C59840
Learning and Computer Vision Prof.
Olga Veksler

Lecture 9

Neural Networks

Many presentation Ideas are due to Andrew NG

Outline

Motivation

Non linear discriminant functions

Introduction to Neural Networks
e [Inspiration from Biology

Perceptron
Multilayer Perceptron
Practical Tips for Implementation

Need for Non-Linear Discriminant

A X5
X, o X X 2 o S
o XX OO (o)
O
QOOX % o K o
X4 N RN

g(X) = Wyt w X, +W,X,

e Previous lecture studied linear discriminant
e Works for linearly (or almost) separable cases
e Many problems are far from linearly separable

e underfitting with linear model

Need for Non-Linear Discriminant

Can use other discriminant functions, 1 % o

like quadratics 00 % oO
8(X) = W+W, X, +W, X+ WX X, Wy X, o ¥ K\ O

+W,,X,? O % K ox1

Methodology is almost the same as
in the linear case:

e f(x) =sign(wy+w, X, +W,X,+W XX, +W X%+ W,,X,?)

. z = [1 x; X XX X, X,?]

° a = [wy, w w, wp, Wi, W),]
e “normalization”: multiply negative class samples by -1
e gradient descent to minimize Perceptron objective

function jp(a): Z(— atz)

z2¢Z(a)

Need for Non-Linear Discriminant

X
May need highly non-linear decision z
boundaries

This would require too many high order
polynomial terms to fit

g(X) = wy+w X, +W,X,+

+ WX X, + W X 2+ W X2 +
+ Wy p X WypoXg X #W50X Xo2 + WopXy +
+ even more terms of degree 4
+ super many terms of degree k
For n features, there O(nk) polynomial terms of degree k

Many real world problems are modeled with hundreds and
even thousands features

e 100%9%s too large of function to deal with

Neural Networks

Neural Networks correspond to some X,
discriminant function gyy(x)

Can carve out arbitrarily complex
decision boundaries without requiring so
many terms as polynomial functions

Neural Nets were inspired by research in
how human brain works

But also proved to be quite successful in
practice

Are used nowadays successfully for a
wide variety of applications
e took some time to get them to work

. now used by US post for postal code
recognition

1

i ey i’

_..
i e PR |
r.r._.lﬂ._d o Y

I e el 5

al.

Yann LeCun et

Brain vs. Computer

e usually one very fast processor e
e high reliability

e designed to solve logic and
arithmetic problems

e absolute precision

e can solve a gazillion arithmetic
and logic problems in an hour

huge number of parallel but
relatively slow and unreliable
processors

not perfectly precise, not
perfectly reliable

evolved (in a large part) for
pattern recognition

learns to solve various PR
problems

seek inspiration for classification from human brain

One Learning Algorithm Hypothesis

. [Roe et al, 1992]

Brain does many different things

Seems like it runs many different
“programs”

Auditory Cortex
—

Seems we have to write tons of
different programs to mimic brain

Hypothesis: there is a single underlying learning algorithm
shared by different parts of the brain

Evidence from neuro-rewiring experiments

e Cut the wire from ear to auditory cortex

e Route signal from eyes to the auditory cortex
e Auditory cortex learns to see

e animals will eventually learn to perform a variety of object
recognition tasks

There are other similar rewiring experiments

Seeing with Tongue

e Scientists use the amazing ability of the
brain to learn to retrain brain tissue

e Seeing with tongue
e BrainPort Technology
e Camera connected to a tongue array sensor

e Pictures are “painted” on the tongue
e Bright pixels correspond to high voltage
e Gray pixels correspond to medium voltage
e Black pixels correspond to no voltage

e |Learning takes from 2-10 hours

e Some users describe experience resembling a
low resolution version of vision they once had

e able to recognize high contrast object, their location,

movement tongue array
sensor

One Learning Algorithm Hypothesis

e Experimental evidence that we can plug any sensor to any part
of the brain, and brain can learn how to deal with it

e Since the same physical piece of brain tissue can process sight,
sound, etc.

e Maybe there is one learning algorithm can process sight,
sound, etc.

