CS840a
Machine Learning in Computer
Vision
Olga Veksler

Lecture 2
K Nearest Neighbors



k-Nearest Neighbors

classify an unknown example with the most
common class among k closest examples

“tell me who your neighbors are, and I’ll tell you

who you are”

Example:

k=3
2 sea bass, 1 salmon
Classify as sea bass

length

A

\>

>
lightness



KNN: Multiple Classes

e FEasytoimplement for multiple classes
e Examplefork=5
e 3 fish species: salmon, sea bass, eel
® 3seabass, 1 eel, 1 salmon = classify as sea bass
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kKNN: How to Choose k?

e In theory, if infinite number of samples
available, the larger is k, the better is

classification
e The caveat is that all k neighbors have to be

ciose
e Possible when infinite # samples available

e |[mpossible in practice since # samples is finite




kKNN: How to Choose k?

e Rule of thumb is k < sgrt(n), n is number of
examples

. interesting theoretical properties

e |n practice, k=1 is often used for efficiency, but can
be sensitive to “noise”

noisy sample
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every example in the blue every example in the blue
shaded area will be shaded area will be classified

misclassified as the blue class correctly as the red class



kKNN: How to Choose k?

larger k may improve performance, but too large k destroys
locality, i.e. end up looking at samples that are not neighbors

cross-validation (study later) may be used to choose k
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kKNN: How Well does it Work?

KNN is simple and intuitive, but does it work?

Theoretically, the best error rate is the Bayes rate E*

e Bayes error rate is the best (smallest) error rate a classifier can have, for
a given problem, but we do not study it in this course

Assume we have an unlimited number of samples
kNN leads to an error rate greater than E*

But even for k=1, as n — o9, it can be shown that
kNN error rate is smaller than 2E*

As we increase k, the upper bound on the error gets
better, that is the error rate (as n — o) for the kNN
rule is smaller than cE*,with smaller ¢ for larger k

If we have lots of samples, kNN works well



kKNN: Multi-Modal Distributions
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e \/oronoi tesselation is useful for visualization

decision boundary



kNN Selection of Distance

e So far we assumed we use Euclidian Distance
to find the nearest neighbor:

D(a,b) = \/Z (a, —b,) = Ja-b

e Euclidean distance treats each feature as
equally important

e However some features (dimensions) may be
much more discriminative than other
features



KNN Distance Selection: Extreme Example

e feature 1 gives the correct class: 1 or 2
e feature 2 gives irrelevant number from 100 to 200
e dataset: [1 150]
[2 110]
e classify [1 100]
1 1

D | (1-17 +(100-150) =50
(_100_ _150) \/ )

D(_ = 2_) JA=2) +(100-110) =10.5
1100 110 '

e [1 100] is misclassified!
e The denser the samples, the less of this problem
e But we rarely have samples dense enough



kNN Distance Selection: Extreme Example
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e Decision boundary isin red, and is really wrong because

e feature 1 is discriminative, but it’s scale is small

e feature 2 gives no class information but its scale is large, it
dominates distance calculation



kKNN: Feature Normalization

Notice that 2 features are on different scales:

First feature takes values between 1 or 2

Second feature takes values between 100 to 200
Idea: normalize features to be on the same scale
Different normalization approaches

Linearly scale the range of each feature to be, say, in

range [0,1]
min
_ J old J old

f new f max min

old old




kKNN: Feature Normalization

e Linearly scale to 0 mean variance 1:

e |f Zis a random variable of mean m and variance 62,
then (Z- m)/6 has mean 0 and variance 1

e For each feature f let the new rescaled feature be

fo= Joa —H

O

e Let us apply this normalization to previous example
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KNN: Selection of Distance

e Feature normalization does not help in high dimensional
spaces if most features are irrelevant

D(a,b):\/zkl(ak—bk)2 =\/Z(ai—bi)2+zj:(aj_bj)2

discriminative noisy
features features

e |f the number of useful features is smaller than the
number of noisy features, Euclidean distance is
dominated by noise



KNN: Feature Weighting

e Scale each feature by its importance for classification

D(a,b) = \/Z

e Can use our prior knowledge about which features are
more important

e Can learn the weights w, using cross-validation (to be
covered later)



KNN: Computational Complexity

Basic kNN algorithm stores all examples

Suppose we have n examples each of dimension d
O(d) to compute distance to one example

O(nd) to find one nearest neighbor

O(knd) to find k closest examples examples

Thus total complexity is O(knd)

Very expensive for a large number of samples

But we need a large number of samples for KNN to
work well!



Reducing Complexity: editing 1NN

e |f all Voronoi neighbors have the same class, a sample is
useless, remove it

e Number of samples decreases
e Decision boundary does not change



Reducing Complexity: Partial Distance

e Have current k closes samples

e Abort distance computation if partial distance is already
greater than the full distance to the current k closest

samples

e Advantages:
e complexity decreases
e we are guaranteed to find closes neighbor(s)

e Disadvantages:

e how much complexity decreases depends on our luck
and data layout



Reducing Complexity

e Other methods for reducing complexity
e reduce dimensionality of the data

e find projection to a lower dimensional space so that
the distances between samples are approximately
the same

e PCA
* Projection to a Random subspace

e use smart data structures, like kd trees



kNN Summary

e Advantages

e Can be applied to the data from any distribution

e for example, data does not have to be separable with a linear
boundary

e Very simple and intuitive
e Good classification if the number of samples is large enough

e Disadvantages
e Choosing k may be tricky

e Test stage is computationally expensive
e No training stage, all the work is done during the test stage

e This is actually the opposite of what we want. Usually we can afford
training step to take a long time, but we want fast test step

e Need large number of samples for accuracy



