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Abstract. We address the problem of estimating human body pose from a sin-
gle image with cluttered background. We train multiple local linear regressors for
estimating the 3D pose from a feature vector of gradient orientation histograms.
Each linear regressor is capable of selecting relevant components of the feature
vector depending on pose by training it on a pose cluster which is a subset of the
training samples with similar pose. For discriminating the pose clusters, we use
kernel Support Vector Machines (SVM) with pose-dependent feature selection.
We achieve feature selection for kernel SVMs by estimating scale parameters of
RBF kernel through minimization of the radius/margin bound, which is an upper
bound of the expected generalization error, with efficient gradient descent. Hu-
man detection is also possible with these SVMs. Quantitative experiments show
the effectiveness of pose-dependent feature selection to both human detection and
pose estimation.

1 Introduction

Human detection and pose estimation have numerous applications such as automated
surveillance, driver assistance for automobiles, human-computer interfaces, and are an
active area of research. These tasks are challenging because clothing, lighting condi-
tions, and pose change the appearance of humans significantly. To cope with this prob-
lem, an image descriptor based on histograms of oriented gradients (HOG), which are
computed on a uniform grid of overlapping local patches, has been used as a feature
vector successfully for both human detection [1,2,3] and human pose estimation [4,5,6].
The descriptor also encodes unwanted background clutter into the feature vector, some
of the feature vector components are irrelevant to the task. It is well known that such ir-
relevant components increase the complexity of classifiers and regressors and decrease
generalization capacity, and that feature selection techniques [7] can be used for solving
this problem.

One important aspect of relevant feature selection in detecting humans and estimat-
ing their pose is the fact that what features are relevant depends on pose (Fig. 1). Feature
components that are relevant for some poses, are irrelevant to others, and this aspect has
not received much attention in the literature. To address this issue, we propose a piece-
wise linear regression method where multiple local linear regressors approximate the
nonlinear mapping function from HOG-based feature vectors to 3D poses. We train the

� Current affiliation: Corporate R&D Center, Toshiba Corporation.

D. Forsyth, P. Torr, and A. Zisserman (Eds.): ECCV 2008, Part II, LNCS 5303, pp. 434–445, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Relevant Feature Selection for Human Pose Estimation and Localization 435

Fig. 1. Relevant feature depending on pose. The diagonal gradient orientation in the left figure
(shown by the diagonal white line segment in the white rectangle) is a relevant component of the
feature vector for describing the pose of the right arm while the same component is irrelevant to
the pose shown in the right figure.

local linear regressor for each pose cluster which contains a subset of training samples
with similar poses. Since the linear regressor implicitly performs feature selection [4],
relevant features are selected automatically for each pose cluster. Note that piecewise
regression approaches have been used for pose estimation in a different context [8,9],
where multiple regressors are employed for describing one-to-many mapping from an
image feature to 3D poses, e.g. multiple different poses have similar silhouettes, and
such ambiguity is solved by taking temporal consistency into account. In our method,
we discriminate the pose cluster from the others to select the linear regressor to be used
for 3D pose estimation. For this purpose, we train a Support Vector Machine (SVM)
with feature selection for each cluster, which enables pose-dependent feature selection.

This cluster discrimination process is applicable to human detection as well by
adding non-human training samples and training SVMs to discriminate each pose clus-
ter from the non-human ones.

We achieve feature selection for each SVM using a RBF kernel by estimating scale
parameter of the RBF kernel for each component of the feature vector separately.
This is a problem of hyperparameter estimation (or model selection) for SVMs, and is
solved by minimizing the radius/margin (R/M) bound [10] based on a gradient descent
method [11]. Although this feature selection method for SVMs has not been used for
vision problems, it reduces generalization error effectively because the R/M bound is
an approximation to an upper bound of the expected generalization error. Furthermore,
we point to a new way to efficiently compute the gradient of the R/M bound.

