Today

- New Machine Learning Topics:
 - Ensemble Learning
 - Bagging
 - Boosting
 - Next time two papers:
 - “Rapid Object Detection using a Boosted Cascade of Simple Features” by P. Viola and M. Jones from CVPR2001
 - “Detecting Pedestrians Using Patterns of Motion and Appearance” by P. Viola, M.J.Jones, D. Snow

Ensemble Learning: Bagging and Boosting

- So far we have talked about design of a single classifier that generalizes well (want to “learn” f(x))
- From statistics, we know that it is good to average your predictions (reduces variance)
- Bagging
 - reshuffle your training data to create k different training sets and learn f_1(x), f_2(x), ..., f_k(x)
 - Combine the k different classifiers by majority voting
 \[f_{\text{FINAL}}(x) = \text{sign}\left(\sum 1/k f_i(x)\right) \]
- Boosting
 - Assign different weights to training samples in a “smart” way so that different classifiers pay more attention to different samples
 - Weighted majority voting, the weight of individual classifier is proportional to its accuracy
 - Ada-boost (1996) was influenced by bagging, and it is superior to bagging

Bagging

- Generate a random sample from training set by selecting l elements (out of n elements available) with replacement
- each classifier is trained on the average of 63.2% of the training examples
 - For a dataset with N examples, each example has a probability of \(1-(1-1/N)^N\) of being selected at least once in the N samples. For \(N \rightarrow \infty\), this number converges to \((1-1/e)\) or 0.632 [Bauer and Kohavi, 1999]
- Repeat the sampling procedure, getting a sequence of k independent training sets
- A corresponding sequence of classifiers f_1(x), f_2(x), ..., f_k(x) is constructed for each of these training sets, using the same classification algorithm
- To classify an unknown sample x, let each classifier predict.
- The bagged classifier \(f_{\text{FINAL}}(x)\) then combines the predictions of the individual classifiers to generate the final outcome, frequently this combination is simple voting
Boosting: motivation

- It is usually hard to design an accurate classifier which generalizes well
- However it is usually easy to find many “rule of thumb” weak classifiers
 - A classifier is weak if it is only slightly better than random guessing
- Can we combine several weak classifiers to produce an accurate classifier?
 - Question people have been working on since 1980’s

Idea Behind Ada Boost

- Algorithm is iterative
- Maintains distribution of weights over the training examples
- Initially distribution of weights is uniform
- At successive iterations, the weight of misclassified examples is increased, forcing the weak learner to focus on the hard examples in the training set

Ada Boost

- Let’s assume we have 2-class classification problem, with $y \in \{-1, 1\}$
- Ada boost will produce a discriminant function:
 \[
 g(x) = \sum_{t=1}^{T} \alpha_t f_t(x)
 \]
- where $f_t(x)$ is the “weak” classifier
- As usual, the final classifier is the sign of the discriminant function, that is $f_{final}(x) = sign(g(x))$

More Comments on Ada Boost

- Ada boost is very simple to implement, provided you have an implementation of a “weak learner”
- Will work as long as the “basic” classifier $f_t(x)$ is at least slightly better than random
 - will work if the error rate of $f_t(x)$ is less than 0.5 (0.5 is the error rate of a random guessing classifier for a 2-class problem)
- Can be applied to boost any classifier, not necessarily weak
Ada Boost

Ada Boost (slightly modified from the original version)

- \(d(x) \) is the distribution of weights over the \(N \) training points \(\sum d(x_i) = 1 \)
- Initially assign uniform weights \(d_i(x) = 1/N \) for all \(x_i \)
- At each iteration \(t \):
 - Find best weak classifier \(f_t(x) \) using weights \(d_t(x) \)
 - Compute the error rate \(\epsilon_t \) as
 \[
 \epsilon_t = \sum_{i=1}^{N} d_t(x_i) \cdot 1[y_i \neq f_t(x_i)]
 \]
 - Assign weight \(\alpha_t \) to the classifier \(f_t(x) \)'s in the final hypothesis
 \[
 \alpha_t = \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)
 \]
 - For each \(x_i \), \(d_{t+1}(x_i) = d_t(x) \cdot \exp[\alpha_t \cdot 1(y_i \neq f_t(x_i))] \)
 - Normalize \(d_{t+1}(x_i) \) so that \(\sum_i d_{t+1}(x_i) = 1 \)
- \(f_{\text{FINAL}}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right] \)

