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Abstract. We propose a fully automatic framework to detect and ex-
tract arbitrary human motion volumes from real-world videos collected
from YouTube. Our system is composed of two stages. A person detector
is first applied to provide crude information about the possible locations
of humans. Then a constrained clustering algorithm groups the detections
and rejects false positives based on the appearance similarity and spatio-
temporal coherence. In the second stage, we apply a top-down pictorial
structure model to complete the extraction of the humans in arbitrary
motion. During this procedure, a density propagation technique based
on a mixture of Gaussians is employed to propagate temporal informa-
tion in a principled way. This method reduces greatly the search space
for the measurement in the inference stage. We demonstrate the initial
success of this framework both quantitatively and qualitatively by using
a number of YouTube videos.

1 Introduction

Human motion analysis is notoriously difficult because human bodies are highly
articulated and people tend to wear clothing with complex textures that obscure
the important features needed to distinguish poses. Uneven lighting, clutter,
occlusions, and camera motions cause significant variations and uncertainties.
Hence it is no surprise that the most reliable person detectors are built for
upright walking pedestrians seen in typically high quality images or videos.

Our goal in this work is to be able to automatically and efficiently carve out
spatio-temporal volumes of human motions from arbitrary videos. In particular,
we focus our attention on videos that are typically present on internet sites such
as YouTube. These videos are representative of the kind of real-world data that
is highly prevalent and important. As the problem is very challenging, we do
not assume that we can find every individual. Rather, our aim is to enlarge
the envelope of upright human detectors by tracking detections from typical to
atypical poses. Sufficient data of this sort will allow us in the future to learn
even more complex models that can reliably detect people in arbitrary poses.
Two example sequences and the system output are shown in Fig. 1.

Our first objective is to find moving humans automatically. In contrast to
much of the previous work in tracking and motion estimation, our framework
does not rely on manual initialization or a strong a priori assumption on the
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Fig. 1. Two example outputs. Our input videos are clips downloaded from YouTube and
thus are often low resolution, captured by hand-held moving cameras, and contain a
wide range of human actions. In the top sequence, notice that although the boundary
extraction is somewhat less accurate in the middle of the jump, the system quickly
recovers once more limbs become visible.

number of people in the scene, the appearance of the person or the background,
the motion of the person or that of the camera. To achieve this, we improve a
number of existing techniques for person detection and pose estimation, leverag-
ing on temporal consistency to improve both the accuracy and speed of existing
techniques. We initialize our system using a state-of-the-art upright pedestrian
detection algorithm [1]. While this technique works well on average, it produces
many false positive windows and very often fails to detect. We improve this sit-
uation by building an appearance model and applying a two-pass constrained
clustering algorithm [2] to verify and extend the detections.

Once we have these basic detections, we build articulated models following
[3,4,5] to carve out arbitrary motions of moving humans into continuous spatio-
temporal volumes. The result can be viewed as a segmentation of the moving
person, but we are not aiming to achieve pixel-level accuracy for the extraction.
Instead, we offer a relatively efficient and accurate algorithm based on the prior
knowledge of the human body configuration. Specifically, we enhance the speed
and potential accuracy of [4,5] by leveraging temporal continuity to constrain
the search space and applying semi-parametric density propagation to speed up
evaluation.

The paper is organized as follows. After reviewing previous work in the area
of human motion analysis in Section 1.1, we describe the overall system archi-
tecture in Section 2. Two main parts of our system, person detection/clustering
and extraction of moving human boundaries, are presented in Sections 3 and 4,
respectively. Finally, implementation details and experimental results are de-
scribed in Section 5.

1.1 Related Work

Body Tracking. The most straightforward method to track humans is to
consider them as blobs and use generic object tracking methods such as [6,7].
More complex methods attempt to model the articulation of the body
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[8,9,10,11,12,13,14,15]. Most of these methods rely on a manual initialization,
strong priors to encode the expected motion, a controlled or very simple envi-
ronment with good foreground/background separation, and/or seeing the motion
from multiple cameras.

