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Unsupervised Learning
EM



Today

e New Topic: Unsupervised Learning
e supervised vs. unsupervised learning

e unsupervised learning

e nonparametric unsupervised learning = clustering
* Proximity Measures
 Criterion Functions
e k-means

e brief intro to Bayesian decision theory
 need this for parametric supervised learning

e parametric unsupervised learning
e Expectation Maximization (EM)



Supervised vs. Unsupervised Learning

e Up to now considered supervised learning scenario,

where we have
1. samples x,,..., x,

2. class label y; for all samples x;
e thisis also called learning with teacher

e Inthis lecture we consider unsupervised learning

scenario, where we are only given
1. samples x,,..., x,
e thisisalso called learning without teacher
e do not split data into training and test sets

e harder to say how good results are compared to the
supervised case



Unsupervised Learning

e Datais not labeled =

e Parametric Approach
e assume parametric distribution of data
e estimate parameters of this distribution

e Non-parametric Approach

e group the data into clusters

e samples inside each cluster are more
similar than samples across clusters

e each cluster (hopefully) says something
about categories (classes) present in the
data



Why Unsupervised Learning?

e Unsupervised learning is harder

e How do we know if results are meaningful? No answer labels
are available.

e Letthe expert look at the results (external evaluation)
e Define an objective function on clustering (internal evaluation)

e We nevertheless need it because
1. Labeling large datasets is very costly (speech recognition)

e sometimes can label only a few examples by hand

2. May have no idea what/how many classes there are (data
mining)

3. May want to use clustering to gain some insight into the
structure of the data before designing a classifier

e Clustering as data description



Clustering

I”

e Seek “natural” clusters in the data

e Whatis a good clustering?
e internal (within the cluster) distances should be small
e external (intra-cluster) should be large

 C(Clustering is a way to discover new categories (classes)



What we Need for Clustering

1. Proximity measure, either large d, small s
e similarity measure s(x;x,): large if x;,x, are ® ®
similar

large s, small d
e dissimilarity (or distance) measure o—o©O

d(x;x,): small if x,x, are similar

2. Criterion function to evaluate a clustering
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3. Algorithm to compute clustering

e usually by optimizing the criterion function



How Many Clusters?
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e Possible approaches

e fix the number of clusters to k
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 find the best clustering according to the criterion
function (number of clusters may vary)



Proximity Measures

e good proximity measure is application dependent

e clusters should be invariant under transformations “natural”
to the problem

e for object recognition, should have invariance to rotation

small distance

 For character recognition, no invariance to rotation

9 large distance : 6




Distance (dissimilarity) Measures

e Euclidean distance
d

d(xi,xj)=\/2(xi(k)_xj(k))2

k=1
e translation invariant

e Manhattan (city block) distance
d
d(xi’xj)ZZ‘Xi(k)—XJ(k)‘
k=1

e approximation to Euclidean distance,
cheaper to compute

e Chebyshev distance

_ (k) _ y (k)
d(Xi’Xj)—rEk§§|Xi X |

e approximation to Euclidean distance,
cheapest to compute




Similarity Measures

e Cosine similarity:

s(x x) X[ X,
S X

e smaller angle, gives larger similarity
e scaleinvariant measure

e popularin text retrieval

e Correlation coefficient
e popularinimage processing




Feature Scale

e old problem: how to choose appropriate relative scale for

features?
e [length (in meters or cms?), weight(in in grams or kgs?)]
e |n supervised learning, can normalize to zero mean unit
variance with no problems

* in clustering this is more problematic, if variance in data is
due to cluster presence, then normalizing features is not a

good thing

before normalization after normalization



Criterion Functions for Clustering

* Have samples x,,...,X,
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There are approximately ¢"/c! distinct partitions

Can define a criterion function J(D,,...,D,) which
measures the quality of a partitioning D,,...,D,

e Then the clustering problem is well defined

e optimal clustering is partition which optimizes criterion
function



Iterative Optimization Algorithms

Now have both proximity measure and criterion function,
need algorithm to find the optimal clustering

Exhaustive search is impossible, since there are
approximately ¢"/c! possible partitions

Usually some iterative algorithm is used

1. find a reasonable initial partition

2. repeat: move samples from one group to another s.t. the
objective function J is improved
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K-means Clustering

