CS9840 Learning and Computer Vision Prof. Olga Veksler

Lecture 6
Linear Machines
Information Theory (a little BIT)

Today

- Optimization with Gradient descent
- Linear Classifier
 - Two classes
 - Multiple classes
 - Perceptron Criterion Function
 - Batch perceptron rule
 - Single sample perceptron rule
 - Minimum Squared Error (MSE) rule
 - Pseudoinverse
- Generalized Linear Classifier
- Gradient Descent Based learning
- Mutual Information

Optimization

How to minimize a function of a single variable

$$J(x) = (x-5)^2$$

From calculus, take derivative, set it to 0

$$\frac{d}{dx}J(x)=0$$

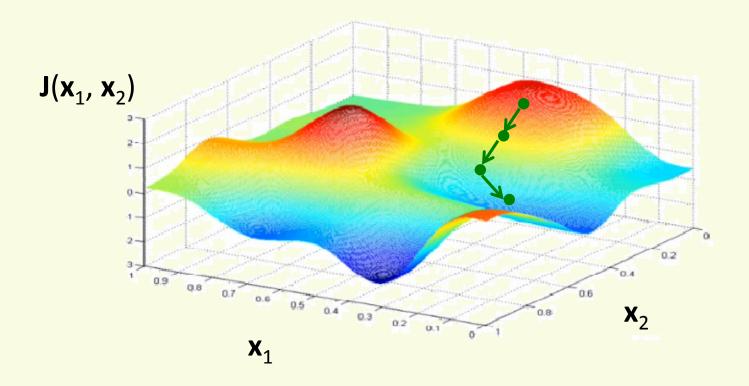
- Solve the resulting equation
 - maybe easy or hard to solve
- Example above is easy:

$$\frac{d}{dx}J(x)=2(x-5)=0 \implies x=5$$

Optimization

How to minimize a function of many variables

$$J(\mathbf{x}) = J(\mathbf{x}_1, ..., \mathbf{x}_d)$$


From calculus, take partial derivatives, set them to 0

gradient

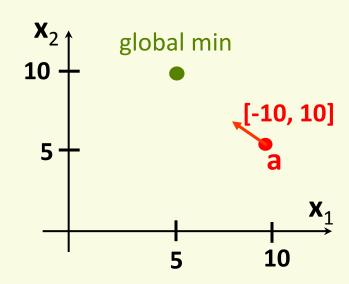
gradient
$$\begin{bmatrix}
\frac{\partial}{\partial x_1} J(x) \\
\vdots \\
\frac{\partial}{\partial x_d} J(x)
\end{bmatrix} = \nabla J(x) = 0$$

- Solve the resulting system of **d** equations
- It may not be possible to solve the system of equations above analytically

Optimization: Gradient Direction

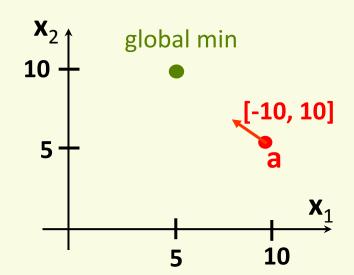
- Gradient $\nabla J(x)$ points in the direction of steepest increase of function J(x)
- $-\nabla J(x)$ points in the direction of steepest decrease

Gradient Direction in 2D

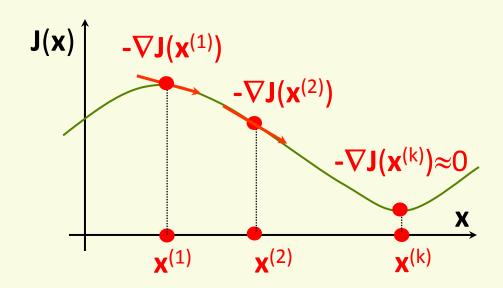

•
$$J(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1 - 5)^2 + (\mathbf{x}_2 - 10)^2$$

$$\bullet \qquad \frac{\partial}{\partial \mathbf{x_1}} \mathbf{J}(\mathbf{x}) = \mathbf{2}(\mathbf{x_1} - \mathbf{5})$$

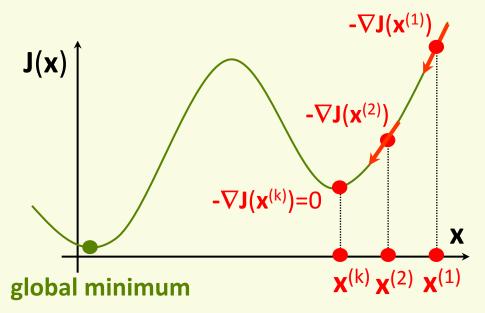
•
$$\frac{\partial}{\partial x_1} J(x) = 2(x_1 - 5)$$
•
$$\frac{\partial}{\partial x_2} J(x) = 2(x_2 - 10)$$


$$\bullet \quad -\frac{\partial}{\partial x_1} J(a) = -10$$

$$-\frac{\partial}{\partial x_2} J(a) = 10$$

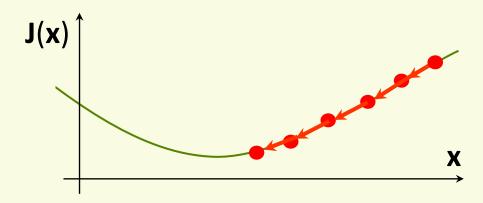

Gradient Descent: Step Size

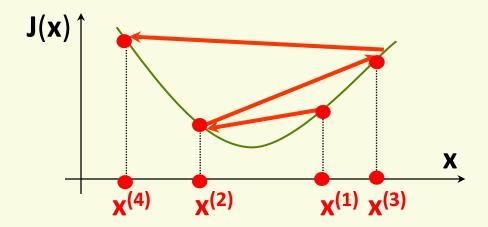
- $J(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1 5)^2 + (\mathbf{x}_2 10)^2$
- Which step size to take?
- Controlled by parameter α
 - called learning rate
- From previous example:
 - a = [10 5]
 - $-\nabla J(a) = [-10 \ 10]$
- Let $\alpha = 0.2$
- $\mathbf{a} \alpha \nabla \mathbf{J}(\mathbf{a}) = [10 \ 5] + 0.2 [-10 \ 10] = [8 \ 7]$
- J(10, 5) = 50
- J(8,7) = 18


Gradient Descent Algorithm

$$\mathbf{k} = 1$$
 $\mathbf{x}^{(1)} = \text{any initial guess}$
 $\text{choose } \alpha, \epsilon$
 $\text{while } \alpha || \nabla \mathbf{J}(\mathbf{x}^{(k)}) || > \epsilon$
 $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \nabla \mathbf{J}(\mathbf{x}^{(k)})$
 $\mathbf{k} = \mathbf{k} + 1$

