CS9840
 Learning and Computer Vision Prof. Olga Veksler

Lecture 3
Linear Machines Information Theory (a little BIT)

Today

- Linear Classifier
- Mutual Information
- Next time:
- paper: "Object Recognition with Informative Features and Linear Classification" by M. Naquet and S. Ullman
- Ignore section of tree-augmented network

Last Time: Supervised Learning

- Training samples (or examples) $\mathrm{X}^{1}, \mathrm{X}^{2}, \ldots \mathrm{X}^{\mathrm{n}}$
- Each example is typically multi-dimensional
- $\mathrm{X}_{1}{ }_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{d}}{ }^{\text {d }}$ are typically called features, X^{i} is sometimes called a feature vector
- How many features and which features do we take?
- Know desired output for each example (labeled samples) $\mathrm{Y}^{1}, \mathrm{Y}^{2}, \ldots \mathrm{Y}^{n}$
- This learning is supervised ("teacher" gives desired outputs).
- Yi are often one-dimensional, but can be multidimensional

Last Time: Supervised Learning

- Wish to design a machine $f(X, W)$ s.t. $f(X, W)=$ true output value at X
- In classification want $f(X, W)=$ label of X
- How do we choose f?
- when we choose a particular f, we are making implicit assumptions about our problem
- W is typically multidimensional vector of weights (also called parameters) which enable the machine to "learn"
- W = $\left[w_{1}, w_{2}, \ldots w_{k}\right]$

Training and Testing

- There are 2 phases, training and testing
- Divide all labeled samples $\mathrm{X}^{1}, \mathrm{X}^{2}, \ldots \mathrm{X}^{\mathrm{n}}$ into 2 sets, training set and testing set
- Training phase is for "teaching" our machine (finding optimal weights W)
- Testing phase is for evaluating how well our machine works on unseen examples

- Training phase

- Find the weights W s.t. $f\left(\mathrm{X}^{i}, \mathrm{~W}\right)=\mathrm{Y}^{i}$ "as much as possible" for the training samples X^{i}
- "as much as possible" needs to be defined
- Training can be quite complex and time-consuming

Loss Function

- How do we quantify what it means for the machine $f(X, W)$ do well in the training and testing phases?
- $f(X, W)$ has to be "close" to the true output on X
- Define Loss (or Error) function L
- This is up to the designer (that is you)
- Typically first define per-sample loss $L\left(X^{i}, Y^{i}, W\right)$
- Some examples:
- for classification, $\mathrm{L}\left(\mathrm{X}^{\mathrm{i}}, \mathrm{Y}^{\mathrm{i}}, \mathrm{W}\right)=\mathbf{I}\left[\mathrm{f}\left(\mathrm{X}^{i}, \mathrm{~W}\right) \neq \mathrm{Y}^{i}\right]$, where $\mathbf{I}[$ true $=1, \mathbf{I}[$ false $]=0$
- we just care if the sample has been classified correctly
- For continuous $Y, L\left(X^{i}, Y^{i}, W\right)=\left\|f\left(X^{i}, W\right)-Y^{i}\right\|^{2}$,
- how far is the estimated output from the correct one?
- Then loss function $L=\Sigma_{i} L\left(\mathrm{X}^{\mathrm{i}}, \mathrm{Y}^{i}, \mathrm{~W}\right)$
- Number of missclassified example for classification
- Sum of distances from the estimated output to the correct output

Linear Machine, Continuous Y

- $f(X, W)=W_{0}+\sum_{i=1,2, \ldots d} W_{i} x_{i}$
- w_{0} is called bias
- In vector form, if we let $X=\left(1, x_{1}, x_{2}, \ldots, x_{d}\right)$, then $f(X, W)=W^{\top} X$
- notice abuse of notation, I made $\mathrm{X}=[1 \mathrm{X}]$
- This is standard linear regression (line fitting)
- assume
 $L\left(X^{i}, Y^{i}, W\right)=\left\|f\left(X^{i}, W\right)-Y^{i}\right\|^{2}$
- optimal W can be found by solving linear system of equations $\mathrm{W}^{*}=\left[\Sigma X^{i}\left(X^{i}\right)^{\top}\right]^{-1} \Sigma Y^{i} X^{i}$