Related works: Agarwal et al. [4] recover frontal poses of the upper human body by re-
gression from the feature vector based on HOG encoded by non-negative matrix factor-
ization (NMF) to suppress unwanted background. In their experiments, the error of pose
prediction using NMF encoding is similar to the one obtained by linear regression with-
out NMF encoding. This is because the linear regressor implicitly performs feature se-
lection. Bissacco et al. [12] estimate human full body pose based on multi-dimensional
boosting regression which enables relevant feature selection from a preselected set of
Haar-like features. Shakhnarovich et al. [6] find k-NN samples by a fast parameter
(pose) sensitive hashing algorithm and estimate pose by locally weighted regression
using the k-NN samples. They assume that the background is simple and stationary
and that the human body is segmented from the background. Many approaches have
been proposed to deal with background clutter, from body parts detection [13,14,15,16],
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Fig. 2. Training piecewise linear regressors. The pose space is divided into several clusters by
k-means. For each cluster, a linear regressor and an SVM are trained with feature selection.

which is particularly difficult in a single view because of self-occlusion, to silhouette
extraction [8,17,18,19], which limits the applicability to fixed background, and edge-
based template matching [9], which may be unstable under significant background clut-
ter.

For Human detection, AdaBoost is used as a classifier to select relevant features
from a set of, e.g., Haar-like wavelet features [20], gradient response in several di-
rections [21], and SIFT-like gradient orientation features [2,3]. Support Vector Ma-
chines (SVMs) are also used for human detection with implicit feature selection (linear
SVM) [1], and “filter-type” feature selection methods which preselect relevant features
independently of the SVMs based on another machine learning method capable of fea-
ture selection, such as AdaBoost [22], or based on a heuristic that relevant features
move decision boundaries significantly when they are removed [23]. Although the fea-
ture selection method is different and pose estimation is very coarse (front/left/right),
[22] is similar to our approach in that it discriminates the pose clusters based on pose-
dependent feature selection.

2 Piecewise Linear Regression

For recovering 3D human pose from a static image, a regression approach has been
proposed in [8,4,17], where a mapping function from a feature vector extracted from
the static image to a pose vector is learned using a set of labeled training samples.
We take this type of regression based approach using the feature vector based on the
histograms of oriented gradients (HOG) [4,5].

The feature vector consists of the histograms computed on a uniform grid of over-
lapping local patches to describe the contents of an image window. The histogram for
each image patch encodes local shape and position information, while the coarse grid
and orientation histogram is insensitive to variation in appearance and small misalign-
ments. This representation also encodes unwanted background clutter into the feature
vector and some of the components are irrelevant to human pose. More importantly,
the relevant component is dependent on pose as shown in Fig. 1 because the relative
position of the arms, legs, and torso in the image window vary depending on pose.

Considering this fact, we propose a piecewise linear regression method for recover-
ing 3D pose from a feature vector x ∈ RL (see Fig. 2). In this paper, we represent the
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Fig. 3. Overview of our method for predicting 3D pose. (a) Given a test image, (b) the feature
vector is computed in the window. (c) The pose cluster which the current pose belongs to is
determined by SVM classifiers. (d) The 3D pose is recovered using the linear regressor of the
selected cluster (k=3). (e) The recovered pose is shown by red and green line segments, where
green represents the right leg and arm.

3D pose by a pose vector y ∈ RP which is a collection of 3D locations of major joints.
Given a set of training samples {(yi, xi)|i = 1 · · ·N}, we divide them into several
clusters in the pose space by k-means so that each cluster contains similar poses, and
train a linear regressor for each cluster Ck, which maps a feature vector x to a pose
vector y:

y = Akx + εk, (1)

where Ak and εk are a weight matrix and a residual error vector for a cluster Ck , re-
spectively. It is important for our approach of pose-dependent feature selection that each
pose cluster contains similar poses. We verified by preliminary experiments that each
pose cluster generated by k-means (e.g. 6 clusters for walking sequences) was already
local enough for approximating the nonlinear mapping function by multiple linear re-
gressors, and that Expectation-Maximization type algorithms [9], which simultaneously
optimize regressors and partition of clusters, did not improve generalization perfor-
mance significantly. Although a kernel-based nonlinear regressor can be used with fea-
ture selection, we choose to use the linear regressor because of the following reasons:
(1) The linear regressor is capable of implicit feature selection in the sense that it auto-
matically reduces the weights with respect to irrelevant features through the estimation
of the weight matrix Ak. (2) The relation between the pose vectors and the feature vec-
tors within a cluster is simple enough to be described by a linear function. (3) Training
is much simpler than the kernel regressors with feature selection. Since similar poses in
each cluster share the relevant features, each linear regressor achieves pose-dependent
feature selection. Next, for each cluster, we train a Support Vector Machine (SVM) [10]
with capabilities of feature selection [11] and probability output [24] in order to dis-
criminate the cluster from the others. Feature selection is useful for discriminating the
clusters as well because the feature vector contains cluttered background and the rele-
vant features vary depending on the cluster to be discriminated.