Pedestrian Detection and Pose Estimation. Several fairly reliable pedes-
trian detection algorithms have been developed recently [1,16,17,18,19,20]. How-
ever, these methods typically deal with upright persons only, and the detection
accuracy is significantly reduced by even moderate pose variations. Furthermore,
these algorithms offer little segmentation of the human, providing only a bound-
ing box of the body.

To model body configurations, tree shaped graphical models have shown
promising results [3,4,5]. These generative models are often able to find an ac-
curate pose of the body and limbs. However, they are less adept at making a
discriminative decision: is there a person or not? They are typically also very
expensive computationally in both the measurement and inference steps.

We build on these models and address the discrimination problem by ini-
tializing detections with an upright person detector. To improve computational
efficiency, our algorithm exploits temporal information and uses more efficient
semi-parametric (Gaussian mixture) representations of the distributions.

Based on similar intuitions, [21] uses temporal information to reduce the
search space progressively in applying pictorial structures to videos. Ren et al.
[22] takes another approach to human pose estimation in videos by casting the
figure tracking task into a foreground/background segmentation problem using
multiple cues, though the algorithm seems to rely on objects having a high con-
trast with the background.

2 System Architecture

Our system consists of two main components. The first component generates
object-level hypotheses by coupling a human detector with a clustering algo-
rithm. In this part, the state of each person, including location, scale and trajec-
tory, is obtained and used to initialize the body configuration and appearance
models for limb-level analysis. Note that in this step two separate problems
– detection and data association – are handled simultaneously, based on the
spatio-temporal coherence and appearance similarity.

The second component extracts detailed human motion volumes from the
video. In this stage, we further analyze each person’s appearance and spatio-
temporal body configuration, resulting in a probability map for each body part.
We have found that we can improve both the robustness and efficiency of the
algorithm by limiting the search space of the measurement and inference around
the modes of the distribution. To do this, we model the density function as a
mixture of Gaussians in a sequential Bayesian filtering framework [23,24,25].

The entire system architecture is illustrated in Fig. 2. More details about each
step are described in the following two sections.
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Fig. 2. Overall system

The focus of our work is to extract arbitrarily complex human motions from
YouTube videos that involve a large degree of variability. We face several difficult
challenges, including:

1. Compression artifacts and low quality of videos
2. Multiple shots in a video
3. Unknown number of people in each shot or sequence
4. Unknown human motion and poses
5. Unknown camera parameters and motion
6. Background clutter, motion and occlusions

We will refer back to these points in the rest of the paper as we describe how
the components try to overcome them.

3 People Detection and Clustering

As Fig. 2 shows, our system begins with a step to estimate location, scale, and
trajectories of moving persons. This step is composed of the following two parts.

3.1 Initial Hypothesis by Detection

We first employ an human detection algorithm [1] to generate a large num-
ber of hypotheses for persons in a video. This method, which trains a classifier
cascade using boosting of HOG features to detect upright standing or walking
people, has serious limitations. It only detects upright persons and cannot han-
dle arbitrary poses (challenge 4). The performance is degraded in the presence of
compression artifacts (challenge 1). Moreover, since it does not use any temporal
information, the detection is often inconsistent and noisy, especially in scale. It
is, therefore, difficult to reject false positives and recover miss-detections effec-
tively. The complexity increases dramatically when multiple people are involved
(challenge 3). This step, therefore, serves only as an initial hypotheses proposal
stage. Additional efforts are required to handle various exceptions.
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3.2 People Clustering

The output of the person detector is a set of independent bounding boxes; there
are no links for the same individual between detections. The detections also
have significant noise, false alarms and miss-detections especially due to the
low quality of the video (challenge 1). In order to recover from these problems,
we incorporate a clustering algorithm based on the temporal and appearance
coherence of each person. The goal of clustering in our system is to organize all
correct detections into groups, where each corresponds to a single person in the
sequence (challenge 3), while throwing away false alarms. To achieve this, we
apply a constrained clustering paradigm [2] in two hierarchical stages, adding
both positive (should link) edges and negative (can not link) constraints between
the detections. See Fig. 3 for an example.

