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CS9840 
Learning and Computer Vision 

Prof. Olga Veksler

Lecture 2
Some Concepts from Computer Vision

Curse of Dimensionality

PCA
Some Slides are from Cornelia, Fermüller, Mubarak 

Shah, 

Gary Bradski,

Sebastian Thrun

Outline

 Some Concepts in Image Processing/Vision
 Optical Flow Field (related to motion field)
 Correlation

 Curse of Dimensionality and Dimensionality 
reduction with PCA
 Next time:
 “Recognizing Action at a Distance” by A. Efros, 

A.Berg, G. Mori, Jitendra Malik
 Also: "80 million tiny images: a large dataset for 

non-parametric object and scene recognition", A. 
Torralba, R. Fergus, W. Freeman
 there should be a link to PDF file on our web site
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Optical flow

 How to estimate pixel motion from image I1 to image I2 ?

 Solve pixel correspondence problem
 given a pixel in I1 , look for nearby pixels of the same 

color in I2
 Key assumptions
 color constancy: a point in I1 looks the same in I2
 For grayscale images, this is brightness 

constancy
 small motion: points do not move very far

 This is called the optical flow problem

first image I1 second image I2

Optical Flow Field
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 Optical flow field is the apparent motion of 
brightness patterns between 2 (or several) frames 
in an image sequence

 Why does brightness change between frames?

 Assuming that illumination does not change:
 changes are due to the RELATIVE MOTION between 

the scene and the camera

 There are 3 possibilities:

 Camera still, moving scene

 Moving camera, still scene

 Moving camera, moving scene

Optical Flow and Motion Field

Motion Field (MF)

 The MF assigns a velocity vector to each pixel in 
the image

 These velocities are INDUCED by the RELATIVE 
MOTION between the camera and the 3D scene

 The MF is the projection of the 3D velocities on 
the image plane
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Examples of Motion Fields

(a) (b)

(c) (d)

(a) Translation perpendicular to a surface. (b) Rotation about axis 
perpendicular to image plane. (c) Translation parallel to a surface at a 
constant distance. (d) Translation parallel to an obstacle in front of a 
more distant background.

Optical Flow vs. Motion Field

(a) (b)

(a) A smooth sphere is rotating 
under constant illumination. 
Thus the optical flow field is 
zero, but the motion field is 
not

(b) A fixed sphere is illuminated 
by a moving source—the 
shading of the image 
changes. Thus the motion 
field is zero, but the optical 
flow field is not

 Recall that Optical Flow is the apparent motion of 
brightness patterns
We equate Optical Flow Field with Motion Field
 Frequently works, but now always: 
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Optical Flow vs. Motion Field

 Often (but not always) optical flow corresponds to the 
true motion of the scene

Human Motion SystemHuman Motion System
Illusory SnakesIllusory Snakes

from Gary from Gary BradskiBradski and Sebastian and Sebastian ThrunThrun



6

Computing Optical Flow: Brightness 
Constancy Equation

 Let P be a moving point in 3D:
 At time t, P has coordinates (X(t),Y(t),Z(t))

 Let p=(x(t),y(t)) be the coordinates of its image 
at time t

 Let E(x(t),y(t),t) be the brightness at p at time t.

 Brightness Constancy Assumption:
 As P moves over time, E(x(t),y(t),t) remains 

constant

Computing Optical Flow: Brightness 
Constancy Equation

Taking derivative Taking derivative wrtwrt time:time:
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Computing Optical Flow: Brightness 
Constancy Equation

LetLet
(Frame spatial gradient)(Frame spatial gradient)

(optical flow)(optical flow)

andand (derivative across frames)(derivative across frames)

1 equation with 2 unknowns

Computing Optical Flow: Brightness 
Constancy Equation

 How to get more equations for a pixel?
 Basic idea:  impose additional constraints

 most common is to assume that the flow field is smooth locally

 one method:  pretend the pixel’s neighbors have the same (u,v)
 If we use a 5x5 window, that gives us 25 equations per pixel!

      0vupEpE iit 

   
   

   

 
 

 







































25t

2t

1t

25y25x

2y2x

1y1x

pE

pE
pE

v
u

pEpE

pEpE
pEpE



matrix E
25x2

vector d
2x1

vector b
25x1



8

* Picture from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

*

Video Sequence

Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Revisiting the small motion assumption

 Is this motion small enough?
 Probably not—it’s much larger than one pixel (2nd

order terms dominate)
 How might we solve this problem?

Reduce the resolution!
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image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation

Iterative Refinement

 Iterative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-

Kanade equations

2. Warp H towards I using the estimated flow field
- use image warping techniques

3. Repeat until convergence
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image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.

Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Other Concepts to Review

 Convolution is the operation of applying a “kernel” to each pixel 
of an image

 Result of convolution has the same dimension as the image

 For example:

image

kernel

 Convolution is frequently denoted by *, for example I*K

Other Concepts to Review
 Gaussian smoothing (blurring): convolution operator that is used to 

`blur' images and removes small detail and noise from an image

* 
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Gaussian Smoothing vs. Averaging

Gaussian Smoothing Smoothing by Averaging

25
1

11111

11111

11111

11111

11111

Other Concepts to Review
 Image gradient: points in the direction of the most rapid 

increase in intensity of image f

10-1

20-2

10-1

-1-2-1

000

121 Sobel operator to 
compute gradient:

 Results:
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Other Concepts to Review

 Cross-correlation

 measures similarity between images (or image regions) f 
and g

 works OK if there is no change in intensity
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 Normalized cross correlation, more 
popular in image processing
 Insensitive to linear intensity changes 

between image patches f and g

Curse of Dimensionality

 Problems of high dimensional data, “the 
curse of dimensionality”
 running time

 overfitting

 number of samples required

 Dimensionality Reduction Methods
 Principle Component Analysis 
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Curse of Dimensionality: Complexity

 Complexity (running time) increases with 
dimension d

 A lot of methods have at least O(nd2) complexity, 
where n is the number of samples

 For example if we need to estimate covariance 
matrix

 So as d becomes large,  O(nd2) complexity may 
be too costly

Curse of Dimensionality: Number of Samples

 Suppose we want to use the nearest neighbor 
approach with k = 1 (1NN)

 This feature is not discriminative, i.e. it does not 
separate the classes well

 Suppose we start with only one feature
0 1

 We decide to use 2 features. For the 1NN method 
to work well, need a lot of samples, i.e. samples 
have to be dense

 To maintain the same density as in 1D (9 samples 
per unit length), how many samples do we need?



16

Curse of Dimensionality: Number of Samples

0

1

 We need 92 samples to maintain the same 
density as in 1D

1

0 1

 Of course, when we go from 1 feature to 2, no 
one gives us more samples, we still have 9

1

 This is way too sparse for 1NN to work well

Curse of Dimensionality: Number of Samples
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0 1

 Things go from bad to worse if we decide to use 3 
features:

1

 If 9 was dense enough in 1D, in 3D we need 
93=729 samples!

Curse of Dimensionality: Number of Samples

 In general, if n samples is dense enough in 1D

 Then in d dimensions we need nd samples!

 And nd grows really really fast as a function of d

 Common pitfall:
 If we can’t solve a problem with a few features, adding 

more features seems like a good idea

 However the number of samples usually stays the same

 The method with more features is likely to perform 
worse instead of expected better

Curse of Dimensionality: Number of Samples
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 We should try to avoid creating lot of features

The Curse of Dimensionality

 Often no choice, problem starts with many features

 Example: Face Detection

 One sample point is k by m array of pixels


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



 Feature extraction is not trivial, usually every 
pixel is taken as a feature

 Typical dimension is 20 by 20 = 400

 Suppose 10 samples are dense enough for 1 
dimension.  Need only 10400 samples

The Curse of Dimensionality

 Face Detection, dimension of one sample point is km


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


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


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 The fact that we set up the problem with km
dimensions (features) does not mean it is really          
a km-dimensional problem

 Most likely we are not setting the problem up with 
the right features

 If we used better features, we are likely need much 
less than km-dimensions

 Space of all k by m images has km dimensions

 Space of all k by m faces must be much smaller, 
since faces form a tiny fraction of all possible images
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Dimensionality Reduction

 High dimensionality is challenging and redundant

 It is natural to try to reduce dimensionality
 Reduce dimensionality by feature combination: 

combine old features x to create new features y

y
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x
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x
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x
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 For example, 

 Ideally, the new vector y should retain from x all 
information important for classification

Dimensionality Reduction

 The best f(x) is most likely a non-linear function

 Linear functions are easier to find though
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 Thus it can be represented by a matrix W:

 For now, assume that f(x) is a linear mapping
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 Main idea: seek most accurate data representation in 
a lower dimensional space

Principle Component Analysis (PCA)

 Example in 2-D
 Project data to 1-D subspace (a line) which minimize the 

projection error

large projection errors,
bad line to project to

small projection errors,
good line to project to

dimension 1d
im

en
si

o
n

 2

dimension 1d
im

en
si

o
n

 2

 Notice that the the good line to use for projection lies 
in the direction of largest variance 

PCA

y

 After the data is projected on the best line, need to 
transform the coordinate system to get 1D 
representation for vector y

 Note that  new data y has the same variance as old 
data x in the direction of the green line

 PCA preserves largest variances in the data
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PCA: Approximation of Elliptical Cloud in 3D

best 2D approximation best 1D approximation

PCA

 What is the direction of largest variance in data?

