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CS9840 

Learning and Computer Vision 
Prof. Olga Veksler

Lecture 3
Linear Machines

Information Theory (a little BIT)

Today

� Linear Classifier

� Mutual Information

� Next time:

� paper: “Object Recognition with Informative 
Features and Linear Classification” by M. Naquet
and S. Ullman

� Ignore section of tree-augmented network
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Last Time: Supervised Learning

� Training samples (or examples) X1,X2,…Xn

� Each example is typically multi-dimensional

� Xi
1, X

i
2 ,…, Xi

d are typically called features, Xi is 
sometimes called a feature vector

� How many features and which features do we 
take?

� Know desired output for each example (labeled 
samples) Y1,Y2,…Yn

� This learning is supervised (“teacher” gives desired 
outputs). 

� Yi are often one-dimensional, but can be 
multidimensional

Last Time: Supervised Learning

� Wish to design a machine f(X,W) s.t.                   

f(X,W) = true output value at X

� In classification want f(X,W) = label of X

� How do we choose f?

� when we choose a particular f, we are making implicit 

assumptions about our problem

� W is typically multidimensional vector of weights 
(also called parameters) which enable the machine 
to “learn”

� W = [w1,w2,…wk]
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Training and Testing

� There are 2 phases, training and testing

� Divide all labeled samples X1,X2,…Xn into 2 sets, 
training set and testing set 

� Training phase is for “teaching” our machine 
(finding optimal weights W)

� Testing phase is for evaluating how well our 
machine works on unseen examples

� Training phase

� Find the weights W s.t. f(Xi,W) = Yi “as much as 
possible” for the training samples Xi

� “as much as possible” needs to be defined

� Training can be quite complex and time-consuming

Loss Function
� How do we quantify what it means for the machine 

f(X,W) do well in the training and testing phases?

� f(X,W) has to be “close” to the true output on X

� Define Loss (or Error) function L
� This is up to the designer (that is you)

� Typically first define per-sample loss L(Xi,Yi,W)
� Some examples:

� for classification, L(Xi,Yi,W)  = I[f(Xi,W) ≠ Yi],                              

where I[true] = 1, I[false] = 0

� we just care if the sample has been classified correctly

� For continuous Y, L(Xi,Yi,W) =|| f(Xi,W) -Yi ||2 ,
� how far is the estimated output from the correct one?

� Then loss function L = Σi L(Xi,Yi,W)
� Number of missclassified example for classification

� Sum of distances from the estimated output to the correct 
output
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Linear Machine, Continuous Y

� f(X,W) = w0+Σi=1,2,...d wixi

x

y� w0 is called bias

� In vector form, if we let              
X = (1,x1,x2,…,xd), then     
f(X,W) = WTX

� notice abuse of notation, I made 

X=[1 X]

� This is standard linear 
regression (line fitting)

� assume                     

L(Xi,Yi,W) = || f(Xi,W) -Yi ||2

� optimal W can be found by 
solving linear system of 
equations W* = [ΣXi (Xi )T]-1 ΣYiXi

Linear Machine: binary Y

� f(X,W) = sign(w0+Σi=1,2,...d wixi)

� sign(positive) = 1, 

sign(negative) = -1

� w0 is called bias

� In vector form, if we let 
X = (1,x1,x2,…,xd) then 
f(X,W) = sign(WTX)

WTX < 0

WTX > 0

x1

x2

decision boundary WTX = 0

W
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Perceptron Learning Procedure (Rosenblatt 1957)

� f(X,W) = sign(w0+Σi=1,2,...d wixi)

� Let L(Xi,Yi,W) = I[f(Xi,W) ≠ Yi]. How do we learn W?

� A solution: 

� Iterate over all training samples

� if f(X,W)=Y (correct label), do nothing

� else W = W + [Y-f(WTX)]X

X

W

before

X

W

after

Perceptron Learning Procedure (Rosenblatt 1957)

� Amazing fact: If the samples are linearly separable, 
the perceptron learning procedure will converge to a 
solution (separating hyperplane) in a finite amount of 

time

� Bad news: If the samples are not linearly separable, 
the perceptron procedure will not terminate, it will go 
on looking for a solution which does not exist!

� For most interesting problems the samples are not 
linearly separable

� Is there a way to learn W in non-separable case?