Stage 1. In the first stage, we focus on exploiting the temporal-coherence cue by
associating detections from multiple frames with the help of a low-level track-
ing algorithm [7]. When the first detection is observed, a low-level tracker is
initialized with the detected bounding box. A new detection in a consequent
frame is assigned to an existing track if it coherently overlaps with the tracker
predictions. In this case, we reinitialize the tracker with the associated detection
bounding box. When no existing track can explain the new detection, a new
track is created. Due to the complexity of the articulated human body, a low-
level tracker is susceptible to drift from the person. We thus limit the temporal
life of the tracker by counting the number of frames after the last detection and
terminating the track at the last detection if the maximum gap (e.g. 100 frames)
is surpassed. Very small clusters with few detections are discarded. The clusters
produced in this first stage are almost always correct but over-segmented tracks
(see Fig. 3 (b)). This is because the person detector often fails to detect a person
in the video for many frames in a row – especially when the person performs
some action that deviates from an upright pose.

Stage 2. The stage 2 agglomerative constrained clustering views the stage 1
clusters as atomic elements, and produces constraints between them with pos-
itive weights determined by appearance similarity and negative constraints de-
termined by temporal/positional incompatibility.

For the appearance similarity term, we select multiple high-scoring detection
windows for each stage 1 cluster, and generate probability maps for the head
and torso locations using a simple two-part pictorial structure [4]. We use these
results to (1) remove false detections by rejecting clusters that have unreliable
head/torso estimation results (e.g., high uncertainty in the estimated head and
torso locations), and (2) generate a weighted mask for computing color histogram
descriptors for both the head and the torso. The appearance of the person in
each cluster is then modeled with the color distributions of head and torso.

After the second pass of our hierarchical clustering, we obtain one cluster per
person in the sequence. Fig. 3 (c) illustrates the final clustering result, which shows
that three different persons and their trajectories are detected correctly, despite
the fact that the appearance of these individuals are very similar (Fig. 3 (d)).
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Fig. 3. Human detection and clustering result. From noisy detections, three tracks of
people are identified successfully by filling gaps and removing outliers. (In this figure,
the horizontal and vertical axis are the x locations and frame numbers, respectively.)
(a) Original detection (b) Initial clusters after step 1 (c) Final clusters (d) Example
images of three similar people that correctly clustered into different groups.

4 Extracting Spatio-temporal Human Motion Volume

We now have a cluster for each person, with a detection bounding box giving
the location, scale, and appearance in some subset of the frames. Our goal is to
find the body configuration for all the frames of the cluster (challenge 4), both
where we have detections and where we do not. In this section, we discuss how
to extract human body pose efficiently in every frame.

The existing algorithms for human motion analysis based on belief propaga-
tion such as [3,5] typically require exhaustive search of the input image because
minimal (or no) temporal information is employed for the inference. Our idea is
to propagate the current posterior to the next frame for the future measurement.

4.1 Overview

We summarize here the basic theory for the belief propagation and inference
in [3,4]. Suppose that each body part pi is represented with a 4D vector of
(xi, yi, si, θi) – location, scale and orientation. The entire human body B is
composed of m parts, i.e. B = {p1, p2, . . . , pm}. Then, the log-likelihood given
the measurement from the current image I is

L(B|I) ∝
∑

(i,j)∈E

Ψ(pi − pj) +
∑

i

Φ(pi) (1)

where Ψ(pi−pj) is the relationship between two body parts pi and pj , and Φ(pi)
is the observation for body part pi. E is a set of edges between directly connected



Extracting Moving People from Internet Videos 533

body parts. Based on the given objective function, the inference procedure by
message passing is characterized by

Mi(pj) ∝
∑
pj

Ψ(pi − pj)O(pi) (2)

O(pi) ∝ Φ(pi)
∏

k∈Ci

Mk(pi) (3)

where Mi(pj) is the message from part pi to pj, O(pi) is the measurement of
part pi, and Ci is a set of children of part pi. The top-down message from part
pj to pi for the inference is defined by

P (pi|I) ∝ Φ(pi)
∑
pj

Ψ(pi − pj)P (pj |I), (4)

which generates the probability map of each body part in the 4D state.
Based on this framework, we propose a method to propagate the density

function in the temporal domain in order to reduce search space and temporally
consistent results. The rest of the section describes the details of our algorithm.