 Recall that if x has multivariate distribution N(,), 
direction of largest variance is given by eigenvector 
corresponding to the largest eigenvalue of 

 This is a hint that we should be looking at the 
covariance matrix of the data (note that PCA can be 
applied to distributions other than Gaussian)
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PCA: Linear Algebra Review 
 Let V be a d dimensional  linear space, and W be a k

dimensional linear subspace of V
 We can always find a set of d dimensional vectors     

{e1,e2,…,ek} which forms an orthonormal basis for W
 <ei,ej> = 0 if i is not equal to j and <ei,ei> = 1

 Thus any vector in W can be written as 

k
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1
2211 


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Let V = R2 and W be the line        
x-2y=0.  Then the orthonormal
basis for W is
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PCA: Linear Algebra 
 Recall that subspace W contains the zero vector, i.e. 

it goes through the origin
this line is not a 
subspace of R2

 It is convenient to project to subspace W: thus we 
need to shift everything

this line is a 
subspace of R2
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PCA  Derivation: Shift by the Mean Vector

 Before PCA, subtract sample mean from the data
̂1

1

 
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x
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i
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 Another way to look at it:
 first step of getting y is to subtract the mean of x

   ̂ xgxfyx

 The new data has zero mean:  E(X-E(X)) = E(X)-E(X) = 0
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 All we did is change the coordinate system

PCA: Derivation

 We want to find the most accurate representation of 
data D={x1,x2,…,xn}  in some subspace W  which has 
dimension k < d

 Let {e1,e2,…,ek}  be the orthonormal basis for W. Any 

vector in W can be written as 
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i
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 Thus x1 will be represented by some vector in W
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error at one point

PCA: Derivation

 Any xj can be written as 


k

i
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 To find the total error, we need to sum over all xj’s

 Thus the total error for representation of all data D is:
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PCA: Derivation

 A lot of math…….to finally get: 

 To minimize J take for the basis of  W the k
eigenvectors of S corresponding to the  k largest 
eigenvalues

 Let S be the scatter matrix, it is just n-1 times the 
sample covariance matrix 
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PCA

 This result is exactly what we expected: project x into 
subspace of dimension k which has the largest 
variance

 This is very intuitive: restrict attention to directions 
where the scatter is the greatest

 The larger the eigenvalue of S, the larger is the 
variance in the direction of corresponding eigenvector

301 

8.02 

PCA

 Thus PCA can be thought of as finding new 
orthogonal basis by rotating the old axis until the 
directions of maximum variance are found



26

PCA as Data Approximation
 Let  {e1,e2,…,ed }  be all d eigenvectors of the scatter 

matrix S, sorted in order of decreasing corresponding 
eigenvalue

 Without any approximation, for any sample xi:

dd1k1kkk11

d
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error of approximation

approximation of xi

 coefficients m =xt
iem are called principle components

 The larger k, the better is the approximation
 Components are arranged in order of importance, more 

important components come first

 Thus PCA takes the first k most important 
components of xi as an approximation to xi

PCA: Last Step

 Now we know how to project the data

y

 Last step is to change the coordinates to get final       
k-dimensional vector  y

 Let matrix  keeE 1

 Then the coordinate transformation is xEy t

 Under Et, the eigenvectors 
become the standard basis:
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Recipe for Dimension Reduction with PCA
Data D={x1,x2,…,xn}. Each xi is a d-dimensional 
vector.  Wish to use PCA to reduce dimension to k

1. Find the sample mean 



n

i
ix

n 1

1̂

2. Subtract sample mean from the data ̂ ii xz

3. Compute the scatter matrix 



n

i

t
ii zzS

1

4. Compute eigenvectors e1,e2,…,ek corresponding to 
the k largest eigenvalues of S

5. Let e1,e2,…,ek be the columns of matrix  keeE 1

6. The desired y which is the closest approximation 
to x is zEy t

PCA Example Using Matlab

 Let D = {(1,2),(2,3),(3,2),(4,4),(5,4),(6,7),(7,6),(9,7)}

 Convenient to arrange data in array
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 Mean    4.46.4Xmean 

 Subtract mean from data to get new data array Z
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 Compute the scatter matrix S
      
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matlab uses unbiased estimate for covariance, so S=(n-1)*cov(Z)
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PCA Example Using Matlab

 Use [V,D] =eig(S) to get eigenvalues and 
eigenvectors of S
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6.0eand8.3 22

 Projection to 1D space in the direction of e1
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

 81 yy 

Drawbacks of PCA
 PCA was designed for accurate data 

representation, not for data classification
 Preserves as much variance in data as possible
 If directions of maximum variance is important for 

classification, will work
 However  the directions of maximum variance may 

be  useless for classification

apply PCA

to each class
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Next Time

 Paper:“Recognizing Action at a Distance” by A. Efros, 
A.Berg, G. Mori, Jitendra Malik
 will watch the conference presentation

 Also: "80 million tiny images: a large dataset for non-
parametric object and scene recognition", A. Torralba, 
R. Fergus, W. Freeman

 When reading papers, think about following:
 What is the problem paper tries to solve

 What makes this problem difficult?

 What is  the method used in the paper to solve the 
problem

 What is the contribution of the paper (what new does it 
do)? 

 Do the experimental results look “good” to you?