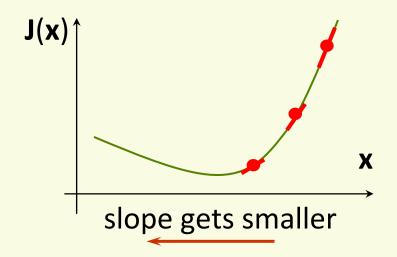
Gradient Descent: Local Minimum


- Not guaranteed to find global minimum
 - gets stuck in local minimum


 Still gradient descent is very popular because it is simple and applicable to any differentiable function

How to Set Learning Rate α **?**

 If α too small, too many iterations to converge


 If α too large, may overshoot the local minimum and possibly never even converge

 It helps to compute J(x) as a function of iteration number, to make sure we are properly minimizing it

How to Set Learning Rate α **?**

- As we approach local minimum, often gradient gets smaller
- Step size may get smaller automatically, even if α is fixed
- So it may be unnecessary to decrease α over time in order not to overshoot a local minimum

Variable Learning Rate

• If desired, can change learning rate α at each iteration

$$\mathbf{k} = 1$$
 $\mathbf{x}^{(1)} = \text{any initial guess}$
 $\text{choose } \alpha, \epsilon$
 $\text{while } \alpha || \nabla \mathbf{J}(\mathbf{x}^{(k)}) || > \epsilon$
 $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \nabla \mathbf{J}(\mathbf{x}^{(k)})$
 $\mathbf{k} = \mathbf{k} + 1$

$$\mathbf{k} = 1$$
 $\mathbf{x}^{(1)} = \text{any initial guess}$
 $\text{choose } \varepsilon$
 $\text{while } \alpha || \nabla \mathbf{J}(\mathbf{x}^{(k)}) || > \varepsilon$
 $\text{choose } \alpha^{(k)}$
 $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha^{(k)} \nabla \mathbf{J}(\mathbf{x}^{(k)})$
 $\mathbf{k} = \mathbf{k} + 1$

Variable Learning Rate

Usually don't keep track of all intermediate solutions

$$\mathbf{k} = 1$$
 $\mathbf{x}^{(1)} = \text{any initial guess}$
 $\text{choose } \alpha, \epsilon$
 $\text{while } \alpha || \nabla \mathbf{J}(\mathbf{x}^{(k)}) || > \epsilon$
 $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \nabla \mathbf{J}(\mathbf{x}^{(k)})$
 $\mathbf{k} = \mathbf{k} + 1$

 $\mathbf{x} = \text{any initial guess}$ $\text{choose } \alpha, \varepsilon$ $\text{while } \alpha ||\nabla \mathbf{J}(\mathbf{x})|| > \varepsilon$ $\mathbf{x} = \mathbf{x} - \alpha ||\nabla \mathbf{J}(\mathbf{x})||$

Advanced Optimization Methods

- There are more advanced gradient-based optimization methods
- Such as conjugate gradient
 - ullet automatically pick a good learning rate α
 - usually converge faster
 - however more complex to understand and implement
 - in Matlab, use **fminunc** for various advanced optimization methods

Last Time: Supervised Learning

Training samples (or examples)

$$x^1, x^2, ... x^n$$

- Each example is typically multi-dimensional
 - $\mathbf{x}^{i} = [\mathbf{x}^{i}_{1}, \mathbf{x}^{i}_{2}, ..., \mathbf{x}^{i}_{d}]$
 - xⁱ is often called a *feature vector*
- Know desired output for each example

$$y^1, y^2, ... y^n$$

- regression: continuous y
- classification: finite y

Last Time: Supervised Learning

• Wish to design a machine f(x,w) s.t.

$$f(x,w) = y$$

- How do we choose f?
 - last lecture studied kNN classifier
 - this lecture in on liner classifier
 - many other choices
- W is typically multidimensional vector of weights (also called parameters)

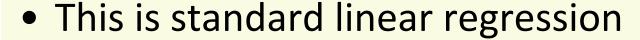
$$\mathbf{w} = [\mathbf{w}_1, \mathbf{w}_2, ... \mathbf{w}_k]$$

• By modifying w, the machine "learns"

Training and Testing Phases

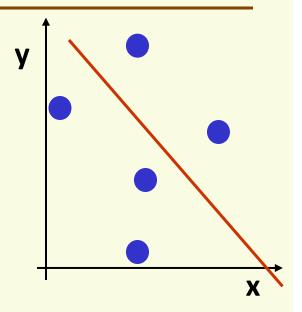
- Divide all labeled samples x¹, x²,..., xⁿ into training and test sets
- Training phase
 - Uses training samples
 - goal is to "teach" the machine
 - find weights w s.t. $f(x^i, w) = y^i$ "as much as possible"
 - "as much as possible" needs to be defined
- Testing phase
 - Uses only test samples
 - for evaluating how well our machine works on unseen examples

Loss Function

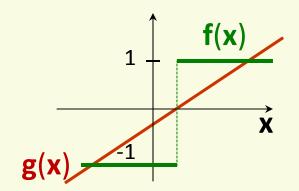

- How to quantify " $f(x^i, w) = y^i$ as much as possible"?
- f(x,w) has to be "close" to the true output y
- Define Loss (or Error, or Criterion) function L
- Typically first define per-sample loss L(xⁱ,yⁱ,w)
 - for classification, $L(x^i,y^i,w) = I[f(x^i,w) \neq y^i]$
 - where I[true] = 1, I[false] = 0
 - for regression, $L(x^i,y^i,w) = ||f(x^i,w) y^i||^2$,
 - how far is the estimated output from the correct one?
- Then loss function $\mathbf{L} = \Sigma_i \mathbf{L}(\mathbf{x}^i, \mathbf{y}^i, \mathbf{w})$
 - classification: counts number of missclassified examples
 - regression: sums distances to the correct output

Linear Machine: Regression

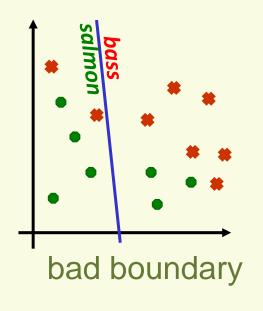
- $\mathbf{f}(\mathbf{x},\mathbf{w}) = \mathbf{w}_0 + \sum_{i=1,2,...d} \mathbf{w}_i \mathbf{x}_i$
- In vector notation

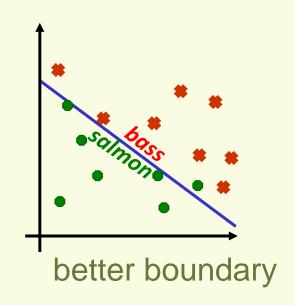

•
$$\mathbf{x} = [1, \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_d]$$

•
$$f(x,w) = w_0 + w^t x$$


- line fitting
- opassume a hyberound by solving yill² a system of linear equations