Ada Boost

- At each iteration \(t \):
 - Find best weak classifier \(f_t(x) \) using weights \(d_t(x) \)
 - Compute \(\epsilon_t \) the error rate as
 \[
 \epsilon_t = \sum d_t(x) \cdot 1[y_i \neq f_t(x_i)]
 \]
 - Assign weight \(\alpha_t \) to the classifier \(f_t(x) \)'s in the final hypothesis
 \[
 \alpha_t = \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)
 \]
 - For each \(x_i \), \(d_{t+1}(x_i) = d_t(x_i) \cdot \exp[\alpha_t \cdot 1(y_i \neq f_t(x_i))] \)
 - Normalize \(d_{t+1}(x_i) \) so that \(\sum_i d_{t+1}(x_i) = 1 \)
 - \(f_{\text{FINAL}}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right] \)

Since the weak classifier is better than random, we expect \(\epsilon_t < 1/2 \)

Ada Boost

Ada Boost

- At each iteration \(t \):
 - Find best weak classifier \(f_t(x) \) using weights \(d_t(x) \)
 - Compute \(\epsilon_t \) the error rate as
 \[
 \epsilon_t = \sum_{i=1}^{N} d_t(x_i) \cdot 1[y_i \neq f_t(x_i)]
 \]
 - Assign weight \(\alpha_t \) to the classifier \(f_t(x) \)'s in the final hypothesis
 \[
 \alpha_t = \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)
 \]
 - For each \(x_i \), \(d_{t+1}(x_i) = d_t(x_i) \cdot \exp[\alpha_t \cdot 1(y_i \neq f_t(x_i))] \)
 - Normalize \(d_{t+1}(x_i) \) so that \(\sum_i d_{t+1}(x_i) = 1 \)
 - \(f_{\text{FINAL}}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right] \)

Recall that \(\epsilon_t < 1/2 \)

Thus \((1 - \epsilon_t)/\epsilon_t > 1 \Rightarrow \alpha_t > 0 \)

The smaller is \(\epsilon_t \), the larger is \(\alpha_t \) and thus the more importance (weight) classifier \(f_t(x) \) gets in the final classifier \(f_{\text{FINAL}}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right] \)
Ada Boost

- At each iteration t:
 - Find best weak classifier \(f_t(x) \) using weights \(d_t(x) \)
 - Compute \(\varepsilon_t \), the error rate as
 \[
 \varepsilon_t = \sum d_t(x_i) \cdot I(y_i \neq f_t(x_i))
 \]
 - Assign weight \(u_t \) the classifier \(f_t \) is in the final hypothesis
 \[
 u_t = \log \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)
 \]
 - For each \(x_i \), \(d_{t+1}(x_i) = d_t(x_i) \cdot \exp[\alpha_t \cdot I(y_i \neq f_t(x_i))] \)
 - Normalize \(d_{t+1}(x) \) so that \(\sum d_{t+1}(x) = 1 \)
 - Weight of misclassified examples is increased and the new \(d_{t+1}(x) \)'s are normalized to be a distribution again

AdaBoost Example

ROUND 1

ROUND 2

Note: in the following slides, \(h_t(x) \) is used instead of \(f_t(x) \), and \(D \) instead of \(d \)
AdaBoost Example

ROUND 3

- $\alpha_2 = 0.14$
- $\alpha_3 = 0.02$

AdaBoost Comments

- It can be shown that the training error drops exponentially fast, if each weak classifier is slightly better than random

$$Err_{train} \leq \exp(-2\sum \gamma_t)$$

- Here $\gamma_t = \epsilon_t - 1/2$, where ϵ_t is classification error at round t (weak classifier f_t)

AdaBoost Example

- $f_{FINAL}(x)$

AdaBoost Comments

- But we are really interested in the generalization properties of $f_{FINAL}(x)$, not the training error
- AdaBoost was shown to have excellent generalization properties in practice
 - the more rounds, the more complex is the final classifier, so overfitting is expected as the training proceeds
 - but in the beginning researchers observed no overfitting of the data
 - It turns out it does overfit data eventually, if you run it really long
- It can be shown that boosting “aggressively” increases the margins of training examples, as iterations proceed
 - margins continue to increase even when training error reaches zero
 - Helps to explain empirically observed phenomena: test error continues to drop even after training error reaches zero
AdaBoost Example

