CS9840
 Machine Learning in Computer Vision
 Olga Veksler Lecture 5
 Curse of Dimensionality
 PCA

Outline

- Curse of Dimensionality
- Dimensionality reduction with PCA

Curse of Dimensionality

- Problems of high dimensional data, "the curse of dimensionality"
- running time
- overfitting
- number of samples required
- Dimensionality Reduction Methods
- Principle Component Analysis

Curse of Dimensionality: Complexity

- Complexity (running time) increases with dimension d
- A lot of methods have at least $\mathrm{O}\left(\boldsymbol{n} \boldsymbol{d}^{2}\right)$ complexity, where \boldsymbol{n} is the number of samples
- For example if we need to estimate covariance matrix
- So as \boldsymbol{d} becomes large, $\mathrm{O}\left(\boldsymbol{n d}^{2}\right)$ complexity may be too costly

Curse of Dimensionality: Number of Samples

- Suppose we want to use the nearest neighbor approach with $\boldsymbol{k}=1$ (1NN)
- Suppose we start with only one feature

- This feature is not discriminative, i.e. it does not separate the classes well
- We decide to use 2 features. For the 1 NN method to work well, need a lot of samples, i.e. samples have to be dense
- To maintain the same density as in 1D (9 samples per unit length), how many samples do we need?

Curse of Dimensionality: Number of Samples

- We need 9^{2} samples to maintain the same density as in 1D

Curse of Dimensionality: Number of Samples

- Of course, when we go from 1 feature to 2 , no one gives us more samples, we still have 9

- This is way too sparse for $\mathbf{1 N N}$ to work well

Curse of Dimensionality: Number of Samples

- Things go from bad to worse if we decide to use 3 features:

- If 9 was dense enough in 1D, in 3D we need $9^{3}=729$ samples!

Curse of Dimensionality: Number of Samples

- In general, if \boldsymbol{n} samples is dense enough in 1D
- Then in \boldsymbol{d} dimensions we need $\boldsymbol{n}^{\boldsymbol{d}}$ samples!
- And $\boldsymbol{n}^{\boldsymbol{d}}$ grows really really fast as a function of \boldsymbol{d}
- Common pitfall:
- If we can't solve a problem with a few features, adding more features seems like a good idea
- However the number of samples usually stays the same
- The method with more features is likely to perform worse instead of expected better

The Curse of Dimensionality

- We should try to avoid creating lot of features
- Often no choice, problem starts with many features
- Example: Face Detection
- One sample point is \boldsymbol{k} by \boldsymbol{m} array of pixels
- Feature extraction is not trivial
- Say pixel intensities are taken as a feature
- Typical dimension is 20 by $20=400$
- Suppose 10 samples are dense enough for 1 dimension. Need only $\mathbf{1 0}^{400}$ samples

The Curse of Dimensionality

- Face Detection, dimension of one sample point is $\mathbf{k m}$

$$
A=[\text { ?HIT}
$$

- The fact that we set up the problem with $\mathbf{k m}$ dimensions (features) does not mean it is really a $\mathbf{k m}$-dimensional problem
- Space of all \boldsymbol{k} by \boldsymbol{m} images has $\boldsymbol{k m}$ dimensions
- Space of all \boldsymbol{k} by \boldsymbol{m} faces must be much smaller, since faces form a tiny fraction of all possible images
- Most likely we are not setting the problem up with the right features
- If we used better features, we are likely need much less than $\boldsymbol{k m}$-dimensions

Dimensionality Reduction

- High dimensionality is challenging and redundant
- It is natural to try to reduce dimensionality
- Reduce dimensionality by feature combination: combine old features \boldsymbol{x} to create new features \boldsymbol{y}

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right] \rightarrow f\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right]\right)=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{k}
\end{array}\right]=y \quad \text { with } k<d
$$

- For example,

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \rightarrow\left[\begin{array}{l}
x_{1}+x_{2} \\
x_{3}+x_{4}
\end{array}\right]=y
$$

- Ideally, the new vector \boldsymbol{y} should retain from \boldsymbol{x} all information important for classification

Dimensionality Reduction

- The best $\boldsymbol{f}(\boldsymbol{x})$ is most likely a non-linear function
- Linear functions are easier to find though
- For now, assume that $\boldsymbol{f}(\boldsymbol{x})$ is a linear mapping
- Thus it can be represented by a matrix W:

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right] \Rightarrow W\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right]=\left[\begin{array}{clc}
w_{11} & \cdots & w_{1 d} \\
\vdots & & \vdots \\
w_{k 1} & \cdots & w_{k d}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{k}
\end{array}\right] \quad \text { with } k<d
$$