4.2 Initialization

The first step for human body extraction is to estimate an initial body configu-
ration and create a reliable appearance model. The initial location of the human
is given by the method presented in Section 3. Note that the bounding box pro-
duced by the detection algorithm does not need to be very accurate since most
of the background area will be removed by further processing. Once a potential
human region is found, we apply a pose estimation technique [4] based on the
same pictorial structure and obtain the probability map of the configuration of
each body part through the measurement and inference step. In other words, the
output of this algorithm is the probability map Pp(u, v, s, θ) for each body part
p, where (u, v) is location, s is scale and θ is orientation. A sample probability
map is presented in Fig. 4 (b)-(d). Although this method creates accurate proba-
bility maps for each human body part, it is too computationally expensive to be
used in video processing. Thus, we adopt this algorithm only for initialization.

4.3 Representation of Probability Map

The original probability map Pp is represented by a discrete distribution in 4D
space for each body part. There are several drawbacks of the discrete density
function. First of all, it requires a significant amount of memory space, which
is proportional to the image size and granularity of the orientations and scales,
even if most of the pixels in the image have negligible probabilities. Second,
the propagation of a smooth distribution is more desirable for the measurement
in the next step since a spiky discrete density function may lose a significant
number of potentially good candidates by sampling.
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Instead of using the non-parametric and discrete probability map, we em-
ploy a parametric density function. However, finding a good parametric density
function is not straightforward, especially when the density function is highly
multi-modal as in human body. In our problem, we observe that the probability
map for each orientation is mostly uni-modal and close to a Gaussian distribu-
tion1. We employ a mixture of N Gaussians for the initialization of human body
configuration, where N is the number of different orientations.

Denote by x(k)
i and ω

(k)
i (i = 1, . . . , n) the location and weight of each point in

the k-th orientation probability map. Let θ(k) be the orientation corresponding
the k-th orientation map. The mean (m(k)), covariance (P(k)) and weight (κ(k))
of the Gaussian distribution for the k-th orientation map is then given by

m(k) =
(

x(k)

θ(k)

)
=
(∑

i ω
(k)
i x(k)

i

θ(k)

)
(5)

P(k) =
(

Vx 0
0� Vθ

)
=
(∑

i ω
(k)
i (x(k)

i − m(k))(x(k)
i − m(k))� 0

0� Vθ

)
(6)

κ(k) =
∑

i

x(k)
i /

∑
k

∑
i

x(k)
i (7)

where Vx and Vθ are (co)variance matrices in spatial and angular domain, re-
spectively. The representation of the combined density function based on the
entire orientation maps is given by

f̂(x) =
1

(2π)d/2

N∑
i=1

κ(k)

| P(k) |1/2
exp

(
−1

2
D2
(
x,x(k),P(k)

))
(8)

where D2
(
x,x(k),P(k)

)
is the Mahalanobis distance from x to x(k) with

covariance P(k).
Although we simplify the density functions for each orientation as a Gaussian,

it is still difficult to manage them in an efficient way especially because the
number of components will increase exponentially when we propagate the density
to the next time step. We therefore adopt Kernel Density Approximation (KDA)
[26] to further simplify the density function with little sacrifice in accuracy. KDA
is a density approximation technique for a Gaussian mixture. The algorithm finds
the mode locations of the underlying density function by an iterative procedure,
such that a compact mixture of Gaussians based on the detected mode locations
is found.