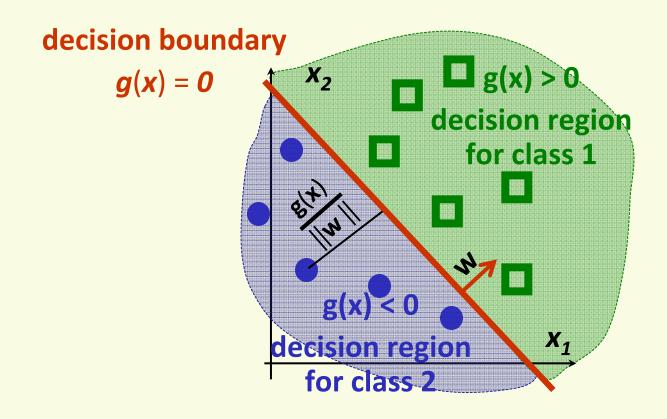
$$\mathbf{w}^* = [\Sigma \mathbf{x}^i (\mathbf{x}^i)^T]^{-1} \Sigma \mathbf{y}^i \mathbf{x}^i$$


Linear Machine: Classification


- First consider the two-class case
- We choose the following encoding:
 - y = 1 for the first class
 - y = -1 for the second class

- Linear classifier
 - $\bullet \quad -\infty \leq \mathbf{w}_0 + \mathbf{x}_1 \mathbf{w}_1 + \dots + \mathbf{x}_d \mathbf{w}_d \leq \infty$
 - we need f(x,w) to be either +1 or -1
 - let $g(x,w) = w_0 + x_1 w_1 + ... + x_d w_d = w_0 + w^t x$
 - let f(x,w) = sign(g(x,w))
 - 1 if g(x,w) is positive
 - -1 if g(x,w) is negative
 - other choices for **g(x,w)** are also used
 - **g**(**x**,**w**) is called the **discriminant function**

Linear Classifier: Decision Boundary



- $f(x,w) = sign(g(x,w)) = sign(w_0+x_1w_1+...+x_dw_d)$
- Decision boundary is linear
- Find the best linear boundary to separate two classes
- Search for best $\mathbf{w} = [\mathbf{w}_0, \mathbf{w}_1, ..., \mathbf{w}_d]$ to minimize training error

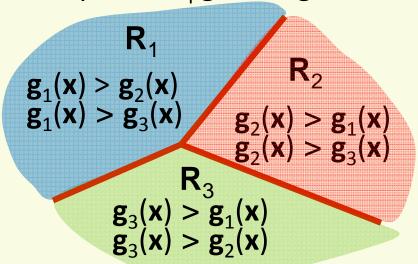
More on Linear Discriminant Function (LDF)

- LDF: $g(x,w) = w_0 + x_1 w_1 + ... + x_d w_d$
- Written using vector notation $g(x) = w^t x + w_0$ weight vector bias or threshold

More on Linear Discriminant Function (LDF)

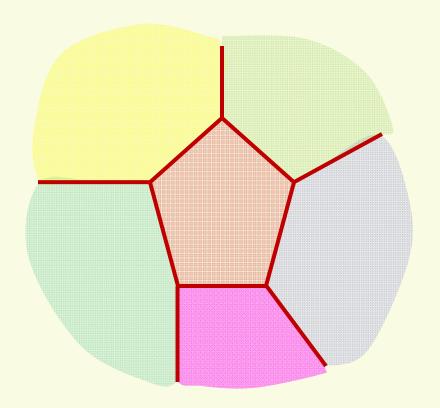
- Decision boundary: $\mathbf{g}(\mathbf{x},\mathbf{w}) = \mathbf{w}_0 + \mathbf{x}_1 \mathbf{w}_1 + \dots + \mathbf{x}_d \mathbf{w}_d = 0$
- This is a hyperplane, by definition
 - a point in 1D
 - a line in 2D
 - a plane in 3D
 - a hyperplane in higher dimensions

Multiple Classes

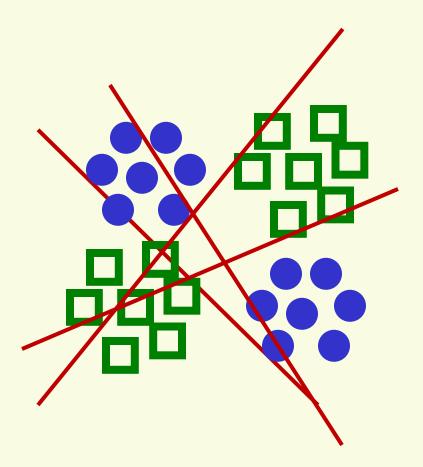

- We have m classes
- Define m linear discriminant functions

$$g_i(x) = w_i^t x + w_{i0}$$
 for $i = 1, 2, ... m$

Assign x to class i if


$$\mathbf{g}_{i}(\mathbf{x}) > \mathbf{g}_{i}(\mathbf{x})$$
 for all $\mathbf{j} \neq \mathbf{i}$

- Let R_i be the decision region for class i
 - That is all examples in R_i get assigned class i


Multiple Classes

- Can be shown that decision regions are convex
- In particular, they must be spatially contiguous

Failure Cases for Linear Classifier

- Thus applicability of linear classifiers is limited to mostly unimodal distributions, such as Gaussian
- Not unimodal data
- Need non-contiguous decision regions
- Linear classifier will fail

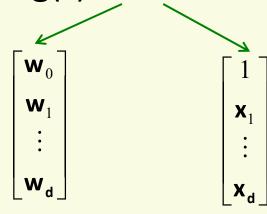
Linear Classifiers

- Linear classifiers give simple decision boundary
 - try simpler models first
- Linear classifiers are optimal for certain type of data
 - Gaussian distributions with equal covariance
- May not be optimal for other data distributions, but they are very simple to use

Fitting Parameters w

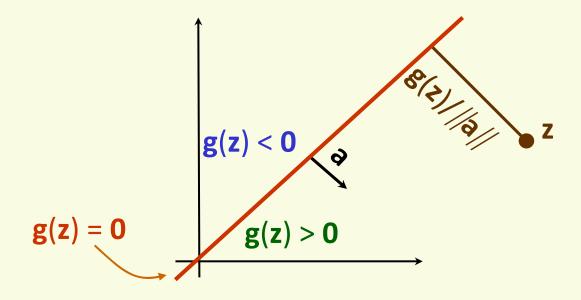
• Linear discriminant function $g(x) = w^t x + w_0$

• Can rewrite it
$$g(x) = w_0 w_1 = a^t z = g(z)$$


new weight

vector a

feature


vector z

- z is called augmented feature vector
- new problem equivalent to the old g(z) = a^tz

