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SVM

Said to start in 1979 with Vladimir
Vapnik’s paper

Major developments throughout 1990’s
Elegant theory

e Has good generalization properties

Have been applied to diverse problems
very successfully in the last 10-15 years

One of the most important
developments in pattern recognition in
the last 15 years



Linear Discriminant Functions

e A discriminant function is linear if it can be written as
g(x) = wix + w,

g(x)>0 =xeclass 1
g(x)<0 =xeclass 2

e which separating hyperplane should we choose?



Linear Discriminant Functions

e Training data is just a subset of of all possible data
e Suppose hyperplane is close to sample x;

e |f we see new sample close to samplei, it is likely to be
on the wrong side of the hyperplane

~ x(1)
e Poor generalization (performance on unseen data)



Linear Discriminant Functions

e Hyperplane as far as possible from any sample

e New samples close to old samples will be classified
correctly

e Good generalization



SVM

e |dea: maximize distance to the closest example
x(2) [] Xx(2) []

> x(1)

smaller distance larger distance

e For the optimal hyperplane

e distance to the closest negative example = distance to the
closest positive example



SVM: Linearly Separable Case

e SVM: maximize the margin
x(2) 1 ‘

e margin is twice the absolute value of distance b of the
closest example to the separating hyperplane
e Better generalization (performance on test data)
® in practice
e and in theory



SVM: Linearly Separable Case

x(2) 1

e Support vectors are samples closest to separating
hyperplane
e they are the most difficult patterns to classify
e Optimal hyperplane is completely defined by support vectors

e of course, we do not know which samples are support vectors without
finding the optimal hyperplane



SVM: Formula for the Margin

x(2)

->

g(x) = wix +w,

absolute distance between x
and the boundary g(x) =0

distance is unchanged for hyperplane
g;(x)=a g (x)

‘aw‘x+awo‘ ‘w’x+w0‘

v |w]

Let x; be an example closest to the boundary. Set
‘W’x,. +w0‘ =1

Now the largest margin hyperplane is unique



SVM: Formula for the Margin

e For unigueness, set \w’x,. +w0\ =1 for any example x;
closest to the boundary

e now distance from closest sample x; to g(x) =0 is

w| v NE

e Thus the margin is

2

m=—
wi




SVM: Optimal Hyperplane

. : 2
e Maximize margin = H
w
e subject to constraints
w'x,+w,>1 if x, is positive example
w'x, +w, <-1 if x, is negative example

o Lot JZi=1 |f x;is positive example
z, =-1 if x; is negative example

I

e Can convert our problem to

minimize J(w)= >|w|?
2

constrained to  z(w'x, +w,)>1 Vi

e J(w) is a quadratic function, thus there is a single global
minimum



SVM: Optimal Hyperplane

e Use Kuhn-Tucker theorem to convert our problem to:

maximize LD(a)=Za ——ZZa,ajz,zIx,xj

1111

constrained to @, >0 Vi and Za,.z,. =0
i=1

e a={a,,...,, a,}are new variables, one for each sample

e Can rewrite Ly(a) using n by n matrix H:

— _.t — —

L(@)=Ya =1L
i=1

e where the value in the ith row and jth column of H is

H;=zzx;x,



SVM: Optimal Hyperplane

e Use Kuhn-Tucker theorem to convert our problem to:

maximize  Ly(@)=Ya,-73 Y aazz2,xx,
i=1

i=1 j=1

constrained to @20 Vi and Y a;z,=0
i=1

e a ={ay..., a,} are new variables, one for each sample
* L (a) can be optimized by quadratic programming

o L,(a) formulated in terms of a
e depends on w and w,



SVM: Optimal Hyperplane

e After finding the optimal @ = {ay,..., a,}

e For every sample i, one of the following must hold
e ;=0 (samplei is not a support vector)
e ;7 0andz(w'x+w,-1)=0(samplei is support vector)

n
e canfindwusing w=)>) a,zx,
i=1

e can solve for w, using any a; > O1 and ¢, [z,.(w’x,. + wo)— 1]= 0

_ t
Wo=72, ~"%

]

e Final discriminant function:

g(x)=(2a,-z,.x,)tx+wo

XiES

e where S is the set of support vectors
S={x;|a; #0}



SVM: Optimal Hyperplane

1 n n
t
= J:

maximize Ly(e)=) a; -
i=1

n

constrained to ;>0 Vi and Y az,=0

ii
i=1

 L(a) depends on the number of samples, not on
dimension of samples

e samples appear only through the dot products x,?xj

e This will become important when looking for a nonlinear
discriminant function, as we will see soon

e Code available on the web to optimize



SVM: Non Separable Case

e Data is most likely to be not linearly separable, but linear
classifier may still be appropriate

+ x(2
]

outliers

x(1)

e Can apply SVM in non linearly separable case
e data should be “almost” linearly separable for good performance