Linear Machine: binary Y

- $f(X, W)=\operatorname{sign}\left(w_{0}+\sum_{i=1,2, \ldots d} w_{i} x_{i}\right)$
- $\operatorname{sign}($ positive $)=1$, $\operatorname{sign}($ negative $)=-1$
- w_{0} is called bias
- In vector form, if we let $X=\left(1, x_{1}, x_{2}, \ldots, x_{d}\right)$ then $f(X, W)=\operatorname{sign}\left(W^{\top} X\right)$

Perceptron Learning Procedure (Rosenblatt 1957)

- $f(X, W)=\operatorname{sign}\left(w_{0}+\Sigma_{i=1,2, \ldots d} w_{i} x_{i}\right)$
- Let $\mathrm{L}\left(\mathrm{X}^{\mathrm{i}}, \mathrm{Y}^{i}, \mathrm{~W}\right)=\mathrm{I}\left[f\left(\mathrm{X}^{\mathrm{i}}, \mathrm{W}\right) \neq \mathrm{Y}^{i}\right]$. How do we learn W ?
- A solution:
- Iterate over all training samples
- if $f(X, W)=Y$ (correct label), do nothing
- else $W=W+\left[Y-f\left(W^{\top} X\right)\right] X$

Perceptron Learning Procedure (Rosenblatt 1957)

- Amazing fact: If the samples are linearly separable, the perceptron learning procedure will converge to a solution (separating hyperplane) in a finite amount of time
- Bad news: If the samples are not linearly separable, the perceptron procedure will not terminate, it will go on looking for a solution which does not exist!
- For most interesting problems the samples are not linearly separable
- Is there a way to learn W in non-separable case?
- Remember, it's ok to have training error, so we don't have to have "perfect" classification

Optimization

- Need to minimize a function of many variables

$$
J(x)=J\left(x_{1}, \ldots, x_{d}\right)
$$

- We know how to minimize $\boldsymbol{J}(\boldsymbol{x})$
- Take partial derivatives and set them to zero

$$
\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}} J(x) \\
\vdots \\
\frac{\partial}{\partial x_{d}} \boldsymbol{J}(x)
\end{array}\right]=\nabla \boldsymbol{J}(x)=0 \quad \text { gradient }
$$

- However solving analytically is not always easy
- Would you like to solve this system of nonlinear equations?

$$
\left\{\begin{array}{l}
\sin \left(x_{1}^{2}+x_{2}^{3}\right)+e^{x_{s}^{2}}=0 \\
\cos \left(x_{1}^{2}+x_{2}^{3}\right)+\log \left(x_{s}^{3}\right)^{x_{i}^{2}}=0
\end{array}\right.
$$

- Sometimes it is not even possible to write down an analytical expression for the derivative, we will see an example later today

Optimization: Gradient Descent

- Gradient $\nabla \boldsymbol{J}(\boldsymbol{x})$ points in direction of steepest increase of $\boldsymbol{J}(\boldsymbol{x})$, and $-\nabla \boldsymbol{J}(\boldsymbol{x})$ in direction of steepest decrease one dimension

two dimensions

Optimization: Gradient Descent

Gradient Descent for minimizing any function $\boldsymbol{J}(\boldsymbol{x})$ set $\boldsymbol{k}=\mathbf{1}$ and $\boldsymbol{x}^{(1)}$ to some initial guess for the weight vector while $\eta^{(k)}\left|\nabla J\left(x^{(k)}\right)\right|>\varepsilon$
choose learning rate $\eta^{(k)}$

$$
\begin{aligned}
& x^{(k+1)}=\mathbf{x}^{(k)}-\eta^{(k)} \nabla J(x) \quad \text { (update rule) } \\
& k=k+1
\end{aligned}
$$

Optimization: Gradient Descent

- Gradient descent is guaranteed to find only a local minimum

- Nevertheless gradient descent is very popular because it is simple and applicable to any differentiable function

Optimization: Gradient Descent

- Main issue: how to set parameter η (learning rate)
- If η is too small, need too many iterations

- If η is too large may overshoot the minimum and possibly never find it (if we keep overshooting)