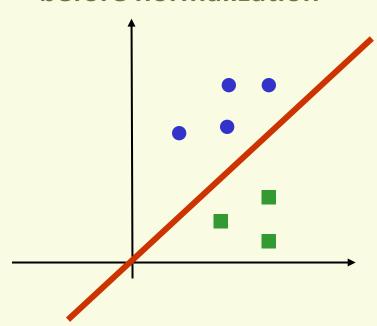
Augmented Feature Vector

- Feature augmenting is done to simplify notation
- From now on we assume that we have augmented feature vectors
 - given samples $\mathbf{x}^1,...,\mathbf{x}^n$ convert them to augmented samples $\mathbf{z}^1,...,\mathbf{z}^n$ by adding a new dimension of value 1
- $g(z) = a^t z$

Training Error

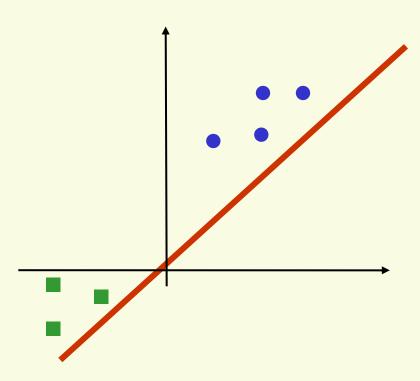
- For the rest of the lecture, assume we have 2 classes
- Samples **z**¹,..., **z**ⁿ some in class 1, some in class 2
- Use these samples to determine weights a in the discriminant function g(z) = a^tz
- Want to minimize number of misclassified samples

• Recall that
$$\begin{cases} \mathbf{g}(\mathbf{z}^i) > 0 \implies \text{class 1} \\ \mathbf{g}(\mathbf{z}^i) < 0 \implies \text{class 2} \end{cases}$$


• Thus training error is 0 if $\begin{cases} \mathbf{g}(\mathbf{z}^i) > 0 & \forall \mathbf{z}^i \text{ class 1} \\ \mathbf{g}(\mathbf{z}^i) < 0 & \forall \mathbf{z}^i \text{ class 2} \end{cases}$

Simplifying Notation Further

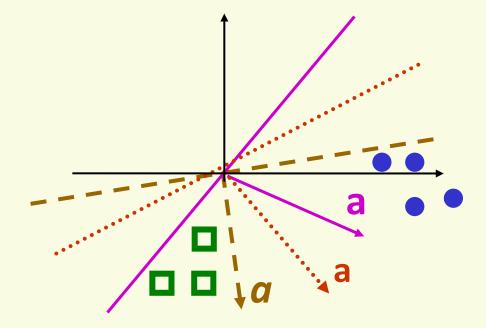
- Thus training error is 0 if $\begin{cases} \textbf{a}^t \textbf{z}^i > 0 & \forall \textbf{z}^i \text{ class 1} \\ \textbf{a}^t \textbf{z}^i < 0 & \forall \textbf{z}^i \text{ class 2} \end{cases}$
- Equivalently, training error is 0 if $\begin{cases} \mathbf{a^t z^i} > 0 \ \forall \mathbf{z^i} \text{ class 1} \\ \mathbf{a^t (-z^i)} > 0 \ \forall \mathbf{z^i} \text{ class 2} \end{cases}$
- Problem "normalization":
 - replace all examples zⁱ from class 2 by -zⁱ
 - 2. seek weights **a** s.t. $\mathbf{a}^{t}\mathbf{z}^{i} > 0$ for $\forall \mathbf{z}^{i}$
- If exists, such **a** is called a **separating** or **solution** vector
- Original samples $\mathbf{x}^1,...$ \mathbf{x}^n can also be linearly separated


Effect of Normalization

before normalization

seek a hyperplane that separates samples from different categories

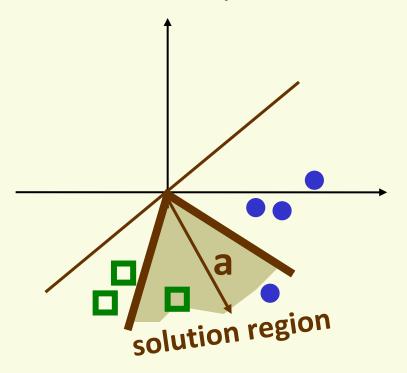
after normalization



seek hyperplane that puts normalized samples on the same (positive) side

Solution Region

• Find weight vector **a** s.t. for all samples **z**¹,...,**z**ⁿ


$$\mathbf{a}^{\mathsf{t}}\mathbf{z}^{\mathsf{i}} = \sum_{\mathsf{k}=\mathsf{0}}^{\mathsf{d}} \mathbf{a}_{\mathsf{k}}^{} \mathbf{z}_{\mathsf{d}}^{\mathsf{i}} > \mathbf{0}$$

• If there is one such a, then there are infinitely many a

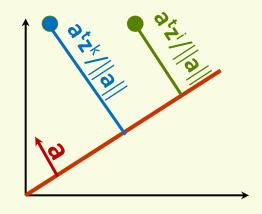
Solution Region

• Solution region: the set of all possible solutions for a

Minimum Squared Error Optimization (MSE)

- Linear Regression is a very well understood problem
- Problem is not regression, but let's convert to regression!

a^tzⁱ > 0 for all samples zⁱsolve system of linear inequalities


 $\mathbf{a}^{\mathbf{t}}\mathbf{z}^{\mathbf{i}} = \mathbf{b}_{\mathbf{i}}$ for all samples $\mathbf{z}^{\mathbf{i}}$ solve system of linear equations

- MSE procedure
 - choose positive constants **b**₁, **b**₂,..., **b**_n
 - try to find weight vector a s.t. a^tzⁱ = b_i for all samples zⁱ
 - if succeed, then **a** is a solution because **b**_i's are positive
 - consider all the samples (not just the misclassified ones)

MSE: Margins

- By setting a^tzⁱ = b_i, we expect zⁱ to be at a relative distance b_i from the separating hyperplane
- Thus b₁, b₂,..., b_n are expected relative distances of examples from the separating hyperplane
- Should make b_i small if sample i is expected to be near separating hyperplane, and make b_i larger otherwise
- In the absence of any such information, there are good reasons to set

$$\mathbf{b}_1 = \mathbf{b}_2 = \dots = \mathbf{b}_n = 1$$

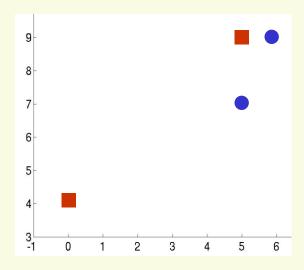
MSE: Matrix Notation

• Solve system of **n** equations $\begin{cases} \mathbf{a}^{t} \mathbf{z}^{1} = \mathbf{b}_{1} \\ \vdots \\ \mathbf{a}^{t} \mathbf{z}^{n} = \mathbf{b}_{n} \end{cases}$

