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Abstract

In this paper, we propose an approach to accurately lo-
calize detected objects. The goal is to predict which features
pertain to the object and define the object extent with seg-
mentation or bounding box. Our initial detector is a slight
modification of the DPM detector by Felzenszwalb et al.,
which often reduces confusion with background and other
objects but does not cover the full object. We then describe
and evaluate several color models and edge cues for local
predictions, and we propose two approaches for localiza-
tion: learned graph cut segmentation and structural bound-
ing box prediction. Our experiments on the PASCAL VOC
2010 dataset show that our approach leads to accurate pixel
assignment and large improvement in bounding box over-
lap, sometimes leading to large overall improvement in de-
tection accuracy.

1. Introduction

Object localization is an important step in many com-
puter vision tasks. In an analysis of detection error, we
found that the largest single source of error was inaccurate
bounding box localization. Detection performance could be
improved considerably if we could accurately localize de-
tected objects. More important, accurate localization pro-
vides valuable silhouette and contour cues for estimation of
shape, pose, affordance, subordinate categories, and other
object properties. Consider the boat in Figure 1: the de-
tection on the left provides the rough location, but we need
more precise localization to reason about the boat’s shape
or movement

Accurate object localization involves two major chal-
lenges: how to determine which pieces of evidence locally
fit the object model and how to jointly infer object fore-
ground/background regions. Local feature assignment is
made difficult by large intra-class vairance, which we ad-
dress by leveraging spatial cues and appearance estimates
from an initial detection (Section 2). To achieve joint object
region reasoning, we rely smoothness constraints (Section
4.1) or aggregated information (Section 4.2).

Figure 1. Given an initial detection (left), our goal is to assign fea-
tures to the object and precisely localize it (right). We investigate
cues for assigning color pixels and edge pixels to the object and
for localizing the whole object with a segmentation or structural
bounding box prediction (green box on right).

An overview of our approach is given in Figure 2. We
first detect the object using a modified version of the de-
formable parts model (DPM) detector [9] (Section 2). Then,
we predict which pixels are part of the object based on color
and edge information (Section 3). To determine the full ex-
tent of the object, we propose two approaches (Section 4):
segmentation using graph cut [3] on trained CRF potentials,
and a structural learning approach to directly predict the
bounding box. One interesting aspect of the segmentation
approach is the use of occlusion boundary predictions to
generate unary potentials, rather than using edges only for
pairwise potentials, as is common. The direct bounding box
prediction offers a useful way to determine the extent of ob-
jects not amenable to pixel segmentation, such as bicycles.
Our experiments (Section 5) on PASCAL VOC [8] validate
our color models and edge cues. We evaluate whole-object
localization in terms of bounding box overlap, and demon-
strate improvement in detection performance.

Background. Most work in object segmentation is based
on user interaction, such as provided bounding boxes or
strokes (e.g., [14, 19]). Their color models provide the ba-
sis for our own color models. Many other researchers work
on category segmentation (e.g., [21]), where the goal is to
label all pixels of a particular object category. Our problem
differs in that we must identify pixels that belong to one
particular instance, which might be surrounded by similar
objects of the same category. A few, mostly recent, meth-
ods consider object localization from a detection window.
Ramanan and colleagues [18, 25] incorporate position pri-
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Figure 2. Framework Overview: (1) A subwindow detector is used to detect part of an object; (2) Color/edge features are computed
from both category and instance level information; (3) We apply two approaches for accurately localizing the object: learned graph cut

segmentation and structural bounding box prediction.

ors and simple color models; Parkhi et al. [16] use only
color models; others use template weights to identify ob-
ject pixels or edge features [4, 11]. Our approach provides
a more thorough investigation into color models and edge
features for the purpose of detector-initialized instance lo-
calization. Other approaches detect local object cues as a
replacement for template detection (e.g., [6, 13, 20]). These
approaches tend not to work as well as template detectors
on the most challenging detection datasets, but their ideas,
particularly about contour representation and matching, can
(and should) be more fully incorporated into detector-based
localization. Our approach of learning to predict bounding
box localization builds on recent work in structural learn-
ing for sliding window detection [2]. Other works exist in
structural learning of image segmentation [1], [22], and we
follow [22] which learns parameters for different potentials
and solves image segmentation using graph cuts.