Principle Component Analysis (PCA)

- Main idea: seek most accurate data representation in a lower dimensional space
- Example in 2-D
- Project data to 1-D subspace (a line) which minimize the projection error
$\xrightarrow{\sim}$
large projection errors, bad line to project to

small projection errors, good line to project to
- Notice that the the good line to use for projection lies in the direction of largest variance
- After the data is projected on the best line, need to transform the coordinate system to get 1D representation for vector \boldsymbol{y}

- Note that new data \boldsymbol{y} has the same variance as old data \boldsymbol{x} in the direction of the green line
- PCA preserves largest variances in the data

PCA: Approximation of Elliptical Cloud in 3D

- What is the direction of largest variance in data?
- Recall that if \boldsymbol{x} has multivariate distribution $\mathrm{N}(\mu, \Sigma)$, direction of largest variance is given by eigenvector corresponding to the largest eigenvalue of Σ

- This is a hint that we should be looking at the covariance matrix of the data (note that PCA can be applied to distributions other than Gaussian)

PCA: Linear Algebra Review

- Let \boldsymbol{V} be a \boldsymbol{d} dimensional linear space, and \boldsymbol{W} be a \boldsymbol{k} dimensional linear subspace of V
- We can always find a set of dimensional vectors $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{k}\right\}$ which forms an orthonormal basis for \boldsymbol{W}
- $\left\langle\boldsymbol{e}_{i}, \boldsymbol{e}_{\boldsymbol{j}}\right\rangle=0$ if \boldsymbol{i} is not equal to j and $\left\langle\boldsymbol{e}_{i}, \boldsymbol{e}_{\boldsymbol{i}}\right\rangle=1$
- Thus any vector in W can be written as

$$
\alpha_{1} \boldsymbol{e}_{1}+\alpha_{2} e_{2}+\ldots+\alpha_{k} \boldsymbol{e}_{k}=\sum_{i=1}^{k} \alpha_{i} \boldsymbol{e}_{i} \quad \text { for scalars } \alpha_{1}, \ldots, \alpha_{k}
$$

Let $\boldsymbol{V}=\boldsymbol{R}^{\mathbf{2}}$ and \boldsymbol{W} be the line
$x-2 y=0$. Then the orthonormal basis for W is

$$
\left\{\left[\begin{array}{l}
2 / \sqrt{5} \\
1 / \sqrt{5}
\end{array}\right]\right\}
$$

PCA: Linear Algebra

- Recall that subspace \boldsymbol{W} contains the zero vector, i.e. it goes through the origin
this line is not a subspace of R^{2}
- It is convenient to project to subspace W : thus we need to shift everything

PCA Derivation: Shift by the Mean Vector

- Before PCA, subtract sample mean from the data

$$
x-\frac{1}{n} \sum_{i=1}^{n} x_{i}=x-\hat{\mu}
$$

- The new data has zero mean: $\mathrm{E}(\boldsymbol{X}-\mathrm{E}(\boldsymbol{X}))=\mathrm{E}(\boldsymbol{X})-\mathrm{E}(\boldsymbol{X})=0$
- All we did is change the coordinate system

- Another way to look at it:
- first step of getting \boldsymbol{y} is to subtract the mean of \boldsymbol{x}

$$
x \rightarrow y=f(x)=g(x-\hat{\mu})
$$

PCA: Derivation

- We want to find the most accurate representation of data $\boldsymbol{D}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right\}$ in some subspace \boldsymbol{W} which has dimension $\boldsymbol{k}<\boldsymbol{d}$
- Let $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{k}\right\}$ be the orthonormal basis for \boldsymbol{W}. Any vector in \boldsymbol{W} can be written as $\sum_{i=1}^{k} \alpha_{i} \boldsymbol{e}_{i}$
- Thus $\boldsymbol{x}_{\boldsymbol{1}}$ will be represented by some vector in \boldsymbol{W}

$$
\sum_{i=1}^{k} \alpha_{1 i} e_{i}
$$

- Error this representation:

$$
\text { error }=\left\|x_{1}-\sum_{i=1}^{k} \alpha_{1 i} e_{i}\right\|^{2}
$$

PCA: Derivation

- To find the total error, we need to sum over all $\boldsymbol{x}_{\boldsymbol{j}}$'s
- Any x_{j} can be written as $\sum_{i=1}^{k} \alpha_{j i} \boldsymbol{e}_{i}$
- Thus the total error for representation of all data \boldsymbol{D} is:
sum over all data points
$J(\underbrace{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{k}, \alpha_{11}, \ldots \alpha_{n k}}_{\text {unknowns }})=\sum_{j=1}^{n}\left\|x_{i}-\sum_{i=1}^{k} \alpha_{j i} \boldsymbol{e}_{i}\right\|^{2}$