Fig. 4 presents the original probability map and our approximation using a
mixture of Gaussians for each body part after the pose estimation. Note that
the approximated density function is very close to the original one and that the
multi-modality of the original density function is well preserved.

1 Arms occasionally have significant outliers due to their flexibility. A uni-modal
Gaussian fitting may result in more error here.
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(a) (b) torso (c) upper-left arm (d) upper-left leg

Fig. 4. Comparison between the true probability map for the pose estimation (left in
each sub-figure) and its Gaussian mixture approximation (right) for each body part.
The approximated density functions are propagated for the measurement in the next
time step. Note that our approximation results look much wider since different scales
in the color palette are applied for better visualization.

4.4 Measurement, Inference and Density Propagation

Fast and accurate measurement and inference are critical in our algorithm. As
shown in Eq. (2) and (3), the bottom-up message is based on all the informa-
tion up to the current node as well as the relative configuration with the parent
node. Exhaustive search is good for generating the measurement information
at all possible locations. However, it is very slow and, more importantly, the
performance for the inference may be affected by spurious observations; noisy
measurement incurred by an object close to or moderately far from the real
person may corrupt the inference process. A desirable reduction of search space
not only decreases computation time, but also improves the accuracy. The search
space for measurement and inference is determined by a probability density func-
tion characterizing potential state of human body, where a mixture of Gaussians
are propagated in sequential Bayesian filtering framework [23,24,25].

In our method, we perform local search based on the spatio-temporal infor-
mation. We first diffuse the posterior density function from the previous frame,
which is done analytically thanks to the Gaussian mixture representation. Based
on the diffused density, locally dense samples are drawn to make measurements
and a discrete density function is constructed. Note that inference is performed
using the discrete density function. But a parametric representation of density
function is propagated to the next time step for the measurement. After the infer-
ence, the pose estimation density function is converted to a mixture of Gaussians
by the method described in Section 4.3. The posterior is given by the product
of the diffused density and the pose estimation density function in the current
frame. This step is conceptually similar to the integration of the measurement
and inference history (temporal smoothing). We denote by X and Z the state
and observation variable in the sequential Bayesian filtering framework, respec-
tively. The posterior at the time step t of the state is given by the product of
two Gaussian mixture as follows:

p(Xt|Z1:t) ∝ p(Zt|Xt)p(Xt|Z1:t−1) (9)

=

(
N1∑
i=1

N (κi,xi,Pi)

)⎛
⎝ N2∑

j=1

N (τj ,yj ,Qj)

⎞
⎠ , (10)
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Algorithm 1. Moving human body extraction
1: Apply human detection algorithm to a sequence
2: Apply clustering algorithm based on the detection. Create the initial body config-

uration and appearance at the first detection. Also, obtain the number of people
in the video.

3: Construct pose estimation density function for each body part based on a mixture
of Gaussians in the first frame, where it is also used as the posterior.

4: while not the end of sequence do
5: Go to the next frame
6: Diffuse the posterior of the previous frame
7: Perform the measurement and inference with the locally dense samples
8: Create a Gaussian mixture with the discrete pose estimation distribution
9: Compute the posterior by multiplying diffusion and pose estimation density

10: if there exists the detection of the same person then
11: Reinitialize the appearance and body configuration of the person (optional)
12: end if
13: end while

(a) (b) (c) (d)

Fig. 5. Density functions in one step of the human motion extraction. (a) Original
frame (cropped for visualization) (b) Diffused density function (c) Measurement and
inference results (d) Posterior (Note that the probability maps for all orientations are
shown in a single image by projection.)

where N (·) represents a Gaussian distribution with parameters of weight, mean,
and covariance. The first and second terms in the right hand side represent diffu-
sion and pose estimation density function, respectively. Note that the product of
two Gaussian mixtures is still a Gaussian mixture, but it causes the exponential
increase of the number of components. So KDA is required again to maintain a
compact representation of the density function.

The density propagation algorithm for inference is summarized in Algorithm 1,
and illustrated in Fig. 5.