SVM: Non Separable Case

e Use non-negative slack variables &,,..., &
e one for each sample

e Change constraints from Z,-(W‘X,-+wo)21 Vi to

z,.(wtx,. + wo)z 1-& Vi

e £ isameasure of X2
deviation from the ideal
for sample i

e £ >1 samplei is onthe wrong
side of the separating hyperplane

e 0< & <1 samplei is on the right
side of separating hyperplane but
within the region of maximum
margin




SVM: Non Separable Case

e \Would like to minimize

1 # of samples
J(W,fl,...,fn): EHWH °+ 3 not in ideal location

1 if & >0
0 if & <0

» constrainedto z,(w'x, +w,)>1-¢ and &3>0 Vi

« where (¢ >o)={

e [ measures relative weight of first and second terms
« If Bis small, we allow a lot of samples not in ideal position

« if B is large, we want to have very few samples not in ideal
position

« choosing B appropriately is important



SVM: Non Separable Case

1 # of examples
Jw,&,....E )= EHWH ‘+ 3 not in ideal location

:X(1)

large f3, few samples not in small j, a lot of samples
ideal position not in ideal position



SVM: Non Separable Case

e Unfortunately this minimization problem is NP-hard due to
discontinuity of functions I(&;)

1 # of examples
Jw,&,,....& )= EHWH ‘+ not in ideal location

1 if & >0
0 if & <0

e constrained to z,.(w’x,.+wo)21—§,. and & >0 Vi

e where (¢ >o):{



SVM: Non Separable Case

e |nstead we minimize
a measure of
Jw.&,...&,)= —HWH ‘+ B # of misclassified
examples

z,.(w’x,. + wo)z 1-& Vi

e constrained to {5 > 0 Vi

e Use Kuhn-Tucker theorem to converted to

maximize LD(a)zzn:a,.— ZZa,a,z,zjx,xj
i=1

1111

constrainedto 0<e;<pB Vi and Za,.z,. =0
i=1

n
e find w using w=> azXx,
i=1

e solve for w, using any 0 <¢; < f and a,.[z,.(w’x,.+wo)—1]=0



Non Linear Mapping

e Cover’s theorem:

e “pattern-classification problem cast in a high dimensional space
non-linearly is more likely to be linearly separable than in a low-
dimensional space”

e One dimensional space, not linearly separable

o=
-3 -2 0 1 2 3 5
e Lift to two dimensional space with @(x)=(x,x?)




Non Linear Mapping

e Tosolve anonlinear problem with a linear classifier
1. Project data x to high dimension using function @(x)
2. Find a linear discriminant function for transformed data ¢(x)
3. Final nonlinear discriminant function is g(x) = w! ¢(x) +w,

P(x)=(x,x?) ' O

o 5 0 ee oo a
3 -2 0 1 2 3 5 o
‘ R ) - R ' /
2 R, 2 ® :

e In 2D, discriminant function is linear

(1) (1)
g(l:j(((z):D = [W1 WZ]I:;(Z):I T W,

e In 1D, discriminant function is not linear g(x)=w,x +w,x? +w,



Non Linear Mapping: Another Example




Non Linear SVM

e (Can use any linear classifier after lifting data into a
higher dimensional space. However we will have to
deal with the “curse of dimensionality”

1. poor generalization to test data
2. computationally expensive

e SVM avoids the “curse of dimensionality” problems
by
e enforcing largest margin permits good generalization

e |t can be shown that generalization in SVM is a function of the
margin, independent of the dimensionality

e computation in the higher dimensional case is performed
only implicitly through the use of kernel functions



Non Linear SVM: Kernels

Recall SVM optimization

S

maximize Ly(a)= Za - @,0,Z,Z, X} X

1 j=1
Note this optimization depends on samples X; only
through the dot product x;'x;

If we lift X; to high dimension using ¢@(x), need to
compute high dimensional product @(x;)'e(x;)

maximize Ly(a)= Za ——ZZa,a,z,zl ,

llj

Idea: find kernel function K(x;x;) s.t.
K(x;x;) = @(x;)'p(x;)



Non Linear SVM: Kernels

maximize Ly(a)= Za ——ZZa,a,z,zl ,

11]1

* Then we only need to compute K(x;Xx;) instead of
@ (x;)'p(x;)
e “kernel trick”: do not need to perform operations in
high dimensional space explicitly



Non Linear SVM: Kernels

e Suppose we have 2 features and K(x,y) = (xty)?
e Which mapping ¢(x) does it correspond to?
O TY
K(x,y)=(x'yf = ([x(l) X(Z)][y(z)D = (xWy® 4+ x@y@F

~ (x@y®F 4 2( <>y<>)(x(2> ())+(X(z)y(z>)2

o et syl

e Thus

plx)=[xF V2xOx® (x|




Non Linear SVM: Kernels

* How to choose kernel function K(x;x;)?