For predicting a pose given a test image with a window circumscribing a subject,
we first extract a HOG-based feature vector of the window (see Fig. 3). Secondly, we
determine the cluster that the current pose of the subject belongs to by selecting the
cluster with the highest probability output p(k|x) of the SVM classifier. Thirdly, we
predict the 3D pose using the linear regressor of the selected cluster.
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2.1 Linear Regression Method

To train a linear regressor which recovers a pose vector y from a feature vector x, we
estimate the weight matrix Ak for each cluster Ck using training samples in Ck by
minimizing prediction error with a regularization term R(·) to control overfitting:

Ak = argmin
Ak

⎧
⎨

⎩

∑

(yi,xi)∈Ck

‖Akxi − yi‖2 + R(Ak)

⎫
⎬

⎭
. (2)

This is equivalent to the MAP estimation in the probabilistic regression framework
assuming a Gaussian distribution on the residual error vector. The first term, the data
fidelity term, in the objective function corresponds to the likelihood, and the regulariza-
tion term corresponds to the prior p(Ak).

For a Gaussian prior p(Ak) ∼
∏

l exp(−ν‖al‖2), where al denotes the l-th column
vector of Ak, the regularizer takes the form R(Ak) ≡ λ‖Ak‖2

F and the solution gives a
linear ridge regressor. The ridge regressor is capable of performing feature selection in
the sense that the columns ‖al‖ weigh irrelevant components l, ideally belonging only
to the background, automatically reducing their effect through the optimization (2).

Relevance Vector Machine (RVM) regression [25] results in taking a prior of the
form p(Ak) ∼

∏
l ‖al‖−ν , which gives a sparse solution because the prior is sharply

peaked at ‖al‖ = 0 and pushes the weights of the irrelevant components to zero. For
achieving sparsity, a Laplace prior of the form p(Ak) ∼

∏
l exp(−ν‖al‖) is often

used and an ε-insensitive loss function is used as the data fidelity term in SVM re-
gression [26]. In this paper, we use the RVM regressor because it gives a more sparse
solution while maintaining good generalization performance. Note that the SVM re-
gressor can produce sparse solutions comparable to the RVM regressor by employing
“reduced-set” post-processing [27].

Since similar poses contained in each cluster share relevant features, the linear re-
gressor is capable of selecting such relevant features depending on the poses in the
cluster.

2.2 Cluster Discrimination Using SVM

In this section, we describe the SVM classifiers for discriminating a cluster Ck from
the other clusters. For simplicity of description, we drop the subscript k referring to the
cluster Ck in the rest of this section.

Feature selection is useful for discriminating the clusters for the same reason as in the
regression case. We introduce feature selection into the kernel SVM based on automatic
relevance determination (ARD), which is achieved by tuning the scale parameters γ ∈
RL ≥ 0 of the ARD Gaussian kernel

K(xi, xj) = exp

(

−1
2

∑

l

γl|xil − xjl|2
)

. (3)

Although a linear SVM is capable of implicit feature selection, the kernel SVM per-
forms better than the linear SVM in our experiments. Tuning the kernel scale parameters
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γ, which are hyperparameters, is achieved by minimizing an estimate of the general-
ization error such as the leave-one-out (LOO) error. The LOO error has an upper bound
referred to as the radius/margin (R/M) bound [10].