Probably the most famous clustering algorithm
Jsr Objective function:

K
Jsse =z 2” X = |I°

|=1 XGDi

e can work for some other objective functions,
but not proven to work as well

Fix number of clusters to k (¢ = k)
Iterative clustering algorithm

Moves many samples from one cluster to anther in a
smart way



K-means Clustering

1. Initialize
e pick k cluster centers arbitrary
e assign each example to closest center

2. compute sample means
for each cluster

--------------------------------------------------------------------------------------------------------------------------------------------------------

3. reassign all samples to the
closest mean

4. if clusters changed at step 3, go to step 2



K-means Clustering

e Consider steps 2 and 3 of the algorithm

2. compute sample means for each cluster

£y .
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3. reassign all samples to the closest mean

If we represent clusters
by their old means, the
error has gotten smaller
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K-means Clustering

3. reassign all samples to the closest mean

If we represent clusters by
their old means, the error
has gotten smaller

=

4 |

e However we represent clusters by their new means,
and mean is always smallest representation of cluster

¥ lx-zlF =2 T o(Ix IF 2xz+l121F) = Zx+2) =0

az XEDi XEDi2 XGDi

2>2=in

nl XEDi



K-means Clustering

e We just proved that by doing steps 2 and 3, the
objective function goes down

e found “smart “ move which decreases objective function

e Algorithm converges after a finite number of iterations

e However not guaranteed to find a global minimum
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K-means Clustering

* Finding the optimum of J¢is NP-hard
e In practice, k-means usually performs well
e Very efficient

 [ts solution can be used as a starting point for other
clustering algorithms

e Many variants and improvements of k-means
clustering exist



Bayesian Decision Theory

e Know probability distribution of the categories

e almost never the case in real life!

* nevertheless useful since other cases can be
reduced to this one after some work

Do not even need training data
e Can design optimal classifier



Example: Fish Sorting

e Respected fish expert says that
e salmon length has distribution N(5,1)
e sea bass length has distribution N(10,4)

e Recall N(p,0?) (1—aY

1 B 2
| — e 20
p(l)=—7—

e Thus class conditional densities are

(1-5)2 (1-10)?

1 1 -
| |salmon)=—e = — *
p(l | ) o p(l |bass) ok 24




Likelihood function

e (Class conditional densities are

(1saimon)=—toe &  plilbasgy—— L e 74
salmon)=—e pll |bass)= e “
& fixed N2 fixed  2N27

* Fix length, let fish class vary
e get likelihood function

it is not density and not probability mass

[ 1 _('-5)2
——e 2 If class =salmon
A2
p(l |class )=+ 1” (1-10f
e 8 |If class=bass
fixed 2\ 27



Likelihood vs. Class Conditional Density

0.4 .
— salmon
— bass
0.3
p(l | class)
0.2
0.1
7 length

Suppose a fish has length 7. How do we classify it?



ML (maximum likelihood) Classifier

Intuitively, want to choose salmon if
Pr[length=7 | salmon]> Pr[length=7 | bass]

However, since length is a continuous r.v.,
Pr[length=7 | salmon]=Pr|[length=7 | bass]=0

Instead, we choose class which maximizes likelihood

1 (1-5) 1 _(1-10)
I I =——¢@ 2 | |Ibass )=
p(l | salmon) \/Ze p(l | ) > 2

e 2*4

bass <
ML classifier: p(l | salmon )? p(l | bass )

> salmon

e if p(l | salmon) > p(l | bass), classify salmon, else classify bass



Interval Justification

ass) Thus we choose the
class (bass) which is
more likely to have
given the observation

[ 7 |salmon)

o[l < B(7)| bass]~ 2 FEIBASI

) e— V

=1 eB(7)|SaImon]z28_



Decision Boundary

0.4

0.3

0.2

0.1

classify p

6.70 10 length



Priors

e Prior comes from prior knowledge, no data has been
seen yet

e Suppose a fish expert says: in the fall, there are twice
as many salmon as sea bass

e Prior for our fish sorting problem
e P(salmon)=2/3
e P(bass)=1/3

e With the addition of prior to our model, how should
we classify a fish of length 77?