* Kix;x;) should correspond to product ¢(x;)'¢@(x;) in a
higher dimensional space

e Mercer’s condition tells us which kernel function can
be expressed as dot product of two vectors

Kernel’s not X ing Mer er s conditipn can b
e ‘Some common ch % %sa ing Mercer's con |t on):
sOmetimes used, but ho ge trical interpretat o

e Polynomial kernel
K(x,.,xj)= (x,.‘xj +1)’°

e Gaussian radial Basis kernel (data is lifted in infinite dimensions)

=)

K(x,.,xj)z exp(— 23_2




Non Linear SVM

e search for separating hyperplane in high dimension
wo(x)+w, =0

e Choose @(x) so that the first (“0”th) dimension is the
augmented dimension with feature value fixed to 1

o(x)=[1 xV x@ x0x@]

e Threshold parameter w, gets folded into the weight

vector w
[wo w =0



Non Linear SVM

e Will not use notation a =[w, w], we’ll use old
notation w and seek hyperplane through the origin

we(x)=0

e If the first component of @(X) is not 1, the above is
equivalent to saying that the hyperplane has to go
through the origin in high dimension

e removes only one degree of freedom

e But we have introduced many new degrees when we lifted
the data in high dimension



Non Linear SVM Recepie

Start with data x,,...,x, which lives in feature space of
dimension d

Choose kernel K(x;x;) or function ¢(x;) which takes
sample x; to a higher dimensional space

Find the largest margin linear discriminant function

in the higher dimensional space by using quadratic
programming package to solve:

maximize Ly(a)=Y a; -
i=1

0

constrainedto 0<qg,<pg Vi and ) a;z
i=1




Non Linear SVM Recipe

e Weight vector win the high dimensional space:

W = Z aizi¢(xi)

X,-GS

e where S is the set of support vectors S ={x, |, # 0}

e Linear discriminant function of largest margin in the
high dimensional space:

g(p(x))=w'p(x) = ( > azp(x, )Jtca(X)

X,-ES

e Non linear discriminant function in the original space:

g(x>=(za,.z,.¢(x,->j o(x) = T a2,0'(x,Jolx) = T @,z K(x,,x)

X,-GS xies X eS

e decideclass1ifg(x)>0, otherwise decide class 2



Non Linear SVM

e Nonlinear discriminant function

g(X)= z x| Z; K(xi’x)

XiES

g(x) — z weight of support | |1 “invefrf,oemdi)?tt%nce”
vector X, support vVector Xx;

most important
_training samples, 1 2
l.e. support vectors K(x;,x)= eXp(— 207 |x; — x| )




SVM Example: XOR Problem

Class 1: x,=[1,-1], x, = [-1,1]
Class 2: x3=[1,1], x, = [-1,-1]

Use polynomial kernel of degree 2:
K(x,x;) = (x;tx;+ 1)?

This kernel corresponds to mapping

(x)= [1 V2x

ﬁx(z) ﬁx(l)x(z)

Need to maximize

Ly (a)= Zx 122a.a.z.z,(x +1f

constrained to

Ilj

O<Le; Vi and a,+a,

O

b

-a,=0

(¥ ]



SVM Example: XOR Problem

Can rewrite

4
L(a)=> a - %a’H
i=1

e where ozz[ozl a, a, a4]t and H=

Take derivative with respectto ¢ and setitto 0

d

ELD(O")—

PR

9 1 -1 -1

-1 -1 1 9

1 9 -1 -1|_
1 -1 g 1/2=0

Solution to the above is a4= a, = a3 = a, = 0.25

satisfies the constraints

Vi, 0L a; and a,+a,

all samples are support vectors

-a,=0



SVM Example: XOR Problem

(X)= [1 ﬁx(l) ﬁx(z) ﬁx(l)x(z) (x(l))z (x(z))z]‘

Weight vector w is:

W=Z4:a,.z,-(o(xi) =0-25(¢(X1)+¢(X2)_¢(X3)_¢(X4))
- b 0o 0 vz 0o o

Thus the nonlinear discriminant function is:

g(x)=wa(x) =S wip(x) = INEK) = 2x®



SVM Example: XOR Problem

g(x) = —2xVx®

decision boundaries nonlinear decision boundary is linear



Degree 3 Polynomial Kernel

In linearly separable case (on the left), decision
boundary is roughly linear, indicating that
dimensionality is controlled

Nonseparable case (on the right) is handled by a
polynomial of degree 3



SVM Summary

e Advantages:
e Based on nice theory
e excellent generalization properties
e objective function has no local minima
e can be used to find non linear discriminant functions

e Complexity of the classifier is characterized by the number of
support vectors rather than the dimensionality of the
transformed space

e Disadvantages:
e tends to be slower than other methods
e quadratic programming is computationally expensive
e Not clear how to choose the Kernel