γ = arg min
γ

1
N

R2‖w‖2, (4)

where 2/‖w‖ is a margin between the classes to be discriminated and R is the radius
of the smallest sphere that contains all the vectors zi = φ(xi) in a projected (high
dimensional) feature space. Here the inner product in z-space is computed by the kernel
function: (zi, zj) = K(xi, xj). This means tuning the hyperparameters that maximize
the margin while making the sphere as small as possible.

Let ti ∈ {−1, +1} be a target value. ti = +1 denotes a training sample (yi, xi) is in
the cluster Ck and otherwise ti = −1. w is the solution of the following SVM problem
with hard margin1:

min
1
2
‖w‖2 s.t. ti(wT zi + b) ≤ 1 ∀i. (5)

R is the solution of the following problem:

min R2 s.t. ‖zi − c‖ < R2 ∀i. (6)

To find the optimum value of γ by minimizing the R/M bound, gradient descent is
shown to be an efficient method [11]. We eliminate irrelevant features that have a small
value of γl during the optimization process of (4) every 5 iterations of the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm [28].

To compute the derivative of the R/M bound, we need the derivatives of ‖w‖2 and
R2 with respect to every scale parameter γl. This requires computing the entire kernel
matrix for each γl (or storing it in memory to avoid re-computation), as done in [11,29].

Remark 1. The derivative of the margin ‖w‖2 with respect to the scale parameter γl

is computed using the support vectors only because the Lagrange multipliers αi of the
solution (5) are non-zero only for the support vectors:

∂‖w‖2

∂γl
=

1
2

∑

{i|αi �=0}

∑

{j|αj �=0}
αiαjtitjK(xi, xj)|xil − xjl|2. (7)

The derivatives of the radius R2 can be computed similarly using the feature vectors
corresponding to the non-zero Lagrange multipliers βi of the solution (6).

Although this remark is not mentioned in the original papers [11,29], it reduces compu-
tational cost significantly, i.e., the computational complexity of (7) is O(LN2

sv) while
that of the original formulation is O(LN2), where N , Nsv, and L are the numbers
of training samples, support vectors, and feature dimensions, respectively. Hence the

1 A non-separable case can be treated as an SVM problem with hard margins by converting the
SVM problem using L2 soft margin [11].
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Fig. 4. Training images. The training images are synchronized with pose data. The synthesized
dataset consists of cluttered background images (left) and clean background images (middle),
where the white dots shows 13 joint locations used for encoding 3D pose. The real dataset (right)
includes three subjects.

computational cost of (7) is smaller than that of the original formulation by a factor of
(Nsv/N)2.

To obtain the posterior probability p(k|x) that the pose represented by a feature x
belongs to the cluster with index k, the mapping from the SVM output to the posterior
probability is approximated by a sigmoid function [24]. The parameters of the sigmoid
function are tuned by cross validation. Given a feature vector x extracted from a test
image, we compute the probability p(k|x) for each cluster and determine that the pose
represented by a feature x belongs to the cluster with the highest probability.

2.3 Human Detection

The framework presented thus far for pose discrimination can be applied to human
detection as well, by adding the non-human training samples. They are negative samples
for training each of the SVMs: The target value is ti = +1 for the training sample
(yi, xi) in the cluster Ck, and ti = −1 for the non-human samples.

3 Experiments

Pose prediction: We have conducted experiments on a synthetic database and a real
database (see Fig. 4). In the synthetic dataset, human poses are randomly generated in
a subspace constructed by PCA using the walking sequences extracted from the CMU
Motion Capture Database2. Human images corresponding to each pose are rendered by
a human model rendering software, Poser, with cluttered background of natural images
and with uniform background. For real dataset, we used HumanEva-I dataset [30].

The human pose is represented by a 39-dimensional pose vector y which is a col-
lection of 13 major joint locations as shown in Fig. 4 (middle). The feature vector is
histograms of oriented gradients. We compute the orientation of gradients in [0, π] and
construct the histograms using 8 orientation bins in 3x3 spatial cells which comprise a
spatial block. We used uniformly spaced 4x4 blocks overlapping with neighbor blocks
by the length of a cell and obtain a 1152 dimensional feature vector for a image window.