e Maybe we need to figure out and implement an algorithm that
approximates what the brain does

e Neural Networks were developed as a simulation of networks
of neurons in human brain

Neuron: Basic Brain Processor

Neurons (or nerve cells) are special cells that
process and transmit information by
electrical signaling

e in brain and also spinal cord

Human brain has around 10! neurons

A neuron connects to other neurons to form
a network

Each neuron cell communicates to anywhere
from 1000 to 10,000 other neurons

Neuron: Main Components

dendri axon
endrites terminals
_ . cell . 3
>lié body '
/ oy
y e
e cell body Z
. . axon
. computational unit nucleus

e dendrites
. “input wires”, receive inputs from other neurons
. a neuron may have thousands of dendrites, usually short
e axon
. “output wire”, sends signal to other neurons
e single long structure (up to 1 meter)
. splits in possibly thousands branches at the end, “axon terminals”

13

Neurons in Action (Simplified Picture)

e Cell body collects and processes
signals from other neurons
through dendrites

e |f there the strength of incoming
signals is large enough, the cell
body sends an electricity pulse (a
spike) to its axon

e I|tsaxon, in turn, connects to
dendrites of other neurons,
transmitting spikes to other neurons

e Thisis the process by which all human *fbcz%
thought, sensing, action, etc. happens

Artificial Neural Nets (ANN): Perceptron

layer 1 layer 2
input layer output layer
bias unit
h()=sign()
¢ sign(wix+wy)
:i:» =

e Linear classifier f(x) = sign(w'x+w,) is a single neuron “net”
e |nput layer units output features, except bias outputs “1”
e Qutput layer unit applies sign() or some other function h()
e h()is also called an activation function

Multilayer Neural Network (MNN)

layer 1 layer 2 layer 3
Input layer hidden layer output layer

;‘3 h(w-h(...)+w-h(...)$

First hidden unit outputs: h(...) = h(wy+w x; +w,x, +w;X,)
Second hidden unit outputs: h(...) = h(w +w, x; +w,Xx, +W,X;)
Network corresponds to classifier f(x) = h(w-h(...)+w-h(...))
More complex than Perceptron, more complex boundaries

MNN Small Example

layer 1: input layer 2: hidden layer 3: output

Let activation function h() = sign()
MNN Corresponds to classifier
f(x) = sign(4-h(...)+2-h(...)+ 7))
= sign(4-sign(3x,+5x,)+2-sign(6+3x,) + 7)
MNN terminology: computing f(x) is called feed forward operation
e graphically, function is computed from left to right

Edge weights are learned through training

MNN: Multiple Classes

layer 1 layer 2 layer 3
Input layer hidden layer output layer

i F
4€;

e 3 classes, 2 features, 1 hidden layer

e 3 input units, one for each feature

e 3 output units, one for each class
e 2 hidden units
e 1 bias unit, usually drawn in layer 1

MNN: General Structure

layer 1 layer 2 layer 3
Input layer hidden layer output layer

= h(...) = f,(x)

1
=) -| . P h(...) = f,(x)
(%) ﬁ‘ﬁ h(...) = f,(x)

o f(x) = [f,(x), f,(x), f3(x)] is multi-dimensional
e (Classification:
e Iff,(x)is largest, decide class 1

o If f,(x)is largest, decide class 2
o If f;(x) is largest, decide class 3

MNN: General Structure

layer 1 layer 2 layer 3
Input layer hidden layer output layer

i F
4€;

e |nput layer: d features, d input units

e Qutput layer: m classes, m output units
e Hidden layer: how many units?