5 Experiments

In order to evaluate our proposed approach, we have collected a dataset of 50
sequences containing moving humans downloaded from YouTube. The sequences
contain natural and complex human motions and various challenges mentioned
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Table 1. Precision-Recall Table: Performance comparison

Detection only Detection & Clustering Full model

Prec Rec F Prec Rec F Prec Rec F

Rate

0.89 0.31 0.46 0.89 0.30 0.45 0.83 0.73 0.78
0.90 0.25 0.39 0.91 0.24 0.38 0.87 0.62 0.72
0.92 0.19 0.32 0.92 0.19 0.32 0.86 0.51 0.64
0.93 0.16 0.27 0.94 0.15 0.27 0.92 0.43 0.58
0.94 0.13 0.24 0.94 0.13 0.23 0.88 0.32 0.46

in Section 2. Many videos have multiple shots (challenge 2), so we divide the
original videos into several pieces based on the shot boundary detection, which
is performed by global color histogram comparison with threshold [27]. We deal
with each shot as a separate video. We have made this dataset public and it can
be found at http://vision.cs.princeton.edu/projects/extractingPeople.html.

Instead of 4D state space for human body configuration, 3D state space for
location and orientation is utilized and scale is determined based on the detection
size. Although person detector is not so accurate in scale estimate, the extraction
algorithm is robust enough to handle some variations of the scale. Also, the gaps
between detections are not generally long, and it is not often the case that we
observe significant change in scale between two detections.

The measurement is based on edge template and color histogram as in [4], but
search space for the measurement is significantly reduced. Fig. 5 (b) illustrates
the search space reduction, where low density areas are not sampled for the
observations.

We evaluate the retrieval performance of our system in terms of the precision-
recall measures. For each sequence, we have generated ground-truth by manually
labeling every human present in each frame with a bounding box. We compare
the precision-recall rates at three stages of our system: pedestrian detection only
[1], people detection and clustering, and the full model. For a fixed threshold of
the human detector, we obtain the three precision-recall pairs in each row of
Table 1. Our full system provides the highest performance in terms of the F-
measure2. This reflects the fact that our system achieves much higher recall rates
by extracting non-upright people beyond the pedestrian detections.

We also evaluate the performance of our system in terms of the segmentation
of the moving people. We create ground-truth for the spatial support of the
moving people in the form of binary masks. We have labeled a random sample
of 122 people from our 50 sequences. The evaluation of the pose estimation is
performed at frames td, td+5 and td+10, where td is a frame containing a pedes-
trian detection, and no detections are available in [td + 1, td + 10]. The average
accuracies are 0.68, 0.68 and 0.63 respectively. Note that the accuracy decrease
in the extracted person mask is moderate, and the temporal error propagation
is small.

2 The F-measure is defined [28] as: 2 · (precision · recall)/(precision + recall).
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Fig. 6. Experimental results for various sequences. Each row corresponds to a sep-
arate sequence and two failure examples are illustrated in the last two rows. Please
visit http://vision.cs.princeton.edu/projects/extractingPeople.html for more
sample videos.
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The results for several YouTube videos are presented in Fig. 6. Various general
and complex human motions are extracted with reasonable accuracy, but there
are some failures that are typically caused by inaccurate measurements. In a
PC with a 2.33 GHz CPU, our algorithm requires around 10-20 seconds for the
measurement and inference of each person, one order of magnitude faster than
the full search method of [4].

6 Conclusion and Future Work

We presented a method to automatically extract human motion volumes from
natural videos. Our system achieves promising results although many improve-
ments can still be made. Our future work is to make detection/tracking and
pose estimation module interact more closely to create positive feedback and
improve the quality of estimation. Currently, the measurement is based only on
the top-down pictorial structure, but we plan to incorporate bottom-up cues for
more robust and efficient processing. We also aim to build a large data set with
detailed labeling for human motion, which would be very helpful resource for
human motion analysis research [29,30,31].
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