CS840a Machine Learning in Computer Vision Olga Veksler

Lecture 1

Introduction

Outline

- Course overview
- Introduction to Machine Learning

Course Outline

Prerequisite

- First-year course in Calculus
- Introductory Statistics
- Linear Algebra
- Some Computer Vision/Image Processing

Grading

- Class participation 10%
- In class paper presentation 30%
- Final Project Presentation 20%
- Written project report + code, 40 %
 - Matlab, C/C++, anything else as long as I can run it

Course Outline: Content

- Lecture (1/3 of the time), paper
 presentation/discussions/video (2/3 of the time)
- Machine Learning Methods (tentatively)
 - Nearest neighbor
 - Linear classifiers
 - Neural nets
 - SVM
 - Boosting
- Applications in Computer Vision
 - Object detection/recognition
 - Segmentation
 - Tracking
 - Inpainting

Course Outline: Textbook

- No required textbook, but recommended
 - "Pattern Classification" by R.O. Duda, P.E. Hart and D.G. Stork, second edition
 - "Machine Learning" by Tom M. Mitchell
- Conference papers

Intro: What is Machine Learning?

- How to write a computer program that automatically improves its performance through experience
- Machine learning is useful when it is too difficult to come up with a program to perform a desired task
- Make computer to learn by showing examples (usually with correct answers)
 - "supervised" learning or learning with a teacher
- In practice: computer program (or function) which has a tunable parameters, tune parameters until the desirable behavior on the examples

Different Types of Learning

- Supervised Learning: given training examples of inputs and corresponding outputs, produce the "correct" outputs for new inputs
- Unsupervised Learning: given only inputs as training, find structure in the world: e.g. discover clusters
- Reinforcement Learning: not covered in this course

Supervised Machine Learning

- Training samples (or examples) **x**¹,**x**²,..., **x**ⁿ
- Each xⁱ is usually multi-dimensional
 - \mathbf{x}_{1}^{i} , \mathbf{x}_{2}^{i} ,..., \mathbf{x}_{d}^{i} are called *features*
 - xⁱ is also called a *feature vector*
 - example: $\mathbf{x}^1 = \{3,7,35\}, \mathbf{x}^2 = \{5,9,47\}, ...$
 - how many and which features do we take?
- Have target output for each example y¹, y²,...yⁿ
 - "teacher" gives target outputs
 - yⁱ are usually one-dimensional
 - example: $y^1 = 1$ ("face"), $y^2 = 0$ ("not a face")

Two Types of Supervised Machine Learning

- Classification
 - yⁱ is finite, typically called a *label* or a *class*
 - example: yⁱ ∈ {"sunny", "cloudy", "raining"}
- Regression
 - yⁱ is continuous, typically called an *output value*
 - Example: \mathbf{y}^i = temperature \in [-60,60]

Toy Application: fish sorting

Classifier design

- Notice salmon tends to be shorter than sea bass
- Use fish length as the discriminating feature
- Count number of bass and salmon of each length

	2	4	8	10	12	14
bass	0	1	3	8	10	5
salmon	2	5	10	5	1	0

Single Feature (length) Classifier

Find the best length L threshold

- For example, at L = 5, misclassified:
 - 1 sea bass
 - 16 salmon

	2	4	8	10	12	14
bass	0	1	3	8	10	5
salmon	2	5	10	5	1	0

• Classification error (total error) $\frac{17}{50} = 34\%$

Single Feature (length) Classifier

 After searching through all possible thresholds L, the best L= 9, and still 20% of fish is misclassified

Next Step

- Lesson learned:
 - Length is a poor feature alone!
- What to do?
 - Try another feature
 - Salmon tends to be lighter
 - Try average fish lightness

Single Feature (lightness) Classifier

	1	2	3	4	5
bass	0	1	2	10	12
salmon	6	10	6	1	0

Now fish are classified best at lightness threshold of
 3.5 with classification error of 8%

Can do better by feature combining

- Use both length and lightness features
- Feature vector [length, lightness]

• Classification error 4%

Even Better Decision Boundary

Decision boundary (wiggly) with 0% error

Test Classifier on New Data

- The goal is for classifier to perform well on new data
- Test "wiggly" classifier on new data: 25% error

What Went Wrong?