How Prior Changes Decision Boundary?

e Without priors

salmon seda bass

®
6.70 length

e How should this change with prior?
e P(salmon) =2/3
e P(bass)=1/3

seda bass

6.70 length

salmon




Bayes Decision Rule

1. Have likelihood functions
e p(length | salmon)
e p(length | bass)

2. Have priors P(salmon) and P(bass)

e (Question: Having observed fish of certain length, do we
classify it as salmon or bass?
e Natural Idea:
e salmon if P(salmon|length) > P(bass|length)
e bass if P(bass|length) > P(salmon|length)



Posterior

P(salmon | length) and P(bass | length) are called
posterior distributions, because the data (length)
was revealed (post data)

How to compute posteriors?
p(salmon length )
plength )

Bayes rule: P(saimon |length )=

_ p(ength | salmon )I?(salmon )
) p{ength )

h | bass )P(bass)

Similarly:  P(bass |length )= p(lengtp@ength )




MAP (maximum a posteriori) classifier

> salmon
P(salmon |length )? P(bass |length )

bass <

p(length | salmon )P (salmon )%alrpnﬁenngth | bass )P (bass )
p(length ) bass < p(length )

>
p(length | salmon )P(salmon) ?ngggth | bass )P (bass)

bass<



Back to Fish Sorting

1 (5 (1-107
e |ikelihood | |salmon)=——e 2 | Ibass)= e 8
p(l | ) o p(l |bass) Nr
e Priors: P(salmon) =2/3, P(bass) =1/3
_ _ 1 (157 2 1 _(1-10)° 1
e Solve inequalit —— e 2 x—> e 8 x=—
ARy J2r 3~ 2V2rx 3
new decision
salmon boundary  sea bass
® ®
6.70 /.18 length

e New boundary makes sense: expect to see more salmon



More on Posterior

posterior density Ii k_el ihood Prior
(our goal) (given) (given)

P(c ) P(I]c)| [P(c)

normalizing factor, often do not even need it for

classification since P(l) does not depend on class c. If

we do need it, from the law of total probability:
P(1)=p(l | salmon )p(salmon )+ p(l | bass)p(bass)

Notice this formula consists of likelihoods and priors,
M given




More on Priors

* Prior comes from prior knowledge, no data has

been seen yet
e If there is a reliable source prior knowledge, it

should be used
e Some problems cannot even be solved reliably

without a good prior

e However prior alone is not enough, we still
need likelihood
e P(salmon)=2/3, P(sea bass)=1/3

e |If | don’t let you see the data, but ask you to guess,
will you choose salmon or sea bass?



More on Map Classifier

. likelihood Prior
posterior P(| |C) P(C)

P(c|l) = ()

e Do not care about P(l) when maximizing P(c|/)

proportional

Pic|l) " e P(I]c)P(c)

e |f P(salmon)=P(bass) (uniform prior) MAP classifier
becomes ML classifier P(C | I)ocP(I |c)

e If for some observation I/, P(I|salmon)=P(l|bass), then this
observation is uninformative and decision is based solely

on the prior p(C | |)OC p(C)



Justification for MAP Classifier

e Probability of error for MAP estimate:

> salmon
P(salmon|l)? P(bass|!)
bass <

e For any particular /, probability of error

( P(bass|/) if we decide salmon
Prierror| I ]=<

L P(salmon|/) if we decide bass

Thus MAP classifier is optimal for each individual /




Justification for MAP Classifier

We are interested to minimize error not just for one /,
we really want to minimize the average error over all /

Prlerror]= _]O p(error,1)dl = _]OPr[error |1]p(1)d]

If Prierror| I ]is as small as possible, the integral is
small as possible

But Bayes rule makes Pr[error| I] as small as possible

Thus MAP classifier minimizes the probability of error




Parametric Supervised Learning

e Supervised parametric learning
e have m classes
* havesamples x,,..., x, each of class 1, 2,..., m
e suppose D; holds samples from class i
e probability distribution for class i is p/{x| 6)

p.(X[6)) P,(X[6))



Parametric Supervised Learning

e Use the ML method to estimate parameters 6,

e find @ which maximizes the likelihood function F(6)

p(D, 16)=]1p(x16)=F(6)