• Using matrix notation:

$$\begin{bmatrix} \mathbf{z}_0^1 & \mathbf{z}_1^1 & \cdots & \mathbf{z}_d^1 \\ \mathbf{z}_0^2 & \mathbf{z}_1^2 & \cdots & \mathbf{z}_d^2 \\ \vdots & & & \vdots \\ \mathbf{z}_0^n & \mathbf{z}_1^n & \cdots & \mathbf{z}_d^n \end{bmatrix} \begin{bmatrix} \mathbf{a}_0 \\ \mathbf{a}_1 \\ \vdots \\ \vdots \\ \mathbf{a}_d \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \vdots \\ \mathbf{b}_n \end{bmatrix}$$

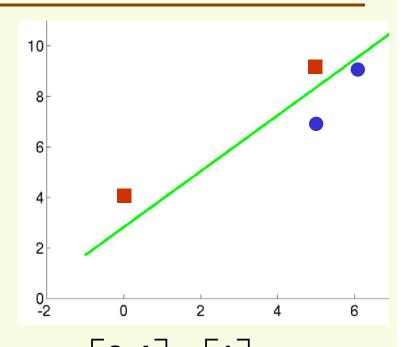
Solve a linear system Za = b


MSE:Approximate Solution

- Typically Z is overdetermined
 - more rows (examples) than columns (features)

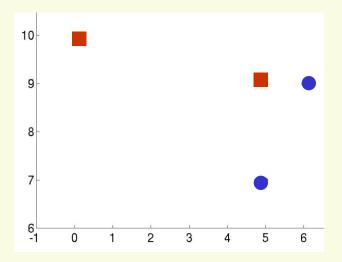
- No exact solution for Za = b in this case
- Find an approximate solution a, that is Za ≈ b
 - approximate solution a does not necessarily give a separating hyperplane in the separable case
 - but hyperplane corresponding to an approximate a may still be a good solution
- Least Squares Solution: **a** = (**Z**^t**Z**)⁻¹ **Z**^t**b**

- Class 1: (6 9), (5 7)
- Class 2: (5 9), (0 4)
- Add extra feature and "normalize"


$$\mathbf{z}^{1} = \begin{bmatrix} 1 \\ 6 \\ 9 \end{bmatrix} \quad \mathbf{z}^{2} = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix} \quad \mathbf{z}^{3} = \begin{bmatrix} -1 \\ -5 \\ -9 \end{bmatrix} \quad \mathbf{z}^{4} = \begin{bmatrix} -1 \\ 0 \\ -4 \end{bmatrix}$$

• Choose
$$\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

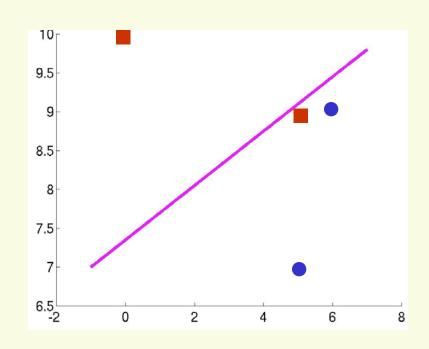
Use a=Z\b to solve in Matlab


$$\mathbf{a} = \begin{bmatrix} 2.7 \\ 1.0 \\ -0.9 \end{bmatrix}$$

- Gives a separating hyperplane since
 Za > 0

- Class 1: (6 9), (5 7)
- Class 2: (5 9), (0 10)
- One example is far compared to others from separating hyperplane

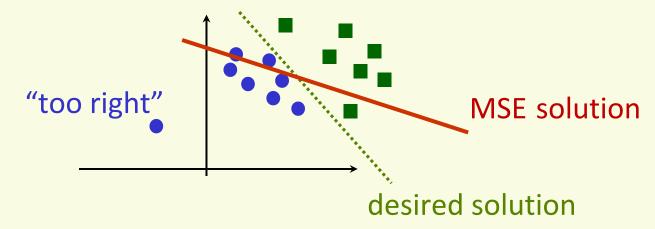
$$\mathbf{z}^{1} = \begin{bmatrix} 1 \\ 6 \\ 9 \end{bmatrix} \qquad \mathbf{z}^{2} = \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix} \qquad \mathbf{z}^{3} = \begin{bmatrix} -1 \\ -5 \\ -9 \end{bmatrix} \qquad \mathbf{z}^{4} = \begin{bmatrix} -1 \\ 0 \\ -10 \end{bmatrix}$$



$$\bullet \quad \mathbf{Z} = \begin{bmatrix} 1 & 6 & 9 \\ 1 & 5 & 7 \\ -1 & -5 & -9 \\ -1 & 0 & -10 \end{bmatrix}$$

• Choose
$$\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

• Solve
$$\mathbf{a} = \mathbf{Z} \setminus \mathbf{b} = \begin{bmatrix} 3.2 \\ 0.2 \\ -0.4 \end{bmatrix}$$


•
$$\mathbf{Za} = \begin{bmatrix} 0.2 \\ 0.9 \\ -0.04 \\ 1.16 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

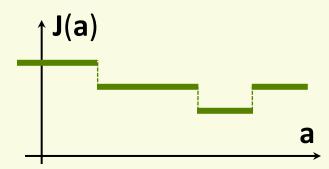
• Does not give a separating hyperplane since $\mathbf{a}^t \mathbf{z}^3 < \mathbf{0}$

MSE: Problems

- MSE wants all examples to be at the same distance from the separating hyperplane
- Examples that are "too right", i.e. too far from the boundary cause problems

- No problems with convergence though, both in separable and non-separable cases
- Can fix it in linearly separable case, i.e find better **b**

Another Approach: Design a Loss Function

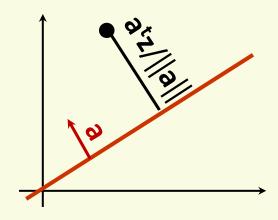

- Find weight vector **a** s.t. $\forall z^1,..., z^n$, $a^t z^i > 0$
- Design a loss function J(a), which is minimum when a is a solution vector
- Let Z(a) be the set of examples misclassified by a

$$Z(a) = \{ z^i \mid a^t z^i < 0 \}$$

Natural choice: number of misclassified examples

$$J(a) = |Z(a)|$$

- Unfortunately, can't be minimized with gradient descent
 - piecewise constant, gradient zero or does not exist



Perceptron Loss Function

• Better choice: Perceptron loss function

$$\mathbf{J_p}(\mathbf{a}) = \sum_{\mathbf{z} \in \mathbf{Z}(\mathbf{a})} (-\mathbf{a}^{\mathsf{t}}\mathbf{z})$$

- If z is misclassified, a^tz < 0
- Thus $J(a) \ge 0$
- J_p(a) is proportional to the sum of distances of misclassified examples to decision boundary
- J_p(a) is piecewise linear and suitable for gradient descent