MNN: General Structure

layer 1 layer 2 layer 3 layer 4
Input layer hidden layer hidden layer output layer

e Can have more than 1 hidden layer
e jith layer connects to (i+1)th layer

e except bias unit can connect to any layer

e can have different number of units in each hidden layer

e First output unit outputs:
h(...) = h(w-h(...) + w)= h(w-h(w-h(...) + w-h(...)) + w)

IMINN: Activation Function

e h() =sign() is discontinuous, not =
good for gradient descent =

e Instead can use continuous ‘/

sigmoid function 1

e Or another differentiable function

e Can even use different activation functions at
different layers/units

e From now, assume h() is a differentiable function

MNN: Overview

e A neural network corresponds to a classifier f(x,w) that
can be rather complex
e complexity depends on the number of hidden layers/units
e f(x,w) is a composition of many functions

e easier to visualize as a network
e notation gets ugly

e To train neural network, just as before
e formulate an objective function J(w)
e optimize it with gradient descent
e that’s all!

e except we need quite a few slides to write down details due
to complexity of f(x,w)

Expressive Power of MNN

e Every continuous function from input to output can be
implemented with enough hidden units, 1 hidden layer,
and proper nonlinear activation functions

e easy to show that with linear activation function, multilayer
neural network is equivalent to perceptron

e This is more of theoretical than practical interest
e Proof is not constructive (does not tell how construct MNN)

e Even if constructive, would be of no use, we do not know the
desired function, our goal is to learn it through the samples
e But this result gives confidence that we are on the right track

e MNN is general (expressive) enough to construct any required decision
boundaries, unlike the Perceptron

e Perceptron (single e Arbitrarily complex
layer neural net) decision regions
E

ven not contiguous

MNN: Modes of Operation

e For Neural Networks, due to historical reasons, training
and testing stages have special names

e Backpropagation (or training)
Minimize objective function with gradient descent

e Feedforward (or testing)

MNN: Notation for Edge Weights

layer 1 layer 2 layer k-1 layer k
input hidden hidden output

w® @
@

bias unit
or unit 0

. wkpj is edge weight from unit p in layer k-1 to unit j in layer k

. w'<Oj is edge weight from bias unit to unit jin layer k

e wk is all weights to unitj in layer k, i.e. w*;, w;;, ..., W,),
e N(k) is the number of units in layer k, excluding the bias unit

IMINN: More Notation

layer 1 layer 2 layer 3

210 =1 :‘: R

O
@ = h(...) F >

Denote the output of unit j in layer k as z¥
For the input layer (k=1), z!; =1landz=x,j#0
For all other layers, (k > 1), 2= h(...)

1
5 =X

Convenient to set zX,= 1 for all k

Set z¢ = [2¥), Z¥y,..., Z]

IMINN: More Notation

layer 1 layer 2 layer 3

~
~
~
~,
~,
~
~.
S
~,

k
k k-1, . k k K1,k _ k-1 .k
d. = EZ W.-I—Woj— EZP ij—Z W,

2 1. .2 1...2 1 .2
a1 o zOw01 + zlwll + ZZWZI

e Fork>1, zK=h(a%)

MNN: Class Representation

m class problem, let Neural Net have t layers

Let x' be a example of class ¢

It is convenient to denote its label as y'=

Recall that z'_ is the output of unit c
in layer t (output layer)

f(x)= zt=

. If X' is of class ¢, want zt =

«— OWC

«— OWC

Training MNN: Objective Function

e Want to minimize difference between y' and f(x!)
e Use squared difference

e Let w be all edge weights in MNN collected in one vector

e Error on one example x': Ji(w)=li(f (Xi)— Yi)2

e Error on all examples: J(w)= 1Z:i:(fc(xi)—\/i;)z

initialize w to random

e Gradient descent: | choose g, a

while o||VI(w)|| > €
w=w-aVl(w)

Training MNN: Single Sample

e For simplicity, first consider error for one example x

=2y =23

2
e f(x')dependsonw

e y'isindependent of w

e Compute partial derivatives w.r.t. w¥; forall k, p,]
e Suppose have t layers

f (xi)z Z. = h(az)z h(z"_1 wz)

Training MNN: Single Sample

For derivation, we use: (w) == (80)-y.)?
25

f (xi) = h(af:) = h(zt_1 : wf:)

For weights w' ; to the output layer t:

i) = () S(6)-v))

ow; =
0 i i 1ot ot

(9W:>j (fj(x)_yj): h (ai)zp 1

Therefore, at J(w)= (fj (Xi)—y‘j)h' (a})z;‘l

oW pj

e both h'(a;) and z;_l depend on x'. For simpler notation,
we don’t make this dependence explicit.