- We always have only a limited amount of data, not all possible data
- We should make sure the decision boundary does not adapt too closely to the particulars of the data we have at hand, but rather grasps the "big picture"

Overfitting

- Complicated boundaries overfit the data, they are too tuned to the particular training data at hand
- Therefore complicated boundaries tend to not generalize well to the new data
- We usually refer to the new data as "test" data

Overfitting: Extreme Example

- Say we have 2 classes: face and non-face images
- Memorize (i.e. store) all the "face" images
- For a new image, see if it is one of the stored faces
 - if yes, output "face" as the classification result
 - If no, output "non-face"
 - also called "rote learning"
- problem: new "face" images are different from stored "face" examples
 - zero error on stored data, 50% error on test (new) data
- Rote learning is memorization without generalization

Generalization

- The ability to produce correct outputs on previously unseen examples is called generalization
- The big question of learning theory: how to get good generalization with a limited number of examples
- Intuitive idea: favor simpler classifiers
 - William of Occam (1284-1347): "entities are not to be multiplied without necessity"
- Simpler decision boundary may not fit ideally to the training data but tends to generalize better to new data

Underfitting

- Can also underfit data, i.e. too simple decision boundary
 - chosen model is not expressive enough
- There is no way to fit a linear decision boundary so that the training examples are well separated
- Training error is too high
 - test error is, of course, also high

Underfitting → *Overfitting*

Sketch of Supervised Machine Learning

- Chose a learning machine f(x,w)
 - w are tunable weights
 - x is the input sample
 - f(x,w) should output the correct class of sample x
 - use labeled samples to tune weights w so that f(x,w) give the correct label for sample x
- Which function **f**(**x**,**w**) do we choose?
 - has to be expressive enough to model our problem well, i.e. to avoid *underfitting*
 - yet not to complicated to avoid overfitting

Training and Testing

- There are 2 phases, training and testing
 - Divide all labeled samples x¹,x²,...xⁿ into 2 sets, training set and test set
 - Training phase is for "teaching" our machine (finding optimal weights w)
 - Testing phase is for evaluating how well our machine works on unseen examples

Training Phase

- Find the weights w s.t. f(xⁱ,w) = yⁱ "as much as possible" for training samples (xⁱ, yⁱ)
 - "as much as possible" needs to be defined
- How do we find parameters w to ensure
 f(xⁱ,w) = yⁱ for most training samples (xⁱ,yⁱ)?
 - This step is usually done by optimization, can be quite time consuming

Testing Phase

- The goal is to design machine which performs well on unseen examples
- Evaluate the performance of the trained machine f(x,w) on the test samples (unseen labeled samples)
- Testing the machine on unseen labeled examples lets us approximate how well it will perform in practice
- If testing results are poor, may have to go back to the training phase and redesign f(x,w)

Generalization and Overfitting

- Generalization is the ability to produce correct output on previously unseen examples
 - i.e. low error on unseen examples
 - Good generalization is the main goal of ML
- Low training error does not necessarily imply low test error
 - we have seen that it is easy to produce f(x,w) which is perfect on training samples (rote "learning")
- Overfitting
 - when the machine performs well on training data but poorly on test data

Classification System Design Overview

Collect and label data by hand

salmon

sea bass

sea bass

- Split data into training and test sets
- Preprocess by segmenting fish from background

- Extract possibly discriminating features
 - length, lightness, width, number of fins, etc.
- Classifier design
 - Choose model for classifier
 - Train classifier on training data
- Test classifier on test data

we mostly look at these two steps in this course

Application: Face Detection

- Objects image patches
- Classes "face" and "not face"

Optical character recognition (OCR)

- Objects images or image patches
- Classes digits 0, 1, ...,9

Digit recognition, AT&T labs http://www.research.att.com/~yann/

License plate readers

http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

Smile detection

The Smile Shutter flow

Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.

Object recognition in mobile phones

Point & Find, Nokia
Google Goggles

Interactive Games: Kinect

• Object Recognition:

http://www.youtube.com/watch?feature=iv&v=fQ59dXOo63o

- Mario: http://www.youtube.com/watch?v=8CTJL5|UjHg
- 3D: http://www.youtube.com/watch?v=7QrnwoO1-8A
- Robot: http://www.youtube.com/watch?v=w8BmgtMKFbY

Application: Scene Classification

- Objects images
- Classes "mountain", "lake", "field"...

Application: Medical Image Processing

- Objects pixels
- Classes different tissue types, stroma, lument, etc.