Optimizing with Gradient Descent

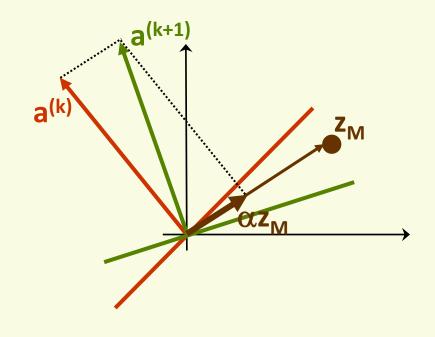
$$J_{p}(a) = \sum_{z \in Z(a)} (-a^{t}z)$$

- Gradient of $J_p(a)$ is $\nabla J_p(a) = \sum_{z \in Z(a)} (-z)$
 - cannot solve $\nabla \mathbf{J}_{p}(\mathbf{a}) = 0$ analytically because of $\mathbf{Z}(\mathbf{a})$
- Recall update rule for gradient descent

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k+1)} - \alpha \nabla \mathbf{J}(\mathbf{x}^{(k)})$$

Gradient decent update rule for J_p(a) is:

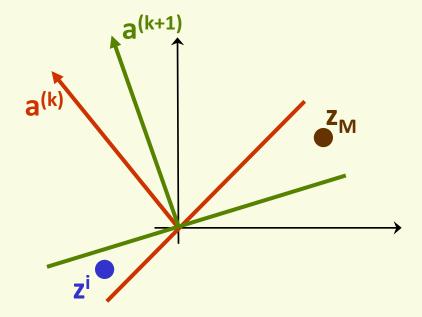
$$\mathbf{a}^{(k+1)} = \mathbf{a}^{(k)} + \alpha \sum_{\mathbf{z} \in \mathbf{Z}(\mathbf{a})} \mathbf{z}$$

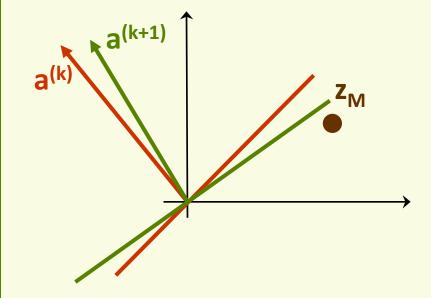

- called **batch rule** because it is based on all examples
- true gradient descent

Perceptron Single Sample Rule

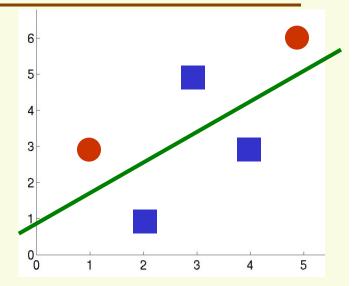
• Gradient decent single sample rule for $J_p(a)$ is

$$\mathbf{a}^{(k+1)} = \mathbf{a}^{(k)} + \alpha \cdot \mathbf{z}_{\mathbf{M}}$$


- **z**_M is one sample misclassified by **a**^(k)
- must have a consistent way to visit samples
- Geometric Interpretation:
- z_{M} misclassified by $a^{(k)}$ $(a^{(k)})^{t} z_{M} \leq 0$
- z_M is on the wrong side of decision boundary
- adding $\alpha \cdot \mathbf{z_M}$ to a moves decision boundary in the right direction



Perceptron Single Sample Rule

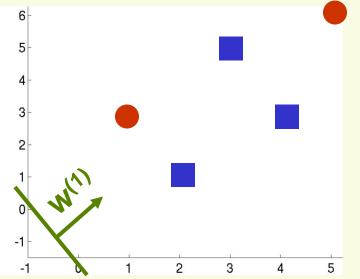

if α is too large, previously correctly classified sample \mathbf{z}^i is now misclassified

if α is too small, \mathbf{z}_{M} is still misclassified

- Suppose we have examples:
 - class 1: [2,1], [4,3], [3,5]
 - class 2: [1,3], [5,6]
 - not linearly separable
- Still would like to get approximate separation

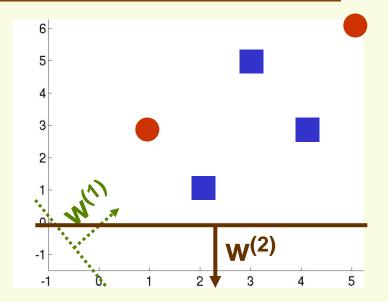
- Good line choice is shown in green
- Let us run gradient descent
 - Add extra feature and "normalize"

$$\mathbf{z}^{1} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \qquad \mathbf{z}^{2} = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} \qquad \mathbf{z}^{3} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \qquad \mathbf{z}^{4} = \begin{bmatrix} -1 \\ -1 \\ -3 \end{bmatrix} \qquad \mathbf{z}^{5} = \begin{bmatrix} -1 \\ -5 \\ -6 \end{bmatrix}$$


- single sample perceptron rule
- Initial weights **a**⁽¹⁾ = [1 1 1]
- This is line $x_1 + x_2 + 1 = 0$
- Use fixed learning rate $\alpha = 1$
- Rule is: $a^{(k+1)} = a^{(k)} + z_M$

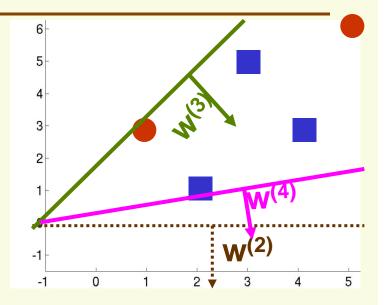
$$\mathbf{z}^{1} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \quad \mathbf{z}^{2} = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} \quad \mathbf{z}^{3} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \quad \mathbf{z}^{4} = \begin{bmatrix} -1 \\ -1 \\ -3 \end{bmatrix} \quad \mathbf{z}^{5} = \begin{bmatrix} -1 \\ -5 \\ -6 \end{bmatrix}$$

•
$$\mathbf{a}^{t}\mathbf{z}^{1} = [1 \ 1 \ 1] \cdot [1 \ 2 \ 1]^{t} > 0$$

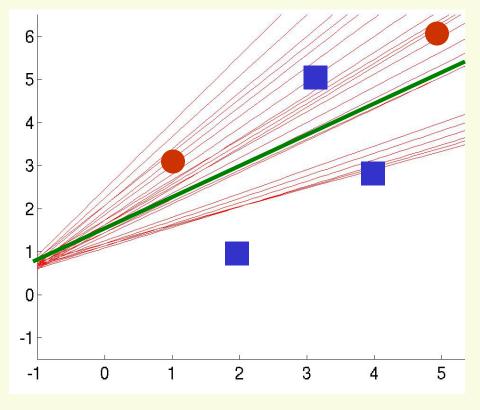

•
$$\mathbf{a}^{t}\mathbf{z}^{2} = [1 \ 1 \ 1] \cdot [1 \ 4 \ 3]^{t} > 0$$

•
$$\mathbf{a}^{t}\mathbf{z}^{3} = [1 \ 1 \ 1] \cdot [1 \ 3 \ 5]^{t} > 0$$

- $a^{(1)} = [1 \ 1 \ 1]$
- rule is: $a^{(k+1)} = a^{(k)} + z_M$


$$\mathbf{z}^{1} = \begin{bmatrix} \mathbf{1} \\ \mathbf{2} \\ \mathbf{1} \end{bmatrix} \quad \mathbf{z}^{2} = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} \quad \mathbf{z}^{3} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \quad \mathbf{z}^{4} = \begin{bmatrix} -1 \\ -1 \\ -3 \end{bmatrix} \quad \mathbf{z}^{5} = \begin{bmatrix} -1 \\ -5 \\ -6 \end{bmatrix}$$