"Optimal" W with Gradient Descent

- $f(X, W)=\operatorname{sign}\left(w_{0}+\Sigma_{i=1,2, \ldots d} w_{i} x_{i}\right)$
- If we let $L\left(X^{i}, Y^{i}, W\right)=I\left[f\left(X^{i}, W\right) \neq Y^{i}\right]$, then $L(W)$ is the number of missclassified examples
- Let \boldsymbol{M} be the set of examples misclassified by \boldsymbol{W}

$$
M(W)=\left\{\text { sample } X^{i} \text { s.t. } W^{\top} X^{i} \neq \boldsymbol{Y}^{i}\right\}
$$

- Then $\mathrm{L}(\mathrm{W})=|\mathrm{M}(\mathrm{W})|$, the size of $\mathrm{M}(\mathrm{W})$
- $\mathrm{L}(\mathrm{W})$ is piecewise constant, gradient descent is useless

"Optimal" W with Gradient Descent

- Better choice:

$$
L(W)=\sum_{X^{i} \in M}\left(-W^{\top} \boldsymbol{X}^{i}\right) \boldsymbol{Y}^{i}
$$

- If X^{i} is misclassified, $\left(W^{\top} X^{\prime}\right) Y^{i} \leq 0$
- Thus $L\left(W, X^{i}, Y^{i}\right) \geq 0$
- $\mathrm{L}\left(\mathrm{W}, \mathrm{X}^{\mathrm{i}}, \mathrm{Y}^{i}\right)$ is proportional to the distance of misclassified example to
 the decision boundary
- $\mathrm{L}(\mathrm{W})=\Sigma \mathrm{L}\left(\mathrm{W}, \mathrm{X}^{i}, \mathrm{Y}^{i}\right)$ is piecewise linear and thus suitable for gradient decent

Batch Rule

$$
L\left(W, X^{i}, Y^{i}\right)=\sum_{X \in M}\left(-W^{\top} X\right) Y
$$

- Gradient of L is $\nabla L(W)=\sum_{X \in M}(-X) Y$
- \boldsymbol{M} are samples misclassified by W
- It is not possible to solve $\nabla \mathrm{L}(\mathrm{W})=0$ analytically
- Update rule for gradient descent: $\boldsymbol{x}^{(k+1)}=\mathbf{x}^{(k)}-\eta^{(k)} \nabla J(\boldsymbol{x})$
- Thus gradient decent batch update rule for $L(W)$ is:

$$
W^{(k+1)}=W^{(k)}+\eta^{(k)} \sum_{Y \in M} X Y
$$

- It is called batch rule because it is based on all misclassified examples

Single Sample Rule

- Thus gradient decent single sample rule for $\boldsymbol{L}(\mathrm{W})$ is:

$$
W^{(k+1)}=W^{(k)}+\eta^{(k)}(X Y)
$$

- apply for any sample X misclassified by $\boldsymbol{W}^{k}{ }^{k}$
- must have a consistent way of visiting samples

Convergence

- If classes are linearly separable, and $\eta^{(k)}$ is fixed to a constant, i.e. $\eta^{(1)}=\eta^{(2)}=\ldots=\eta^{(k)}=\boldsymbol{c}$ (fixed learning rate)
- both single sample and batch rules converge to a correct solution (could be any \boldsymbol{W} in the solution space)
- If classes are not linearly separable:
- Single sample algorithm does not stop, it keeps looking for solution which does not exist
- However by choosing appropriate learning rate, heuristically stop algorithm at hopefully good stopping point

$$
\eta^{(k)} \rightarrow 0 \text { as } k \rightarrow \infty
$$

- for example,

$$
\eta^{(k)}=\frac{\eta^{(1)}}{k}
$$

- for this learning rate convergence in the linearly separable case can also be proven

Learning by Gradient Descent

- Suppose we suspect that the machine has to have functional form $f(X, W)$, not necessarily linear
- Pick differentiable per-sample loss function $L\left(X^{i}, Y^{i}, W\right)$
- We need to find W that minimizes $L=\Sigma_{i} L\left(X^{i}, Y^{i}, W\right)$
- Use gradient-based minimization:
- Batch rule: $\mathrm{W}=\mathrm{W}-\eta \nabla \mathrm{L}(\mathrm{W})$
- Or single sample rule: $W=W-\eta \nabla L\left(X^{i}, Y^{i}, W\right)$

Important Questions

- How do we choose the feature vector X ?
- How do we split labeled samples into training/testing sets?
- How do we choose the machine $f(X, W)$?
- How do we choose the loss function $L\left(\mathrm{X}^{i}, \mathrm{Y}^{i}, \mathrm{~W}\right)$?
- How do we find the optimal weights W ?