Fig. 5 shows pose prediction errors with respect to different regression methods
on the synthetic dataset with clean and cluttered background. The prediction errors

2 http://mocap.cs.cmu.edu

http://mocap.cs.cmu.edu
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Fig. 5. Results of pose estimation on the synthetic dataset. (a) Mean poses of 6 pose clusters
drawn by red and green (right arm and leg) line segments on the closest training image, and
relevant components of the feature vector for the left and right pose clusters (components with
dark color have high weights ‖al‖). (b) Pose prediction errors with respect to different regression
methods on clean and cluttered background. (c) Example of successful pose estimates. (d) Typical
example of misestimation.

are measured in terms of the RMS deviation from the ground truth for the 3D loca-
tions of the 13 major joints. The number of training and test samples are 4000 and
1000, respectively. In the case of cluttered background, the prediction errors with re-
spect to any single regressor (linear ridge regressor (LRR), LRR with NMF encoding
(NMF+LRR) [4], RBF-kernel ridge regressor (KRR), linear RVM regressor (LRVM),
and RBF-kernel RVM regressor (KRVM)) are equally large. Since our method is capa-
ble of reducing the disturbance of background clutter (see Fig. 5(a) bottom) by pose-
dependent feature selection using 6 linear RVM regressors and 6 ARD kernel SVM
classifiers3 (6FSSVM+LRVM), the prediction error of our method is almost as good
as that for the clean background with a linear regressor (LRR or LRVM). The problem
of multiple posterior modes in mapping form the HOG-feature to the 3-D pose is not
severe on clean backgrounds. However, such multi-modality is a typical failure mode
in the presence of cluttered background as shown in Fig. 5 (bottom right), where the
left arm and leg are misestimated as the right ones. Note that the prediction error of
6FSSVM+LRVM for clean background is smaller than those of the nonlinear regres-
sion methods. This shows that the number of pose clusters, which we have determined
to be 6 experimentally, are sufficient for approximating the nonlinear mapping function
from HOG feature to 3D pose.

Fig. 6 shows pose prediction errors and sample pose estimates for the real image
dataset of HumanEva-I. In this dataset, image sequences captured by calibrated cam-
eras are synchronized with motion capture data. We used walking sequences of three
subjects, S1, S2 and S3, captured by a camera C1 only. The training subset of the
dataset contains 590, 438, and 435 frames for S1, S2, and S3, respectively. We add
feature vectors slightly shifted in position and scale to increase tolerance to misalign-
ment of the test window, and the total number of training samples is 4389 to train a

3 LIBSVM [31] is used with modification for solving the problems (5) and (6).
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Fig. 6. Results of pose estimation on HumanEva-I dataset. The left bar graph shows pose
prediction errors with respect to different regression methods. The right images show samples of
predicted poses for 3 subjects drawn in the red and green (right arm and leg) line segments. (The
head top joint (headDistal) is not used because of error in the dataset.)

Table 1. Mean errors of relative joint positions on the test subset of HumanEva-I dataset. The
mean errors of our method without using background subtraction are smaller than those of
Poppe’s method [5] based on background subtraction for the subject S1, S2 and total average.

Method S1 S2 S3 Average [mm]
Poppe [5] 41.24 39.56 55.27 42.85

Ours 41.19 35.03 37.69 37.98

linear ridge regressor (LRR), an RBF-kernel ridge regressor (KRR), 6 SVMs with LRRs
(6SVM+LRR) or KRRs (6SVM+KRR), and 6 feature-selection SVMs with LRRs
(6FSSVM+LRR). For testing, we used the validation subset (ground truth is known)
and the test window circumscribing the subject is given based on the known 3D po-
sition of the subject. Pose-dependent feature selection by 6SVM+LRR decreases the
prediction error. It is competitive with 6SVM+KRR where feature selection is not per-
formed. The prediction error further decreases by introducing pose-dependent feature
selection for both SVMs and regressors (6FSSVM+LRR). Although the background
in the test window varies according to the 3D location of the subject, improvement
by 6FSSVM+LRR is limited because the background clutter in HumanEva-I dataset is
much simpler than that of the synthetic dataset. Training the kernel SVMs with feature
selection requires solving the problems (5) and (6) many times, and it took about 3
hours for each SVM in this experiments using HumanEva-I dataset on a standard PC
with 2.13 GHz Intel CPU and 2 GB memory. Training time for each linear RVM re-
gressor was about 5 seconds. For estimating the pose given a feature vector, it takes 25
ms on average.

