CS9840
Learning and Computer Vision
Prof. Olga Veksler

Lecture 6
Boosting

Some slides are due to Robin Dhamankar
Vandi Verma & Sebastian Thrun

Today

= New Machine Learning Topics:
= Ensemble Learning
= Bagging
= Boosting
= Next time two papers:

= “Rapid Object Detection using a Boosted
Cascade of Simple Features” by P. Viola and
M. Jones from CVPR2001

= “Detecting Pedestrians Using Patterns of
Motion and Appearance” by P. Viola,
M.J.Jones, D. Snow

Ensemble Learning: Bagging and Boosting

= So far we have talked about design of a single classifier
that generalizes well (want to “learn” f(x))

= From statistics, we know that it is good to average your
predictions (reduces variance)

= Bagging

= reshuffle your training data to create k different trainig sets and

learn f,(x),f5(x),...,f (x)
= Combine the k different classifiers by majority voting
frnaL(X) =sign[Z 1/k f(x)]

= Boosting

= Assign different weights to training samples in a “smart” way so
that different classifiers pay more attention to different samples

= Weighted majority voting, the weight of individual classifier is
proportional to its accuracy

= Ada-boost (1996) was influenced by bagging, and it is superior
to bagging

Bagging

= Generate a random sample from training set by selecting /
elements (out of n elements available) with replacement

= each classifier is trained on the average of 63.2% of the
training examples
= For a dataset with N examples, each example has a probability of
1-(1-1/N)N of being selected at least once in the N samples. For N—«,
this number converges to (1-1/e) or 0.632 [Bauer and Kohavi, 1999]
= Repeat the sampling procedure, getting a sequence of k
independent training sets
= A corresponding sequence of classifiers f,(x),f,(x),...,f,(x) is
constructed for each of these training sets, using the same
classification algorithm
= To classify an unknown sample X, let each classifier predict.
= The bagged classifier fzya(x) then combines the predictions
of the individual classifiers to generate the final outcome,
frequently this combination is simple voting

Boosting: motivation

= |tis usually hard to design an accurate classifier which
generalizes well
= However it is usually easy to find many “rule of thumb”
weak classifiers
= A classifier is weak if it is only slightly better than random
guessing
= Can we combine several weak classifiers to produce an
accurate classifier?
= Question people have been working on since 1980’s

Ada Boost

= |Let’s assume we have 2-class classification
problem, with y.e {-1,1}
= Ada boost will produce a discriminant function:

wﬂ=g%ﬂﬂ

= where f,(x) is the “weak” classifier

= As usual, the final classifier is the sign of the
discriminant function, that is fg,,(X) = sign[g(x)]

Idea Behind Ada Boost

= Algorithm is iterative

= Maintains distribution of weights over the training
examples

= |nitially distribution of weights is uniform

= At successive iterations, the weight of misclassified
examples is increased, forcing the weak learner to
focus on the hard examples in the training set

More Comments on Ada Boost

= Ada boost is very simple to implement, provided you
have an implementation of a “weak learner”

= Will work as long as the “pbasic” classifier f,(x) is at
least slightly better than random

= will work if the error rate of f,(x) is less than 0.5 (0.5 is the
error rate of a random guessing classifier for a 2-class
problem)
= Can be applied to boost any classifier, not
necessarily weak

Ada B 00S t (slightly modified from the original version)

= d(x) is the distribution of weights over the N training
points > d(x;)=1
= Initially assign uniform weights d,(x;) = 1/Nfor all x;

= At each iterationt :

= Find best weak classifier f,(x) using weights d/(x)
Compute the error rate ¢, as
€= it Nna(X) - 1Ly, # i(X;)]
= assign weight o, the classifier ffs in the final hypothesis

o= log ((1 —€;)/g;)

For each x;, d,,;(x;) = di(x;) - exp[o, - I(y; # fi(x;))]
Normalize d,,,(x;) so that },_; d. (x;) =1

" fanac(X) =sign [3 o, f;(X)]

Ada Boost

= At each iterationt :

= Find best weak classifier f,(x) using weights d/(x)
= Compute ¢,the error rate as
€= 2 dyx) Ily; # fi(x;)]
= assign weight o, the classifier f/s in the final hypothesis
a,=log ((1—¢,)/¢,)
= For each x;, d,,,(x;) = d{x;) - explo, I(y; # f(x;))]
= Normalize d,,,(x;) so that }, . d(x;) =1
" fena(X) =sign [3 o, fi(x)]

= |f the classifier does not take weighted samples, this
step can be achieved by sampling from the training
samples according to the distribution d(x)

Ada Boost

= At each iteration t :

= Find best weak classifier f,(x) using weights d(x)

= Compute ¢, the error rate as
= 2 di(x;) - Iy; # fi(x;)]

= assign weight o, the classifier f/s in the final hypothesis

o= log ((1 —¢,)/¢,)
= Foreach x;, d,,;(x;) = d{(x;) - explo, I(y; # fy(x;))]
= Normalize d,,(x;) so that } d, (x;) =1
femac(X) =sign [3 o f,(x) |

= Since the weak classifier is better than random, we
expect €,< 1/2

Ada Boost

= At each iterationt :

= Find best weak classifier f(x) using weights d(x)
= Compute ¢, the error rate as

€= 2 d(x;) - I(y; # fi(x;)
= assign weight a, the classifier f/s in the final hypothesis
o= log ((1 —&)/¢)
= Foreach x;, d,,;(x;) = di(x;) - explo, I(y; # f(x;))]
= Normalize d,,(x;) sothat } d, (x;) =1
" fena(¥) =sign [3 auf, (x)]