- $\mathbf{a}^{t}\mathbf{z}^{4} = [1 \ 1 \ 1] \cdot [-1 \ -1 \ -3]^{t} = -5 < 0$
- Update: $\mathbf{a}^{(2)} = \mathbf{a}^{(1)} + \mathbf{z}_{M} = [1 \ 1 \ 1] + [-1 \ -1 \ -3] = [0 \ 0 \ -2]$
- $\mathbf{a}^{\mathsf{t}}\mathbf{z}^{\mathsf{5}} = [0\ 0\ -2]\cdot[-1\ -5\ -6]^{t} = 12 > 0$
- $\mathbf{a}^{t}\mathbf{z}^{1} = [0 \ 0 \ -2] \cdot [1 \ 2 \ 1]^{t} < 0$
- Update: $\mathbf{a}^{(3)} = \mathbf{a}^{(2)} + \mathbf{z}_{M} = [0 \ 0 \ -2] + [1 \ 2 \ 1] = [1 \ 2 \ -1]$


- $a^{(3)} = [1 \ 2 \ -1]$
- rule is: $a^{(k+1)} = a^{(k)} + z_M$

$$\mathbf{z}^{1} = \begin{bmatrix} \mathbf{1} \\ \mathbf{2} \\ \mathbf{1} \end{bmatrix} \quad \mathbf{z}^{2} = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} \quad \mathbf{z}^{3} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \quad \mathbf{z}^{4} = \begin{bmatrix} -1 \\ -1 \\ -3 \end{bmatrix} \quad \mathbf{z}^{5} = \begin{bmatrix} -1 \\ -5 \\ -6 \end{bmatrix}$$

- $\mathbf{a}^{t}\mathbf{z}^{2} = [1 \ 4 \ 3] \cdot [1 \ 2 \ -1]^{t} = 6 > 0$
- $\mathbf{a}^{t}\mathbf{z}^{3} = [1 \ 3 \ 5] \cdot [1 \ 2 \ -1]^{t} = 2 > 0$
- $\mathbf{a}^{t}\mathbf{z}^{4} = [-1 \ -1 \ -3] \cdot [1 \ 2 \ -1]^{t} = 0$
- Update: $\mathbf{a}^{(4)} = \mathbf{a}^{(3)} + \mathbf{z}_{M} = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix} + \begin{bmatrix} -1 & -1 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -4 \end{bmatrix}$

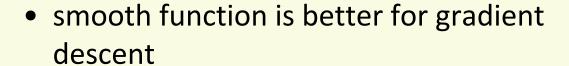
- We can continue this forever
 - there is no solution vector a satisfying for all a^tz_i > 0 for all i
- Need to stop at a good point
- Solutions at iterations900 through 915
- Some are good some are not
- How do we stop at a good solution?

Convergence of Perceptron Rules

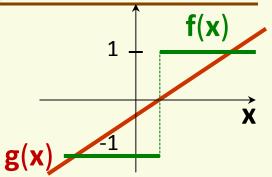
- Classes are linearly separable:
 - with fixed learning rate, both single sample and batch rules converge to a correct solution a
 - can be any **a** in the solution space
- 2. Classes are not linearly separable:
 - with fixed learning rate, both single sample and batch do not converge
 - can ensure convergence with appropriate variable learning rate
 - $\alpha \rightarrow 0$ as $k \rightarrow \infty$
 - example, inverse linear: $\alpha = c/k$, where c is any constant
 - also converges in the linearly separable case
 - no guarantee that we stop at a good point, but there are good reasons to choose inverse linear learning rate
- Practical Issue: both single sample and batch algorithms converge faster if features are roughly on the same scale
 - see kNN lecture on feature normalization

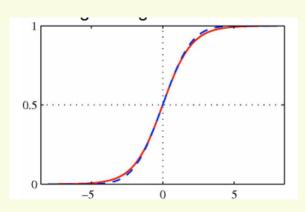
Batch vs. Single Sample Rules

Batch


- True gradient descent, full gradient computed
- Smoother gradient because all samples are used
- Takes longer to converge

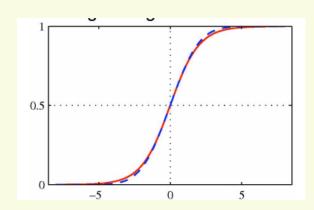
Single Sample


- Only partial gradient is computed
- Noisier gradient, therefore may concentrates more than necessary on any isolated training examples (those could be noise)
- Converges faster
- Easier to analyze


Linear Machine: Logistic Regression

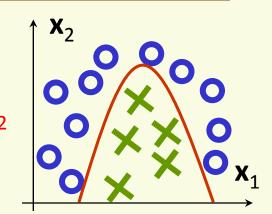
- Despite the name, used for classification, not regression
- Instead of putting g(x) through a sign function, can put it through a smooth function

- Logistic sigmoid function
- $g(x,w) = w_0 + x_1 w_1 + ... + x_d w_d$
- let f(x,w) = O(g(x,w))



$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

Linear Machine: Logistic Regression


- f(x,w) = O(g(x,w))
 - bigger 0.5 if g(x,w) is positive
 - decide class 1
 - less 0.5 if g(x,w) is negative
 - decide class 2
- Has an interesting probabilistic interpretation
- P(class 1|x) = O(g(x,w))
- Under a certain loss function, can be optimized exactly with gradient decent

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

 Can use other discriminant functions, like quadratics

$$g(x) = w_0 + w_1 x_1 + w_2 x_2 + w_{12} x_1 x_2 + w_{11} x_1^2 + w_{22} x_2^2$$

 Methodology is almost the same as in the linear case:

•
$$f(x) = sign(w_0 + w_1x_1 + w_2x_2 + w_{12}x_1x_2 + w_{11}x_1^2 + w_{22}x_2^2)$$

•
$$z = [1 x_1 x_2 x_1 x_2 x_1^2 x_2^2]$$

•
$$\mathbf{a} = [\mathbf{w}_0 \ \mathbf{w}_1 \ \mathbf{w}_2 \ \mathbf{w}_{12} \ \mathbf{w}_{11} \ \mathbf{w}_{22}]$$

- "normalization": multiply negative class samples by -1
- all the other procedures remain the same, i.e. gradient descent to minimize Perceptron loss function, or MSE procedure, etc.

