

Lecture 3 Linear Machines Information Theory (a little BIT)

Today

- Linear Classifier
- Mutual Information
- Next time:
 - paper: "Object Recognition with Informative Features and Linear Classification" by M. Naquet and S. Ullman
 - Ignore section of tree-augmented network

Training and Testing

- There are 2 phases, training and testing
 - Divide all labeled samples X¹,X²,...Xⁿ into 2 sets, training set and testing set
 - Training phase is for "teaching" our machine (finding optimal weights W)
 - Testing phase is for evaluating how well our machine works on unseen examples
- Training phase
 - Find the weights W s.t. f(Xⁱ,W) = Yⁱ "as much as possible" for the *training* samples Xⁱ
 - "as much as possible" needs to be defined
 - Training can be quite complex and time-consuming

Perceptron Learning Procedure (Rosenblatt 1957)

- Amazing fact: If the samples are linearly separable, the perceptron learning procedure will converge to a solution (separating hyperplane) in a finite amount of time
- Bad news: If the samples are not linearly separable, the perceptron procedure will not terminate, it will go on looking for a solution which does not exist!
- For most interesting problems the samples are not linearly separable
- Is there a way to learn W in non-separable case?
 - Remember, it's ok to have training error, so we don't have to have "perfect" classification

Single Sample Rule Thus gradient decent single sample rule for L(W) is: W^(k+1) = W^(k) + η^(k)(XY) apply for any sample X misclassified by W^(k) must have a consistent way of visiting samples

Convergence If classes are linearly separable, and η^(k) is fixed to a constant, i.e. η⁽¹⁾ = η⁽²⁾ = ... = η^(k) = c (fixed learning rate) both single sample and batch rules converge to a correct solution (could be any W in the solution space) If classes are not linearly separable: Single sample algorithm does not stop, it keeps looking for solution which does not exist However by choosing appropriate learning rate, heuristically stop algorithm at hopefully good stopping point η^(k) → 0 as k → ∞ for example, η^(k) = η⁽¹⁾/k for this learning rate convergence in the linearly separable case can also be proven

MI for Feature Selection

I[x,c] = H(c) - H(c | x)

- Let x be a proposed feature and c be the class
- If I[x,c] is high, we can expect feature x be good at predicting class c