= Recall that ¢, < "2

= Thus (1-¢)/g>1 = o,>0

= The smaller is €, the larger is o, and thus the more
importance (weight) classifier f,(x) gets in the final classifier

femnac(X) =sign [3 o, f,(X)]

Ada Boost

= At each iterationt :

Find best weak classifier f,(x) using weights d(x)
Compute ¢, the error rate as

=2 d; () I(y; # f(x;)

assign weight a, the classifier f/s in the final hypothesis
a,=log ((1—¢,)/¢;)

For each x;, d,,;(x;) = di(x;) - exploy- I(y; # £i(x;))]

Normalize d,,4(x;) so that >d,.(x;) =1

fenar(X) =sign [3 o, £, (X)]

= Weight of misclassified examples is increased and the
new d,,;(x;)’s are normalized to be a distribution again

AdaBoost Example

from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire

Original Training set : equal weights to all training
samples

Note: in the following slides, h,(x) is used instead of f(x),

and D instead of d

AdaBoost Example

B —_
I s
S T
T

ROUND 1

AdaBoost Example

ROUND 2

‘C‘_) =021

(',jr):H.ﬁS

/12

D, +

AdaBoost Example

ROUND 3

AdaBoost Example

/

+ (.65

feinaL (X)= sign \0'42

+ 0.92

AdaBoost Comments

= |t can be shown that the training error drops
exponentially fast, if each weak classifier is slightly
better than random

Errtrain < exp(_ 22[71‘2)

= Here ¥ = &— 1/2, where is classification error at
round t (weak classifier f;)

AdaBoost Comments

= But we are really interested in the generalization properties of
fenaL(X), not the training error

= AdaBoost was shown to have excellent generalization
properties in practice
= the more rounds, the more complex is the final classifier, so overfitting is
expected as the training proceeds

= but in the beginning researchers observed no overfitting of the data
= [t turns out it does overfit data eventually, if you run it really long

= |t can be shown that boosting “aggressively” increases the
margins of training examples, as iterations proceed
= margins continue to increase even when training error reaches zero

= Helps to explain empirically observed phenomena: test error continues
to drop even after training error reaches zero

10

AdaBoost Example

fEnaL(X)=sign \

+092

The Margin Distribution

cumulative distribution

7 test
0 ‘ Ltrain

10 100 1000 -1 -0.5

of rounds (7"
epoch 5 100 |1000
training error 0.0 |0.0 |0.0
test error 84 (3.3 |31
Y%margins<0.5 7.7 0.0 0.0
Minimum margin 0.14 |0.52 |0.55

11

Boosting As Additive Model

= The final prediction in boosting g(x) can be
expressed as an additive expansion of individual

classifiers M
g(x)= Z a i (X57¢)
k=1

= Typically we would try to minimize a loss function

on the N training examples
N

M
min ZL[y,-,Zakfk(X,-m))
k=1

Q15Y150e2 Ym:Cu i=1

= For example, under squared-error loss:
N

y 2
min Z(Yi_zakfk(xi;n))
k=1

C13Y150 VM Om i=1

Boosting As Additive Model

= Forward stage-wise modeling is iterative and fits
the f,(x, %) sequentially, fixing the results of

previous iterations
fit ¥, a,to produce
i?;‘,’;’t?(',ﬁ‘, fixed ir{%prﬁve% g,(x)

g,(x) = g,_1(x) + a,f,(x;y,)
= Under the squared difference loss function:

Ly, g, .(x;)+af(x;y)=

= (y/' —g:(Xx;)-af(x; 7t))2
fixed

= Forward stage-wise optimization seems to produce

classifier with better generalization, doing the
process stagewise seems to overfit less quickly

12

Boosting As Additive Model
g(x)= Z a i (X;7,)

= |t can be shown that AdaBoost uses forward stage-
wise modeling under the following loss function:
= L(y, g (X)) =exp(-y - g (x)) --the exponential loss function
= At stage (or iteration) m, we fit:
N
argmin) L(y;,g(x;))=

[i=1

=argmin exp(=y; - [Gn (X,)+ &y T, (X;)])

[i=1

N
=argminy_ exp(-y;-g,_,(X;))-exp(-y;- &, f,(X;))

[i=1

Exponential Loss vs. Squared Error Loss

= Ly, 9 (%)) =exp(-y - g (x))
= L(y, g (¥) = (y- g (x)?
Loss
SE loss

exponential loss

S T R A A%

= Squared Error Loss penalizes classifications that are “too
correct”, with y - g (x) >1, and thus it is inappropriate for
classification

= Exponential loss encourages large margins, want y - g (x) large

13

Logistic Regression Model

= |t can be shown that Adaboost builds a logistic regression
model:

g(x)= Iogm =3 aata()

= |t can also be shown that the the training error on the samples
is at most:

S-expl-y,-olx)=exe -y, Sty (x)

Practical Advantages of AdaBoost

fast

simple

Has only one parameter to tune (7)

flexible: can be combined with any classifier

provably effective (assuming weak learner)

+ shift in mind set: goal now is merely to find hypotheses
that are better than random guessing

finds outliers
= The hardest examples are frequently the “outliers”

14

Caveats

= performance depends on data & weak learner

= AdaBoost can fail if
= weak hypothesis too complex (overfitting)
= weak hypothesis too weak (y,—0 too quickly),
= underfitting
= Low margins — overfitting
= empirically, AdaBoost seems especially
susceptible to noise

15