XEDi

e or, equivalently, find g; which maximizes the log likelihood

1(8)
1(6,)=Inp(D,168)= Y. Inp(x|6,)
o
0% " H
® B
® B

6, = argmax|inp(D, | 8,)] 6, =argmax|inp(D, | 6,)]
0, 6,



Parametric Supervised Learning

now the distributions are fully specified

e can classify unknown sample using MAP (Maximum A Posteriori)
classifier




Parametric Unsupervised Learning

e Expectation Maximization (EM)
 one of the most useful statistical methods
 oldest version in 1958 (Hartley)
e seminal paperin 1977 (Dempster et al.)

e can also be used when some samples are missing
features



Parametric Unsupervised Learning

e Assume the data was generated by a model with
known shape but unknown parameters

P(x|6)

O
>“:‘

e Advantages of having a model

e Gives a meaningful way to cluster data

e adjust the parameters of the model to maximize the probability that
the model produced the observed data

e (Can sensibly measure if a clustering is good

e compute the likelihood of data induced by clustering

e (Can compare 2 clustering algorithms
e which one gives the higher likelihood of the observed data?



Parametric Unsupervised Learning

 |n unsupervised learning, no one tells us the true
classes for samples. We still know
e have mclasses
* have samples x,,..., x, each of unknown class
e probability distribution for class i is p/{x| 6)
e (Can we determine the classes and parameters
simultaneously?




Example: MRI Brain Segmentation

segmentatio>

Picture from M. Leventon

In MRI brain image, different brain tissues have different
intensities

Know that brain has 6 major types of tissues

Each type of tissue can be modeled by a Gaussian N(u;, 6?)
reasonably well, parameters u,6? are unknown

Segmenting (classifying) the brain image into different tissue
classes is very useful

e don’t know which image pixel corresponds to which tissue (class)
* don’t know parameters for each N(x;, 67



Mixture Density Model

e Model data with mixture density

componentAdensities

. \
p(x | @)= _ p(x |cj,9j)P(cj)
= mixitl_gY[;l,rameters
e where 9:{6?1,...,6?m}
. P(C1)+ P(CZ)+ ot P(cm)z 1
 To generate a sample from distribution p(x|6)
* first select class j with probability P(c;)

* then generate x according to probability law p(x|c;,8)

»
O
. p(x|cs,6;)

p(x[c,,6,)

p(x|c,,6,)




Example: Gaussian Mixture Density

e Mixture of 3 Gaussians 10r pz(X
] J
p00=N(8].5 1))

p.(x)=N(los] [§ 9]

p,()=N([7-71.[§ 8]

p(x)=0.2p,(x)+0.3p,(x)+0.5p,(x)



Mixture Density

p(x16)=Y plx|c..6)P(c,)

=1

P(c,),..., P(c,,) can be known or unknown

Suppose we know how to estimate &,,..., ., and
P(c,),..., P(c,,)

Can “break apart” mixture p(x|@) for classification

To classify sample x, use MAP estimation, that is
choose classi which maximizes

P(c; 1x,6) «p(x|c;.6)P(c)

J

probabllity of component | probablllty of
to generate x component i



ML Estimation for Mixture Density

3

ip(x |Cj’0j)pi

=1

p(x18,p0)=, p(x ;.6 )P(Cj)

J

I
[N

Use Maximum Likelihood estimation for a mixture
density

Need to estimate

¢ 0,..., 0,

* p=P(Cy,...., pn=P(Cy), and p={p;,..., pn}

As in supervised case, form the log likelihood function

1(6,p)=Inp(D |8, p)= kzr;;ln p(x, 18,p) = gln{gp(x |c;,0, )pi}



ML Estimation for Mixture Density

|(e,p)=gln{gp(x |c;.0, )pi}

need to maximize |(6,p) with respectto @ and p
1(8, p) is not hard to maximize directly

e partial derivatives with respect to 8, p usually give a
“coupled” nonlinear system of equation

e usually closed form solution cannot be found

We could use the gradient ascent method

 ingeneral,itis not the greatest method to use, should only
be used as last resort

There is a better algorithm, called EM



Mixture Density

Before EM, let’s look at the mixture density again
p(x 16.0)=Yp(xIc,.6)p
j=1

Say we know how to estimate 6,,..., §, and p,...

