization properties of \(f_{\text{FINAL}}(x) \), not the training error
- AdaBoost was shown to have excellent generalization properties in practice
 - the more rounds, the more complex is the final classifier, so overfitting is expected as the training proceeds
 - but in the beginning researchers observed no overfitting of the data
 - It turns out it does overfit data eventually, if you run it really long
- It can be shown that boosting “aggressively” increases the margins of training examples, as iterations proceed
 - margins continue to increase even when training error reaches zero
 - Helps to explain empirically observed phenomena: test error continues to drop even after training error reaches zero
AdaBoost Example

\[f_{\text{FINAL}}(x) = \text{sign}(0.42 + 0.65 + 0.92) \]

\[= \]

The Margin Distribution

<table>
<thead>
<tr>
<th>epoch</th>
<th>5</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>training error</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>test error</td>
<td>8.4</td>
<td>3.3</td>
<td>3.1</td>
</tr>
<tr>
<td>%margins(\leq 0.5)</td>
<td>7.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Minimum margin</td>
<td>0.14</td>
<td>0.52</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Boosting As Additive Model

- The final prediction in boosting $g(x)$ can be expressed as an additive expansion of individual classifiers

 $$g(x) = \sum_{k=1}^{M} \alpha_k f_k(x; \gamma_k)$$

- Typically we would try to minimize a loss function on the N training examples

 $$\min_{\alpha_1, \gamma_1, \ldots, \gamma_M, \alpha_M} \sum_{i=1}^{N} L \left(y_i, \sum_{k=1}^{M} \alpha_k f_k(x_i; \gamma_k) \right)$$

- For example, under squared-error loss:

 $$\min_{\alpha_1, \gamma_1, \ldots, \gamma_M, \alpha_M} \sum_{i=1}^{N} \left(y_i - \sum_{k=1}^{M} \alpha_k f_k(x_i; \gamma_k) \right)^2$$

Boosting As Additive Model

- Forward stage-wise modeling is iterative and fits the $f_k(x, \gamma_k)$ sequentially, fixing the results of previous iterations

 $$g_t(x) = g_{t-1}(x) + \alpha_t f_t(x; \gamma_t)$$

- Under the squared difference loss function:

 $$L \left(y_i, g_{t-1}(x_i) + \alpha_t f_t(x_i; \gamma_t) \right) =
 \left(y_i - g_{t-1}(x_i) - \alpha_t f_t(x_i; \gamma_t) \right)^2$$

- Forward stage-wise optimization seems to produce classifier with better generalization, doing the process stagewise seems to overfit less quickly
Boosting As Additive Model

\[g(\mathbf{x}) = \sum_{k=1}^{M} \alpha_k f_k(\mathbf{x}; \gamma_k) \]

- It can be shown that AdaBoost uses forward stage-wise modeling under the following loss function:
 - \(L(y, g(x)) = \exp(-y \cdot g(x)) \) -- the exponential loss function
 - At stage (or iteration) \(m \), we fit:

\[
\arg\min_{\alpha_m, f_m} \sum_{i=1}^{N} L(y_i, g(x_i)) = \\
= \arg\min_{\alpha_m, f_m} \sum_{i=1}^{N} \exp(-y_i \cdot [g_{m-1}(x_i) + \alpha_m \cdot f_m(x_i)]) \\
= \arg\min_{\alpha_m, f_m} \sum_{i=1}^{N} \exp(-y_i \cdot g_{m-1}(x_i) \cdot \exp(-y_i \cdot \alpha_m \cdot f_m(x_i)))
\]

Exponential Loss vs. Squared Error Loss

- \(L(y, g(x)) = \exp(-y \cdot g(x)) \)
- \(L(y, g(x)) = (y - g(x))^2 \)

- Squared Error Loss penalizes classifications that are “too correct”, with \(y \cdot g(x) > 1 \), and thus it is inappropriate for classification
- Exponential loss encourages large margins, want \(y \cdot g(x) \) large
Logistic Regression Model

- It can be shown that Adaboost builds a logistic regression model:

\[
g(x) = \log \frac{Pr(Y = 1 \mid x)}{Pr(Y = -1 \mid x)} = \sum_{k=1}^{M} \alpha_m f_m(x)
\]

- It can also be shown that the training error on the samples is at most:

\[
\sum_{i=1}^{N} \exp(-y_i \cdot g(x_i)) = \sum_{i=1}^{N} \exp \left(-y_i \cdot \sum_{k=1}^{M} \alpha_m f_m(x_i) \right)
\]

Practical Advantages of AdaBoost

- fast
- simple
- Has only one parameter to tune (T)
- flexible: can be combined with any classifier
- provably effective (assuming weak learner)
 - shift in mind set: goal now is merely to find hypotheses that are better than random guessing
- finds outliers
 - The hardest examples are frequently the “outliers”
Caveats

- performance depends on data & weak learner
- AdaBoost can fail if
 - weak hypothesis too complex (overfitting)
 - weak hypothesis too weak ($\gamma_i \to 0$ too quickly),
 - underfitting
 - Low margins \to overfitting
- empirically, AdaBoost seems especially susceptible to noise