We compare our method with the recent method proposed by Poppe [5] using HOG-
based feature vector on the test subset of HumanEva-I dataset. Training data used in
this experiment are the same as [5]. His method uses background subtraction to locate
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Fig. 7. Results of human detection. (a) Human models used for generating training and test
images (top), and ROC curves of different classifiers (bottom). (b) ROC curves of our detector
and the linear SVM [1] (left). The mean pose of a pose cluster is drawn on the closest training
image (middle). Pose is represented by 13 points which are shown by white dots. Estimated kernel
scale parameters γl for each feature component are shown by short line segments (right). Black
color means a high value of γl.

the subject accurately in each image while our method uses the SVM-based human de-
tector described in section 2.3, whose negative training samples are randomly sampled
image patches without overlapping with human region more than 50%. Although we
can search the entire image for obtaining global 3D position of the subject, we apply
our human detector locally on a 5×5×7 grid covering 40×40×150 cm (wide search
range in the camera direction) around the previous global position to reduce the com-
putational cost. We obtain the current 3D global position as the mean of the weighted
positions where the human detector is applied. The weights are the probability outputs
of the human detector. In the initial frame, we give a rough estimate of 3D global po-
sition by watching the image since we do not know the ground truth in the test subset.
Table 1 shows the mean errors of joint positions relative to the pelvis (torsoDistal) joint.
Although our method does not perform background subtraction, the mean errors of our
method are smaller than those of Poppe’s method.

Human detection: Fig. 7(a) shows results of human detection using thesyntheticdataset
consisting of 6 subjects with different clothing and poses. The pose variation is the same
as the case of pose estimation and each subject has 1000 samples. We use 5000 samples
of the left 5 subjects in Fig. 7(a) and 1500 non-human samples for training. For testing,
we use 1000 samples of the subject on the right and 1000 samples of non-human images
which are not included in the training samples. Introducing the feature selection on a
single SVM (1FSSVM) improves the performance and pose-dependent feature selection
using 6 SVMs (6FSSVM) outperforms the other methods. The prediction error for the
method using 6 kernel SVMs (6KSVM) is worse than 1KSVM due to the lack of samples
for training each of the 6 kernel SVMs, which are much fewer than those of 1KSVM.

We test our human detector on the real images of the INRIA person dataset [1]4 to il-
lustrate the flexibility of our approach that uses pose-dependent relevant features. Since

4 http://pascal.inrialpes.fr/data/human/

http://pascal.inrialpes.fr/data/human/
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our method requires pose information to build pose clusters, we added pose information
to the positive (human) images by locating the 13 positions, such as head, elbows, knees
an so on, by hand (see Fig. 7(b) middle). We trained our detector using 4 pose clusters,
a linear SVM and a kernel SVM with the default setting of [1] on 1,246 positive and
randomly sampled 12,180 negative samples plus hard negative samples for retraining,
which are false positives in the first training. Fig. 7(b) shows the ROC curves and an
example of estimated kernel scale parameters for a pose cluster. Our detector improves
performance by 12% and 8% at 10−6 false positive rate compared with linear SVM and
kernel SVM, respectively.

4 Conclusions

We presented a method for human detection and pose estimation from a static image
with background clutter. We estimated the 3D pose from a feature vector consisting of
local gradient orientation histograms by first discriminating the pose clusters using the
kernel SVMs with feature selection and then estimating the pose using linear regres-
sors. We performed feature selection for kernel SVMs by estimating scale parameters
of ARD RBF kernel through minimization of the R/M bound which is an upper bound
of the expected generalization error. For minimizing the R/M bound with gradient de-
scent, we computed its gradient efficiently by using support vectors only. The process
of discriminating the pose clusters by using the SVMs is applicable for human detec-
tion by training the SVMs with non-human samples. Both SVMs and linear regressors
are capable of pose-dependent feature selection, which was shown to be effective by the
quantitative experiments where our method was compared with other recent methods and
outperformed them.
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