Training MNN: Single Sample
For a layer k, compute partial derivatives w.r.t. Wkpj
Gets complex, since have lots of function compositions

Will give the rest of derivatives

First define ekj, the error attributed to unit j in layer k:
For layer t (output): e; = (f. (x‘)— y;)

N k+1

For layers k < t: Ze"“h'(k+1) 1

0 .
Thus for 2 <k <t: " Ji(w)ze:.‘h'(a:.‘)z'; !

pj

MNN Training: Multiple Samples

e Error on one example x': Ji(w)=li(fc(xi)— Y'c)2

e Error on all examples: J(w ZZ(())2

i=1 c=1

) $etiar)at
i=1

k
aw pj

Training Protocols

Batch Protocol
e true gradient descent
e weights are updated only after all examples are processed
e might be slow to converge

Single Sample Protocol
e examples are chosen randomly from the training set
e weights are updated after every example
e converges faster than batch, but maybe to an inferior solution

Online Protocol

e each example is presented only once, weights update after each example
presentation

e used if number of examples is large and does not fit in memory
e should be avoided when possible

Mini-Batch Protocol

e |like single Sample, put present several samples at the time

MNN Training: Single Sample

initialize w to small random numbers
choose g, a
while o||VI(w)|| > €
fori=1ton
r =random index from {1,2,...,n}
delta , =0 V p.ik
e; = (£()-v;) vi
for k=t to 2

_ kgt ok) k-1
delta , =delta , —e; h (aj)zp

N(k)
e/ = Ze'c‘h'(a'c‘)w" Vj
c=1

jc

K = wk :
w; =w; +delta , V p,jk

MNN Training: Batch

initialize w to small random numbers

choose g, a
while o||VI(w)|| > €
fori=1ton
deltapJk 0 vV p,jk
et = (6x)-v!) Vi
fork t to 2

. koo k | k-1
delta , =delta, —e; h (aj)zp

= Ze"h'(“ws V]

wk wk it deltapjk Y p,jk

BackPropagation of Errors

e |n MNN terminology, training is called backpropagation

e errors computed (propagated) backwards from the
output to the input layer

while a||VJ(w)|| > €

fori=1ton
deltapjk =0 Vv p,jk
e}: = (y: - 1:j (XIr)) Vj first last layer errors computed
fork=t to 2 then errgrs computed backwards —
delta,, =delta , —e; h'(a{) z, "

N(k)
e =) el (a'c‘)w'.‘ Vj
c=1

jc

kK =k :
W= WE s+ deltaIojk YV p.j k

MNN Training

e |mportant: weights should be initialized to random
nonzero numbers

O k k) k-1
J. = —e. h'|a.
8w';j I(W) €, (aj)zp

k+1

k+1lpon [Lk+1 k+1
Zeh()

o ifwk_ =0, errors e are zero for layers k< t
e weights in layers k < t will not be updated

MNN Training: How long to Train?

X X O X O X XO
O O @)
xc)z O O xc)z O O xg O O
@) O O
X c)xo"Ox c>xO"Ox X OXOXOX
training time =

Large training error:
random decision
regions in the
beginning - underfit

Small training error:
decision regions
improve with time

Zero training error:
decision regions fit
training data
perfectly - overfit

can learn when to stop training through validation

MNN as Non-Linear Feature Mapping

e MNN can be interpreted as first mapping input
features to new features

e Then applying Perceptron (linear classifier) to the
new features

MNN as Non-Linear Feature Mapping

this part implements
Perceptron (liner classifier)

MNN as Non-Linear Feature Mapping

this part implements
mapping to new features y

MNN as Nonlinear Feature Mapping

e Consider 3 layer NN example:

non linearly separable in linearly separable in the
the original feature space new feature space

Concluding Remarks

e Advantages

e MNN can learn complex mappings from inputs to
outputs, based only on the training samples

e Easy to use
e Easy to incorporate a lot of heuristics

e Disadvantages

e |t is a “black box”, i.e. it is difficult to analyze and
predict its behavior

e May take a long time to train
e May get trapped in a bad local minima
e A |ot of tricks for best implementation

