k-Nearest Neighbors

- classify an unknown example with the most common class among k closest examples
 - “tell me who your neighbors are, and I’ll tell you who you are”

- Example:
 - $k = 3$
 - 2 sea bass, 1 salmon
 - Classify as sea bass
kNN: Multiple Classes

- Easy to implement for multiple classes
- Example for $k = 5$
 - 3 fish species: salmon, sea bass, eel
 - 3 sea bass, 1 eel, 1 salmon \implies classify as sea bass
kNN: How to Choose k?

• In theory, if infinite number of samples available, the larger is k, the better is classification

• The caveat is that all k neighbors have to be close
 • Possible when infinite # samples available
 • Impossible in practice since # samples is finite
kNN: How to Choose k?

• Rule of thumb is $k < \sqrt{n}$, n is number of examples

 • interesting theoretical properties

 • In practice, $k = 1$ is often used for efficiency, but can be sensitive to “noise”

![Diagram](image_url)

1 NN

- noisy sample
- every example in the blue shaded area will be misclassified as the blue class

3 NN

- every example in the blue shaded area will be classified correctly as the red class
kNN: How to Choose k?

- larger k may improve performance, but too large k destroys \textit{locality}, i.e. end up looking at samples that are not neighbors
- cross-validation (study later) may be used to choose k

\begin{figure}
\centering
\includegraphics[width=\textwidth]{kNN_diagram.png}
\caption{Comparison of 1-NN, 5-NN, and 20-NN with respect to k.}
\end{figure}

\textit{picture from R. Gutierrez-Osuna}
kNN: How Well does it Work?

- kNN is simple and intuitive, but does it work?
- Theoretically, the best error rate is the Bayes rate E^*
 - Bayes error rate is the best (smallest) error rate a classifier can have, for a given problem, but we do not study it in this course
- Assume we have an unlimited number of samples
- kNN leads to an error rate greater than E^*
- But even for $k=1$, as $n \to \infty$, it can be shown that kNN error rate is smaller than $2E^*$
- As we increase k, the upper bound on the error gets better, that is the error rate (as $n \to \infty$) for the kNN rule is smaller than cE^*, with smaller c for larger k
- If we have lots of samples, kNN works well
• Most parametric distributions would not work for this 2 class classification problem:

 • Nearest neighbors will do reasonably well, provided we have a lot of samples.
1NN Visualization

- Voronoi tessellation is useful for visualization
kNN Selection of Distance

- So far we assumed we use Euclidian Distance to find the nearest neighbor:

\[D(a, b) = \sqrt{\sum_k (a_k - b_k)^2} = \sqrt{a \cdot b} \]

- Euclidean distance treats each feature as equally important
- However some features (dimensions) may be much more discriminative than other features
kNN Distance Selection: Extreme Example

- feature 1 gives the correct class: 1 or 2
- feature 2 gives irrelevant number from 100 to 200
- dataset: \([1 \ 150]\)
 \([2 \ 110]\)
- classify \([1 \ 100]\)

\[
D\left(\begin{bmatrix} 1 \\ 100 \end{bmatrix}, \begin{bmatrix} 1 \\ 150 \end{bmatrix}\right) = \sqrt{(1-1)^2 + (100-150)^2} = 50
\]

\[
D\left(\begin{bmatrix} 1 \\ 100 \end{bmatrix}, \begin{bmatrix} 2 \\ 110 \end{bmatrix}\right) = \sqrt{(1-2)^2 + (100-110)^2} = 10.5
\]

- \([1 \ 100]\) is misclassified!
- The denser the samples, the less of this problem
- But we rarely have samples dense enough
• Decision boundary is in red, and is really wrong because
 • feature 1 is discriminative, but it’s scale is small
 • feature 2 gives no class information but its scale is large, it dominates distance calculation
kNN: Feature Normalization

- Notice that 2 features are on different scales:
- First feature takes values between 1 or 2
- Second feature takes values between 100 to 200
- **Idea:** normalize features to be on the same scale
- Different normalization approaches
- Linearly scale the range of each feature to be, say, in range $[0,1]$

\[
 f_{new} = \frac{f_{old} - f_{old_{\text{min}}}}{f_{old_{\text{max}}} - f_{old_{\text{min}}}}
\]
kNN: Feature Normalization

- Linearly scale to 0 mean variance 1:
 - If Z is a random variable of mean m and variance σ^2, then $(Z - m)/\sigma$ has mean 0 and variance 1
 - For each feature f let the new rescaled feature be
 \[f_{\text{new}} = \frac{f_{\text{old}} - \mu}{\sigma} \]
 - Let us apply this normalization to previous example
kNN: Feature Normalization
kNN: Selection of Distance

- Feature normalization does not help in high dimensional spaces if most features are irrelevant

\[D(a,b) = \sqrt{\sum_k (a_k - b_k)^2} = \sqrt{\sum_i (a_i - b_i)^2 + \sum_j (a_j - b_j)^2} \]

Discriminative features

- If the number of useful features is smaller than the number of noisy features, Euclidean distance is dominated by noise
kNN: Feature Weighting

• Scale each feature by its importance for classification

\[D(a, b) = \sqrt{\sum_k w_k (a_k - b_k)^2} \]

• Can use our prior knowledge about which features are more important

• Can learn the weights \(w_k \) using cross-validation (to be covered later)
kNN: Computational Complexity

- Basic kNN algorithm stores all examples
- Suppose we have n examples each of dimension d
- $O(d)$ to compute distance to one example
- $O(nd)$ to find one nearest neighbor
- $O(knd)$ to find k closest examples
- Thus total complexity is $O(knd)$
- Very expensive for a large number of samples
- But we need a large number of samples for kNN to work well!
Reducing Complexity: editing 1NN

- If all Voronoi neighbors have the same class, a sample is useless, remove it.

- Number of samples decreases.
- Decision boundary does not change.
Reducing Complexity: Partial Distance

- Have current k closes samples
- Abort distance computation if partial distance is already greater than the full distance to the current k closest samples

- Advantages:
 - complexity decreases
 - we are guaranteed to find closes neighbor(s)

- Disadvantages:
 - how much complexity decreases depends on our luck and data layout
Reducing Complexity

- Other methods for reducing complexity
 - reduce dimensionality of the data
 - find projection to a lower dimensional space so that the distances between samples are approximately the same
 - PCA
 - Projection to a Random subspace
 - use smart data structures, like kd trees
kNN Summary

• **Advantages**
 • Can be applied to the data from any distribution
 • for example, data does not have to be separable with a linear boundary
 • Very simple and intuitive
 • Good classification if the number of samples is large enough

• **Disadvantages**
 • Choosing k may be tricky
 • Test stage is computationally expensive
 • No training stage, all the work is done during the test stage
 • This is actually the opposite of what we want. Usually we can afford training step to take a long time, but we want fast test step
 • Need large number of samples for accuracy