Information theory

- Information Theory regards information as only those symbols that are uncertain to the receiver only infrmatn esentil to understnd mst b tranmitd
- Shannon made clear that uncertainty is the very commodity of communication
- The amount of information, or uncertainty, output by an information source is a measure of its entropy
- In turn, a source's entropy determines the amount of bits per symbol required to encode the source's information
- Messages are encoded with strings of 0 and 1 (bits)

Information theory

- Suppose we toss a fair die with 8 sides
- need 3 bits to transmit the results of each toss
- 1000 throws will need 3000 bits to transmit
- Suppose the die is biased
- side A occurs with probability $1 / 2$, chances of throwing B are $1 / 4$, C are $1 / 8, \mathrm{D}$ are $1 / 16, \mathrm{E}$ are $1 / 32, \mathrm{~F} 1 / 64, G$ and H are $1 / 128$
- Encode $A=0, B=10, C=110, D=1110, \ldots$, so on until $G=$ 1111110, H = 1111111
- We need, on average, $1 / 2+2 / 4+3 / 8+4 / 16+5 / 32+6 / 64+7 / 128+7 / 128$ $=1.984$ bits to encode results of a toss
- 1000 throws require 1984 bits to transmit
- Less bits to send = less "information"
- Biased die tosses contain less "information" than unbiased die tosses (know in advance biased sequence will have a lot of A's)
- What's the number of bits in the best encoding?
- Extreme case: if a die always shows side A, a sequence of 1,000 tosses has no information, 0 bits to encode

Information theory

- if a die is fair (any side is equally likely, or uniform distribution), for any toss we need $\log (8)=3$ bits
- Suppose any of n events is equally likely (uniform distribution)
- $P(x)=1 / n$, therefore $-\log P=-\log (1 / n)=\log n$
- In the "good" encoding strategy for our biased die example, every side x has $-\log p(x)$ bits in its code
- Expected number of bits is

$$
-\sum_{x} p(x) \log p(x)
$$

Shannon's Entropy

$$
H[p(x)]=-\sum_{x} p(x) \log p(x)=\sum_{x} p(x) \log \frac{1}{p(x)}
$$

- How much randomness (or uncertainty) is there in the value of signal x if it has distribution $\mathrm{p}(\mathrm{x})$
- For uniform distribution (every event is equally likely), $\mathrm{H}[\mathrm{x}]$ is maximum
- If $p(x)=1$ for some event x, then $H[x]=0$
- Systems with one very common event have less entropy than systems with many equally probable events
- Gives the expected length of optimal encoding (in binary bits) of a message following distribution $p(x)$
- doesn't actually give this optimal encoding

Conditional Entropy of X given Y

$$
H[x \mid y]=\sum_{x, y} p(x, y) \log \frac{1}{p(x \mid y)}=-\sum_{x, y} p(x, y) \log p(x \mid y)
$$

- Measures average uncertainty about x when y is known
- Property:
- $\mathrm{H}[\mathrm{x}] \geq \mathrm{H}[\mathrm{x} \mid \mathrm{y}]$, which means after seeing new data (y), the uncertainty about x is not increased, on average

Mutual Information of X and Y

$$
I[x, y]=H(x)-H(x \mid y)
$$

- Measures the average reduction in uncertainty about x after y is known
- or, equivalently, it measures the amount of information that y conveys about x
- Properties
- $I(x, y)=I(y, x)$
- $I(x, y) \geq 0$
- If x and y are independent, then $I(x, y)=0$
- $I(x, x)=H(x)$

MI for Feature Selection

$$
I[x, c]=H(c)-H(c / x)
$$

- Let x be a proposed feature and c be the class
- If $\mathrm{I}[\mathrm{x}, \mathrm{c}]$ is high, we can expect feature x be good at predicting class c