� Remember, it’s ok to have training error, so we don’t have 

to have “perfect” classification



6

Optimization

� Need to minimize a function of many variables

(((( )))) (((( ))))dxxJxJ ,...,1====

� We know how to minimize J(x)

� Take partial derivatives and set them to zero
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� However solving  analytically is not always easy
� Would you like to solve this system of nonlinear equations?

gradient
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� Sometimes it is not even possible to write down an analytical 

expression for the derivative, we will see an example later today

Optimization: Gradient Descent

� Gradient              points in direction of steepest increase of  

J(x), and                   in direction of  steepest decrease

(((( ))))xJ∇∇∇∇

a

(((( ))))a
dx

dJ−−−−J(x)

x

one dimension two dimensions

(((( ))))aJ∇∇∇∇−−−−

a

a

(((( ))))a
dx

dJ−−−−

a

(((( ))))a
dx

dJ−−−−

(((( ))))xJ∇∇∇∇−−−−
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Optimization: Gradient Descent

x((((1)

J(x)

x

x((((2)

s((((1)

(((( ))))(((( ))))2xJ∇∇∇∇−−−−

(((( )))))1(xJ∇∇∇∇−−−−

x((((3) x((((k)

(((( ))))(((( )))) 0xJ k ====∇∇∇∇s ((((2)

Gradient Descent for minimizing any function J(x)

set k = 1  and x(1) to some initial guess for the weight vector

while
(((( )))) (((( ))))(((( )))) εεεεηηηη >>>>∇∇∇∇ kk xJ

x(k+1)= x(k) – η η η η (k)                                                        (update rule)(((( ))))xJ∇∇∇∇

choose learning rate ηηηη(k)

k = k + 1

Optimization: Gradient Descent

� Gradient descent is guaranteed to find only a local 
minimum
J(x)

x

global minimum

� Nevertheless gradient descent is very popular 
because it is simple and applicable to any 
differentiable function

x((((1) x((((2) x((((3) x((((k)
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Optimization: Gradient Descent

� Main issue: how to set parameter ηηηη (learning rate )

� If ηηηη is too small, need too many iterations

� If ηηηη is too large may 
overshoot the minimum 
and possibly never find it  
(if we keep overshooting)

J(x)

x

x((((1) x((((2)

J(x)

x

“Optimal” W with Gradient Descent

� Then L(W) = |M(W)|, the size of M(W)

� Let M be the set of examples misclassified by W

(((( )))) {{{{ }}}}iiTi YXWtsXsampleWM ≠≠≠≠==== ..

� L(W) is piecewise constant, 
gradient descent is useless

W

M(W)

� f(X,W) = sign(w0+Σi=1,2,...d wixi)

� If we let  L(Xi,Yi,W) = I[f(Xi,W) ≠ Yi], then L(W) is the 
number of missclassified examples
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“Optimal” W with Gradient Descent

� Better choice:

(((( )))) (((( ))))∑∑∑∑
∈∈∈∈

−−−−====
MX

iiT

i

YXWWL

� L(W,Xi,Yi) is proportional 
to the distance of 
misclassified example to 

the  decision boundary

W

W
T
X

/ ||W
||

X
� If Xi is misclassified, (WTXi)Yi ≤ 0

� Thus L(W,Xi,Yi) ≥ 0

W

L(W) 

� L(W)=ΣL(W,Xi,Yi) is 
piecewise linear and thus 
suitable for gradient decent

Batch Rule

� Gradient of L is (((( )))) (((( ))))YXWL
MX

∑∑∑∑
∈∈∈∈

−−−−====∇∇∇∇

� Thus gradient decent batch update rule for L(W) is:

(((( )))) (((( )))) (((( ))))∑∑∑∑
∈∈∈∈

++++ ++++====
MY

kkk XYWW ηηηη1

� It is called batch rule because  it is based on all 
misclassified examples

� M are samples misclassified by W

� It is not possible to solve �L(W) = 0 analytically

(((( ))))xJ∇∇∇∇� Update rule for gradient descent: x(k+1)= x(k)–η η η η (k)

(((( )))) (((( ))))∑∑∑∑
∈∈∈∈

−−−−====
MX

Tii YXWYXWL ,,
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Single Sample Rule

� Thus gradient decent single sample rule for L(W) is:

� apply for any sample X misclassified by W(k)

� must have a consistent way of visiting samples

(((( )))) (((( )))) (((( ))))(((( ))))XYWW kkk ηηηη++++====++++1

Convergence

� If classes are linearly separable, and ηηηη((((k)  )  )  )  is fixed to a 
constant, i.e. ηηηη((((1)))) =ηηηη((((2) ) ) ) =…=ηηηη((((k) ) ) ) =c  (fixed learning rate)

� both single sample and batch rules converge to a correct 

solution (could be any W in the solution space)

� If classes are not linearly separable:

� Single sample algorithm does not stop, it keeps looking for 

solution which does not exist

� However by choosing appropriate learning rate, 
heuristically stop algorithm at hopefully good stopping point

(((( )))) ∞∞∞∞→→→→→→→→ kask 0ηηηη

� for example, (((( ))))
(((( ))))

k

k
1ηηηη

ηηηη ====

� for this learning rate convergence in the linearly separable 

case can also be proven 
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Learning by Gradient Descent

� Suppose we suspect that the machine has to have functional 

form f(X,W), not necessarily linear

� Pick differentiable per-sample loss function L(Xi,Yi,W)

� We need to find W that minimizes L = Σi L(Xi,Yi,W)

� Use gradient-based minimization:

� Batch rule: W = W - η�L(W)

� Or single sample rule: W = W - η�L (Xi,Yi,W)

Important Questions

� How do we choose the feature vector X?

� How do we split labeled samples into training/testing 

sets?

� How do we choose the machine f(X,W)?

� How do we choose the loss function L(Xi,Yi,W)?

� How do we find the optimal weights W?
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Information theory

� Information Theory regards information as only those 
symbols that are uncertain to the receiver

only infrmatn esentil to understnd mst b tranmitd
� Shannon made clear that uncertainty is the very commodity 

of communication 

� The amount of information, or uncertainty, output by an 
information source is a measure of its entropy

� In turn, a source's entropy determines the amount of bits per 
symbol required to encode the source's information

� Messages are encoded with strings of 0 and 1 (bits)

Information theory

� Suppose we toss a fair die with 8 sides 

� need 3 bits to transmit the results of each toss

� 1000 throws will need 3000 bits to transmit

� Suppose the die  is biased

� side A occurs with probability 1/2, chances of throwing B are 1/4, 
C are 1/8, D are 1/16, E are 1/32, F 1/64, G and H are 1/128

� Encode A= 0, B = 10, C = 110, D = 1110,…, so on until  G = 
1111110, H = 1111111

� We need, on average, 1/2+2/4+3/8+4/16+5/32+6/64+7/128+7/128 
= 1.984 bits to encode results of a toss

� 1000 throws require 1984 bits to transmit

� Less bits to send = less “information”

� Biased die tosses contain less “information” than unbiased die 
tosses (know in advance biased sequence will have a lot of A’s)

� What’s the number of bits in the best encoding?

� Extreme case: if a die always shows side A, a sequence of 
1,000 tosses has no information, 0 bits to encode
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Information theory

� if a die is fair (any side is equally likely, or uniform distribution), 
for any toss we need log(8) = 3 bits

� Suppose any of n events is equally likely (uniform distribution)

� P(x) = 1/n, therefore -log P = -log(1/n) = log n 

� In the “good” encoding strategy for our biased die example, 
every side x has -log p(x) bits in its code

� Expected number of bits is

(((( )))) (((( ))))xpxp
x

log∑∑∑∑−−−−

Shannon’s Entropy

� How much randomness (or uncertainty) is there in the value 

of signal x if it has distribution p(x)

� For uniform distribution (every event is equally likely), H[x] is 

maximum

� If p(x) = 1 for some event x, then H[x] = 0

� Systems with one very common event have less entropy than 

systems with many equally probable events

� Gives the expected length of optimal encoding (in binary 

bits) of a message following distribution p(x)

� doesn’t actually give this optimal encoding

(((( ))))[[[[ ]]]] (((( )))) (((( )))) (((( ))))
(((( ))))xp

1logxpxplogxpxpH
xx

∑∑∑∑∑∑∑∑ ====−−−−====
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Conditional  Entropy of X given Y

[[[[ ]]]] (((( ))))
(((( ))))

(((( )))) (((( ))))yxpyxp
yxp

yxpyxH
yxyx

|log,
|

1
log,|

,,

∑∑∑∑∑∑∑∑ −−−−========

� Measures average uncertainty about x when 

y is known

� Property:

� H[x] ≥ H[x|y], which means after seeing new 

data (y), the uncertainty about x is not 

increased, on average

Mutual Information of X and Y

[[[[ ]]]] )|()(, yxHxHyxI −−−−====

� Measures the average reduction in uncertainty 

about x after y is known

� or, equivalently, it measures the amount of 

information that y conveys about x

� Properties

� I(x,y) = I(y,x)

� I(x,y) ≥ 0

� If x and y are independent, then I(x,y) = 0

� I(x,x) = H(x)
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MI for Feature Selection

[[[[ ]]]] )x|c(H)c(Hc,xI −−−−====

� Let x be a proposed feature and c be the 

class

� If I[x,c] is high, we can expect feature x be 

good at predicting class c