- The final prediction in boosting $g(x)$ can be expressed as an additive expansion of individual classifiers:
 \[
g(x) = \sum_{k=1}^{M} \alpha_k f_k(x; \gamma_k)
\]
- Typically we would try to minimize a loss function on the N training examples:
 \[
 \min_{\alpha, \gamma_1, \ldots, \gamma_M} \sum_{i=1}^{N} L(y_i, \sum_{k=1}^{M} \alpha_k f_k(x_i; \gamma_k))
\]
- For example, under squared-error loss:
 \[
 \min_{\alpha, \gamma_1, \ldots, \gamma_M} \sum_{i=1}^{N} (y_i - \sum_{k=1}^{M} \alpha_k f_k(x_i; \gamma_k))^2
\]

The Margin Distribution

<table>
<thead>
<tr>
<th>epoch</th>
<th>5</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>training error</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>test error</td>
<td>8.4</td>
<td>3.3</td>
<td>3.1</td>
</tr>
<tr>
<td>%margins<0.5</td>
<td>7.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Minimum margin</td>
<td>0.14</td>
<td>0.52</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Boosting As Additive Model

- Forward stage-wise modeling is iterative and fits the $f_k(x, \gamma)$ sequentially, fixing the results of previous iterations:
 \[
g_t(x) = g_{t-1}(x) + \alpha_t f_t(x; \gamma_t)
\]
- Under the squared difference loss function:
 \[
 L(y_i, g_t(x_i) + \alpha_t f_t(x_i; \gamma_t)) =
 (y_i - g_{t-1}(x_i) - \alpha_t f_t(x_i; \gamma_t))^2
\]
- Forward stage-wise optimization seems to produce classifier with better generalization, doing the process stagewise seems to overfit less quickly.
Boosting As Additive Model

\[g(x) = \sum_{k=1}^{n} \alpha_k f_k(x; \gamma_k) \]

- It can be shown that AdaBoost uses forward stage-wise modeling under the following loss function:
 - \(L(y, g(x)) = \exp(-y \cdot g(x)) \) -- the exponential loss function
- At stage (or iteration) \(m \), we fit:
 \[
 \sum_{i=1}^{N} \exp(-y_i \cdot \{g_{m+1}(x_i) + \alpha_m \cdot f_m(x_i)\})
 \]
 \[
 = \sum_{i=1}^{N} \exp(-y_i \cdot \{g_{m+1}(x_i) + \alpha_m \cdot f_m(x_i)\})
 \]

Logistic Regression Model

- It can be shown that Adaboost builds a logistic regression model:
 \[
 g(x) = \alpha \sum_{i=1}^{N} \frac{\Pr(Y = 1 | x)}{\Pr(Y = -1 | x)} x \alpha f_i(x)
 \]
- It can also be shown that the the training error on the samples is at most:
 \[
 \sum_{i=1}^{N} \exp(-y_i \cdot g(x_i)) \leq \sum_{i=1}^{N} \exp(-y_i \cdot \sum_{i=1}^{N} \alpha_i f_i(x_i))
 \]

Exponential Loss vs. Squared Error Loss

- \(L(y, g(x)) = \exp(-y \cdot g(x)) \)
- \(L(y, g(x)) = (y - g(x))^2 \)

- Squared Error Loss penalizes classifications that are "too correct", with \(y \cdot g(x) > 1 \), and thus it is inappropriate for classification
- Exponential loss encourages large margins, want \(y \cdot g(x) \) large

Practical Advantages of AdaBoost

- fast
- simple
- Has only one parameter to tune (\(T \))
- flexible: can be combined with any classifier
- provably effective (assuming weak learner)
 - shift in mind set: goal now is merely to find hypotheses that are better than random guessing
- finds outliers
 - The hardest examples are frequently the "outliers"
Caveats

- performance depends on data & weak learner
- AdaBoost can fail if
 - weak hypothesis too complex (overfitting)
 - weak hypothesis too weak ($\gamma_t \to 0$ too quickly),
 - underfitting
 - Low margins \to overfitting
- empirically, AdaBoost seems especially susceptible to noise