e estimating the class of x is easy with MAP, maximize
p(x |c;,6)P(c;)=p(x|c;.6)p

Suppose know class of samples x;,..., x,,

* justas supervised case, so estimating 4,,..., 8,, and
Pl Py IS €asy
D |

6 =argmax[np®, |6)] 5 ==
6, N

This is an example of chicken-and-egg problem

e EM algorithm solution is adding “hidden” variables



Expectation Maximization Algorithm

e EMi s an algorithm for ML parameter estimation when
the data has missing values. It is used when

1. dataisincomplete (has missing values)

e some features are missing for some samples due to
data corruption, partial survey responses, etc.

2. Suppose data X is complete, but p(X|q) is hard to optimize.
Suppose further that introducing certain hidden variables U
whose values are missing, and suppose it is easier to

optimize the “complete” likelihood function p(X,U|q). Then
EM is useful.

e useful for the mixture density estimation, and is subject
of our lecture today

e Notice after we introduce artificial (hidden) variables U with
missing values, case 2 is completely equivalent to case 1



EM: Hidden Variables for Mixture Density

p(x16)=Yp(x Ic,.6,)p
j=1
 For simplicity, assume component densities are

oxn[ -5

20

1
X|c., 0. )=
ol )=
e assume for now that the variance is known

* need to estimgteq={m,,..., m_}

VANFAN

* |f we knew which sample came from which component
the ML parameter estimation would be easy

 To get this easier problem, introduce hidden variables
which indicate which component each sample belongs to



EM: Hidden Variables for Mixture Density

For 1<i<n, 1<k <m, define hidden variables z*

« _J1 ifsample i was generated by component k
%°°=10 otherwise

X, —> {xi z0 z.(m)}

o zWW are indicator random variables, they indicate which
Gaussian component generated sample x;

Let z; = {z!Y,..., z{M}, indicator r.v. corresponding to x;

* Conditioned on z;, distribution of x; is Gaussian
p(xi | Z, ’9)~ N(ﬂk ’02‘)

 wherekiss.t.zW=1



EM: Joint Likelihood

o Letz;={zlY,.,z/m} and Z={z,,..., 2.}

e The complete likelihood is
P(X.Z16)=p(Xy s X0, 2302, 18) = [ T P(xi,2 16)

=1

-]

n

=TT p(x 12.6) p(z |6)
i=1 \ v J H_J

gaussian part of p,

 If we observed Z, the log likelihood In[p(X,Z|q)] would be
trivial to maximize with respect to g and r;

e The problem, is that the values of Z are missing, since we
made it up (that is Z is hidden)



EM Derivation

* Instead of maximizing In[p(X,Z|q)] idea behind EM is to
maximize some function of In[p(X,Z| q)], usually its
expected value (conditioned on X)

E,x[Inp(X,Z|0)]

e common trick: integrate out unknown variables

e the expectation is with respect to the missing data Z

e thatis with respect to density p(Z | X,q)

e however g is our ultimate goal, we don’t know q !



EM Algorithm

e EM solution is to iterate

1. start with initial parameters q(©)

iterate the following 2 step until convergence

E. compute the expectation of log likelihood with
respect to current estimate gt and X.
Let’s call it Q(q |g®)

Q(e16YV)=E, [Inp(x.z16)| x,6"]

M. maximize Q(q |g®)
9t = argmaxQ(6 | 6Y)
7



EM Algorithm

It can be proven that EM algorithm converges to the
local maximum of the log-likelihood

Inp(X | 6)

Why is it better than gradient ascent?

e Convergence of EM is usually significantly faster, in the
beginning, very large steps are made (that is likelihood
function increases rapidly), as opposed to gradient ascent
which usually takes tiny steps

e gradient descent is not guaranteed to converge
 recall the difficulties of choosing the appropriate learning rate



EM: Lower Bound Maximization

Inp(X | 6)

1(818Y)

oo ‘ :
av g+ 2
e |tcan be shown that at time step t EM algorithm

e constructs function /(@ | @Y) which is bounded above by In
p(X| 6 and touches /(@ | @Y) at =61

e finds @1 that maximizes /(8 | 8Y)
e Therefore, log likelihood In p(X| & can only go up