• In general, to the liner function:

$$g(\mathbf{x}, \mathbf{w}) = \mathbf{w}_0 + \sum_{i=1...d} \mathbf{w}_i \mathbf{x}_i$$

can add quadratic terms:

$$\mathbf{g}(\mathbf{x},\mathbf{w}) = \mathbf{w}_0 + \sum_{i=1...d} \mathbf{w}_i \mathbf{x}_i + \sum_{i=1...d} \sum_{j=1,...d} \mathbf{w}_{ij} \mathbf{x}_i \mathbf{x}_j$$

- This is still a linear function in its parameters w
- $g(y,v) = v_0 + v^t y$

$$\mathbf{v}_0 = \mathbf{w}_0$$

 $\mathbf{y} = [\mathbf{x}_1 \ \mathbf{x}_2 ... \ \mathbf{x}_d \ \mathbf{x}_1 \mathbf{x}_1 \ \mathbf{x}_1 \mathbf{x}_2 \ ... \ \mathbf{x}_d \mathbf{x}_d]$
 $\mathbf{v} = [\mathbf{w}_1 \ \mathbf{w}_2 ... \ \mathbf{w}_d \ \mathbf{w}_{11} \ \mathbf{w}_{12} \ ... \ \mathbf{w}_{dd}]$

• Can use all the same training methods as before

Generalized linear classifier

$$g(\mathbf{x},\mathbf{w}) = \mathbf{w}_0 + \sum_{i=1...m} \mathbf{w}_i \mathbf{h}_i(\mathbf{x})$$

- h(x) are called basis function, can be arbitrary functions
 - in strictly linear case, h_i(x)= x_i
- Linear function in its parameters w

$$g(x,w) = w_0 + w^t h$$

 $h = [h_1(x) h_2(x) ... h_m(x)]$
 $[w_1 ... w_m]$

Can use all the same training methods as before

- Usually face severe overfitting
 - too many degrees of freedom
 - Boundary can "curve" to fit to the noise in the data
- Helps to regularize by keeping w small
 - small w means the boundary is not as curvy
- Usually add $\lambda ||\mathbf{w}||^2$ to the loss function
- Recall quadratic loss function

$$L(x^{i},y^{i},w) = || f(x^{i},w) - y^{i} ||^{2}$$

Regularized version

$$L(x^{i},y^{i},w) = || f(x^{i},w) - y^{i} ||^{2} + \lambda ||w||^{2}$$

- How to set λ ?
- With cross-validation

Learning by Gradient Descent

- Can have classifiers even more general
- More general than generalized linear ©
- Suppose we suspect that the machine has to have functional form f(x,w), not necessarily linear
- Pick differentiable per-sample loss function L(xⁱ,yⁱ,w)
- Need to find w that minimizes $\mathbf{L} = \Sigma_i \mathbf{L}(\mathbf{x}^i, \mathbf{y}^i, \mathbf{w})$
- Use gradient-based minimization:
 - Batch rule: $\mathbf{w} = \mathbf{w} \alpha \nabla \mathbf{L}(\mathbf{w})$
 - Or single sample rule: W = W $\alpha \nabla \mathbf{L} (\mathbf{x}^i, \mathbf{y}^i, \mathbf{w})$

Information theory

- Information Theory regards information as only those symbols that are uncertain to the receiver
 - only infrmatn esentil to understnd mst b tranmitd
- Shannon made clear that uncertainty is the very commodity of communication
- The amount of information, or uncertainty, output by an information source is a measure of its entropy
- In turn, a source's entropy determines the amount of bits per symbol required to encode the source's information
- Messages are encoded with strings of 0 and 1 (bits)

Information theory

- Suppose we toss a fair die with 8 sides
 - need 3 bits to transmit the results of each toss
 - 1000 throws will need 3000 bits to transmit
- Suppose the die is biased
 - side A occurs with probability 1/2, chances of throwing B are 1/4, C are 1/8, D are 1/16, E are 1/32, F 1/64, G and H are 1/128
 - Encode A= 0, B = 10, C = 110, D = 1110,..., so on until G = 1111110, H = 1111111
 - We need, on average, 1/2+2/4+3/8+4/16+5/32+6/64+7/128+7/128 = 1.984 bits to encode results of a toss
 - 1000 throws require 1984 bits to transmit
 - Less bits to send = less "information"
 - Biased die tosses contain less "information" than unbiased die tosses (know in advance biased sequence will have a lot of A's)
 - What's the number of bits in the best encoding?
- Extreme case: if a die always shows side A, a sequence of 1,000 tosses has no information, 0 bits to encode

Information theory

- if a die is fair (any side is equally likely, or uniform distribution), for any toss we need log(8) = 3 bits
- Suppose any of n events is equally likely (uniform distribution)
 - P(x) = 1/n, therefore $-\log P = -\log(1/n) = \log n$
- In the "good" encoding strategy for our biased die example, every side x has -log p(x) bits in its code
- Expected number of bits is

$$-\sum_{x}p(x)\log p(x)$$

Shannon's Entropy

$$H[p(x)] = -\sum_{x} p(x) \log p(x) = \sum_{x} p(x) \log \frac{1}{p(x)}$$

- How much randomness (or uncertainty) is there in the value of signal x if it has distribution p(x)
 - For uniform distribution (every event is equally likely), H[x] is maximum
 - If p(x) = 1 for some event x, then H[x] = 0
 - Systems with one very common event have less entropy than systems with many equally probable events
- Gives the expected length of optimal encoding (in binary bits) of a message following distribution p(x)
 - doesn't actually give this optimal encoding

Conditional Entropy of X given Y

$$H[x | y] = \sum_{x,y} p(x,y) \log \frac{1}{p(x | y)} = -\sum_{x,y} p(x,y) \log p(x | y)$$

- Measures average uncertainty about x when y is known
- Property:
 - H[x] ≥ H[x|y], which means after seeing new data (y), the uncertainty about x is not increased, on average

Mutual Information of X and Y

$$I[x,y]=H(x)-H(x|y)$$

- Measures the average reduction in uncertainty about x after y is known
- or, equivalently, it measures the amount of information that y conveys about x
- Properties
 - I(x,y) = I(y,x)
 - $I(x,y) \ge 0$
 - If x and y are independent, then I(x,y) = 0
 - I(x,x) = H(x)

MI for Feature Selection

$$I[x,c]=H(c)-H(c/x)$$

- Let x be a proposed feature and c be the class
- If I[x,c] is high, we can expect feature x be good at predicting class c