PCA: Derivation

- A lot of math.......to finally get:
- Let \boldsymbol{S} be the scatter matrix, it is just $\mathrm{n}-1$ times the sample covariance matrix

$$
\hat{\Sigma}=\frac{1}{n-1} \sum_{j=1}^{n}\left(x_{j}-\hat{\mu}\right)\left(x_{j}-\hat{\mu}\right)^{t}
$$

- To minimize \boldsymbol{J} take for the basis of \boldsymbol{W} the \boldsymbol{k} eigenvectors of \boldsymbol{S} corresponding to the \boldsymbol{k} largest eigenvalues
- The larger the eigenvalue of \boldsymbol{S}, the larger is the variance in the direction of corresponding eigenvector

- This result is exactly what we expected: project \boldsymbol{x} into subspace of dimension \boldsymbol{k} which has the largest variance
- This is very intuitive: restrict attention to directions where the scatter is the greatest
- Thus PCA can be thought of as finding new orthogonal basis by rotating the old axis until the directions of maximum variance are found

PCA as Data Approximation

- Let $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{d}\right\}$ be all \boldsymbol{d} eigenvectors of the scatter matrix S, sorted in order of decreasing corresponding eigenvalue
- Without any approximation, for any sample $\boldsymbol{x}_{\boldsymbol{i}}$:
error of approximation

$$
\boldsymbol{x}_{i}=\sum_{j=1}^{d} \alpha_{j} \boldsymbol{e}_{j}=\underbrace{\alpha_{1} \boldsymbol{e}_{1}+\ldots+\alpha_{k} \boldsymbol{e}_{k}}+\overbrace{\alpha_{k+1} \boldsymbol{e}_{k+1} \ldots+\alpha_{d} \boldsymbol{e}_{d}}
$$ approximation of x_{i}

- coefficients $\alpha_{m}=\boldsymbol{x}_{\boldsymbol{i}}^{\boldsymbol{t}} \boldsymbol{e}_{\boldsymbol{m}}$ are called principle components
- The larger \boldsymbol{k}, the better is the approximation
- Components are arranged in order of importance, more important components come first
- Thus PCA takes the first \boldsymbol{k} most important components of $\boldsymbol{x}_{\boldsymbol{i}}$ as an approximation to $\boldsymbol{x}_{\boldsymbol{i}}$

PCA: Last Step

- Now we know how to project the data
- Last step is to change the coordinates to get final \boldsymbol{k}-dimensional vector \boldsymbol{y}

- Let matrix $E=\left[\boldsymbol{e}_{1} \cdots \boldsymbol{e}_{k}\right]$
- Then the coordinate transformation is $\boldsymbol{y}=\boldsymbol{E}^{\boldsymbol{t}} \boldsymbol{x}$
- Under E^{t}, the eigenvectors become the standard basis:

$$
E^{t} e_{i}=\left[\begin{array}{c}
e_{1} \\
\vdots \\
e_{i} \\
\vdots \\
e_{k}
\end{array}\right] e_{i}=\left[\begin{array}{c}
0 \\
\vdots \\
\vdots \\
\vdots \\
0
\end{array}\right]
$$

Recipe for Dimension Reduction with PCA

Data $D=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right\}$. Each $\boldsymbol{x}_{\boldsymbol{i}}$ is a \boldsymbol{d}-dimensional vector. Wish to use PCA to reduce dimension to \boldsymbol{k}

1. Find the sample mean $\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
2. Subtract sample mean from the data $\boldsymbol{z}_{\boldsymbol{i}}=\boldsymbol{x}_{\boldsymbol{i}}-\hat{\mu}$
3. Compute the scatter matrix $S=\sum_{i=1}^{n} \boldsymbol{z}_{i} \boldsymbol{z}_{i}^{t}$
4. Compute eigenvectors $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{\boldsymbol{k}}$ corresponding to the \boldsymbol{k} largest eigenvalues of \boldsymbol{S}
5. Let $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{\boldsymbol{k}}$ be the columns of matrix $\boldsymbol{E}=\left[\boldsymbol{e}_{1} \cdots \boldsymbol{e}_{k}\right]$
6. The desired \boldsymbol{y} which is the closest approximation to \boldsymbol{x} is $\boldsymbol{y}=\boldsymbol{E}^{\boldsymbol{t}} \boldsymbol{z}$

Drawbacks of PCA

- PCA was designed for accurate data representation, not for data classification
- Preserves as much variance in data as possible
- If directions of maximum variance is important for classification, will work
- However the directions of maximum variance may be useless for classification