EM for Mixture of Gaussians: E step

e Let’s come back to our example p(x 10)=Yp(xIc,.0,)p

p(x |Cj’91)=

exp| -
o\ 27 p\ 20

= need to estimate 8= {u,,..., g} and p,..., p,

e Forl<i<n, 1<k <m, define zi(k)

() _ 1 if sample i was generated by component k
10 otherwise

* asbefore, z;={z{Y,..., z\™} and Z = {z,,..., z,}

* need log-likelihood of observed X and hidden Z
inp(x,z16)=In]p(x,.z 16) = 2Inp(x 12,6P()



EM for Mixture of Gaussians: E step

e We need log-likelihood of observed X and hidden Z
inp(x,z16)=In]p(x, 2 16) = 2np(x 12,6P()
e First let’s rewrite p(x, |z,0)P(z,)

. p(Xi | Zi(l) =1, H)P(Z(l) — 1) it 70 —1
p(Xi |Zi,9)P(Zi)=< :

kp(xi |2M =1, H)P(Z-(m)=1) if zm =1

Il
—
e
©
—
£
N
N
Il
JA
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N
N
Il
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i e =)

— ;

;\_
Il



EM for Mixture of Gaussians: E step

 |og-likelihood of observed X and hidden Z is

inp(X,2 |e)=in§1mp(xi 12,,6)P(2)

N
_N - 1 _(><.—M<)2 (k)
_;In[[l[o_ 2”exp( 5o )P(zi _1)
z(K)
_%v\ 1 (-’ (k) |
= I=U(Z:;InL_ — exp( 5o JP(Zi _1)

m 2
= ZZZKK){In - 12;; _x Z_O_'L;k) + In\P(Zi(k) = 12}

Y
P(sample x, from class k )=P(c, )= p,

n m _ 2
_ zzi(k)|:|n 1 _(Xi /:k) +|n,0k:|
i (o)

27 20



EM for Mixture of Gaussians: E step

 |og-likelihood of observed X and hidden Z is

Inp(X,Z|6)= Ziz,k){lno_r (Xi_’t:k)2+lnpk}

k=1 20'

e For the E step, we must compute

Q(616Y)=Q(O1 ... ). p....p5)) =E,[Inp(x.Z]6)|X,6Y]

- E{Zn: ) zi(k){ln 1 —(Xi _’l;k)z +InpS)D

27 20

EX[Zaixi +b} =Zi:aiEx[xi]+b
NV

-SSebeln_t-bonlin, ]

27 20




EM for Mixture of Gaussians: E step

=}

i=1 k=1 20'

t x —u Y
o10)-$5 e[ m_f-bos) +mpkj

= need to compute E,[z,¥] in the above expression

E,[z9]=0%P(z =069, x, )+ 1*P(z") =1] 69, x,)

_p(z0 =1]69,x,) = p(x, 169,z = 1)p(2) = 1] 8Y)

plx, |8Y)
plst)eXp(_;(Xi —ﬂﬁt))zj ) pﬁt)exp(—ziz(xi _Mgt))z)
oom _ _ oom 1
;P(xi 169,20 = 1)p(20) =1/ 6) ;p?) exp(— >z i - ﬂ,(t))z)

e Done with the E step

» forimplementation, need to compute E,[z¥]’s don’t need Q



EM for Mixture of Gaussians: M step

=]

m

1 (x-a)
E |29 | S ST o ¥
— Z[Z' ](nO'\/Zﬂ' 20° ¥ nka

* Need to maximize Q with respect to all parameters

Q(H | g(t)):

* First differentiate with respect to m,

0 0) . ve Lolki-4)
5, Q018%) = TELVFEES <o

= new g, =Y =len:Ez[zi(k)]xi
=1

the mean for class k is weighted average of all samples, and
this weight is proportional to the current estimate of
probability that the sample belongs to class k




EM for Mixture of Gaussians: M step

Q(9|H(t)) ;iEZ[Z ]( O_\/lz_ﬂ_(xiz_lzlk)2+|npk}

1 o

=]

* For p, use Lagrange multipliers to preserve constraint ZP,- =1
j=1

* Need to differentiate F(/’L,p)zQ(H | H(t))—/?{ipj —1)
j=1

9 1 ) ( _
aka(/l,p) .lepkE [z9]-4=0 :>ZE [29]-4p, =0

* Summing up over all components: ZZEZ[Zi(k)]= D Ap,
k=1

k=1i=1

* Since ZZE [z ] n and Zpk_l we get A=n

k=1i=1

= 13 ]




EM Algorithm

This algorithm applies to univariate Gaussian with known variances

1. Randomly initialize gy,..., by s Prs---1 Pm s
* with constraint 2p =1

iterate until nochangein uy,..., 4y, P, -1 Prm

E. foralli, k, compute

P exp(— o (o )2)

20

] ipj exp(— 23.2 (x _/‘j)z)

=1

E, [zi(")]

M. for all k, do parameter update

Hu =iiEZ [Zi(k)]xi P =iiEz [Zi(k)]
n 21 n 51



EM Algorithm

* For more general case of multivariate Gaussians with
unknown means and variances

e Estep: E,[p0]-2PIm.5)
Zl:pip(x |,Uj,2'j)
where IO(X | ,Zk)= 1 — exp[_l(x _luk)tzk_l(x —u )]
(Zﬂ)dlz‘zkl‘ 2
* Mstep
p-ivEl]
= (k) T
ZEZ[Zi ](Xi _:uk)(xi _,Uk)
- S, = i=1 :
ZEZ [Zi(k)]xl ZEZ [Z|(k)]
i = i=1n i=1



EM Algorithm and K-means

e k-means can be derived from EM algorithm

e Setting mixing parameters equal for all classes,
1 2 1 2
B P« eXp(_ 252 (Xi _,Uk) ) B eXp(_ 252 (Xi _ﬂk) )
b 1 & 1
;pj exp(— 257 (Xi _:”j)zj éexp(— 257 (Xi _'”j)zj

E, [Zi(k)]

e Ifwelet o >0, then

] (10 Vi, [1x = 1> 1% — ]
EZ[Zi ] %LO otherwise

e [E step, for each current mean, find all points closest to it
and form new clusters

e M step, compute new means inside current clusters
1¢ K
Hy =HZEZ[Zi( )]Xi
=1



EM Gaussian Mixture Example




EM Gaussian Mixture Example

After first iteration




EM Gaussian Mixture Example

After second iteration




EM Gaussian Mixture Example

After third iteration




EM Gaussian Mixture Example

After 20th iteration




EM Example

« Example from R. Gutierrez-Osuna
 Training set of 900 examples forming an annulus

e Mixture model with m = 30 Gaussian components of
unknown mean and variance is used

* Training:
e |Initialization:
e means to 30 random examples

e covaraince matrices initialized to be diagonal, with large
variances on the diagonal, compared to training data
variance

 During EM training, components with small mixing
coefficients were trimmed

e Thisis atrick to getin a more compact model, with fewer
than 30 Gaussian components



EM Example

lteration O lteration 25 lteration 50
3l vsl
2} L
1l 0s|
o o
Al |
2l Al
Sl Vsl
2 s 2 g o 1 2 25
15) vsl
il n
05} 05l
of ol
al At '._-' o )R -:.‘_u?"v
1 3 S | BT
2.5 2.5 2 15 1 0.5 0 05 15 -2.5 -1.5 -1 -0.5 o] 0.5 1.5

from R. Gutierrez-Osuna




EM Texture Segmentation Example

Figure from “Color and Texture Based Image Segmentation Using EM and Its Application
to Content Based Image Retrieval”,S.J). Belongie et al., ICCV 1998



EM Motion Segmentation Example

hree frames from the MPEG “flower garden” sequence

e, =

Figure from “Representing Images with layers,”, by J. Wang and E.H. Adelson, IEEE
Transactions on Image Processing, 1994, c 1994, IEEE



EM Algorithm Summary

e Advantages
e Guaranteed to converge (to a local max)

 |If the assumed data distribution is correct, the
algorithm works well

e Disadvantages

* If assumed data distribution is wrong, results can
be quite bad.

e |n particular, bad results if use incorrect number of
classes (i.e. the number of mixture components)