2. Subwindow Detector

Currently, most detectors are trained to provide high
scores only for well-localized object windows. For exam-
ple, the DPM (v4) detector [9] is trained to achieve at least
0.7 overlap (%) on all training examples. The prob-
lem is that, to fit a window to highly deformable objects, the
appearance model must absorb the high variation in position
of discriminative features, such as the face. For this reason,
Parkhi et al. [16] recently observed that detecting cat and
dog faces using DPM (with supervised annotations), fol-
lowed by segmentation, provides a large boost in detection
performance, compared to localizing full bodies.

Our experiments show that, even without head annota-
tions, changing one training parameter can yield similar im-
provements. Instead of requiring the latent detector window
to have 0.7 overlap with ground truth during training, we

require %@gﬂ) > 0.3 and%&?ﬁfo > 0.9: the detec-

tion should be within the ground truth but does not need
to occupy the full extent. We call this a “subwindow” de-
tector. The subwindow detector often has fewer confusions

with background and similar objects but does not localize
the entire object body. For example, the top 250 cat de-
tections by the original DPM detector include: 111 pre-
cisely localized (> 0.5 overlap) cats; 48 loosely localized
(> 0.1 overlap) cats; 59 instances of other animals; and
32 other (background, dissimilar objects) mistakes. The
top 250 detections of the subwindow detector includes 241
cats, with only 2 confusions with other animals and only 7
other mistakes, but 182 of the cats are not precisely local-
ized (0.1 < overlap < 0.5).

This simple trick of changing the training overlap cri-
teria helps with the most deformable objects, such as cats
and dogs and, to a lesser extent, other animals. While in-
creasing localization error, confusion with background and
other objects is greatly reduced. For many vehicles, which
are mostly rigid, however, our trick does not help and other
methods to find good latent sub-object windows may be
required. One additional advantage of the subwindow de-
tector is that its detections are more likely to be contained
within the object, making it easier to estimate appearance
models. For simplicity of description and analysis, we use
the subwindow detector for all further experiments.

3. Local Feature Assignment

One key challenge of object localization is to determine
whether each feature, such as a color pixel, edge pixel, or
interest point descriptor, belongs to the object. If object fea-
tures can be localized accurately, simple grouping methods
will succeed. With large errors in local estimates, even the
best fitting or segmentation techniques will fail.

We explore, in Section 3.1, dense labeling based on color
and position and, in Section 3.2, sparse labeling of edge
pixels. Color often works well for the main body of the
object but can fail at extremities, due to appearance differ-
ence (e.g., black cat with white feet) or confusion with back-
ground. Complementary to color cues, edge pixels are often
more discriminative than interior color pixels because they
correspond to object shape and can be labeled accurately at
object boundary.
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Figure 3. Example of color pixel cues. Left to right: detection window (the solid bounding box is the initial detection, the dashed

bounding box is the predicted maximum window); probability predicted by instance model; probability predicted by category model;
probability predicted by transfer model; position prior; final likelihood; smoothed likelihood.

Color Pixel Cues

Instance color models: log P, log P, F;
Category color models: log P, log Pepg, FPe
Transfer color model: log Pyansfers £
Position prior: Py, P, > 0
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Edge Pixel Cues
Position/orientation hists: Pyyg, log Pyye

Edge magnitude: ||g., gy[]. |92, gy|°, Pb. Pb > 0.1 4

e}

Color/texture: P, log P, average on each side 24
Indicator for part of contour, straight segment 2
Contour likelihoods: Peontours 10€ Prontour 8
Segment likelihoods: Piegment; 108 Piegment 8

Table 1. Summary of cues for color and edge models. We train a
logistic regressor on the trainseg set to predict the likelihood that
each color/edge pixel belongs to the object based on these cues.
Numbers on right indicate the number of features for each type.

3.1. Color Pixel Labeling

A color-based pixel likelihood model is foundational
in many recent approaches to object instance localization.
Such models typically include some combination of a shape
or position prior, an instance-specific color model, and a
category-wide color model. We mostly follow standard
practice in creating our shape and color models (Table 1,
Figure 3). Our main innovations are creating a “transfer”
model and a simple method for combining category infor-
mation, instance information and shape prior that seems to
outperform previous strategies.

Shape prior. We incorporate a layout/position prior
Ppr(0; = 1|z, y;), the likelihood that the i-th pixel belongs
to the object (o; = 1) given the pixel position (x;,y;) rel-
ative to the detection window. Similar to Yang et al. [25],
we estimate a 100x 100 pixel soft shape mask for each de-
tector component, roughly accounting for object pose. In
the trainseg set, each segmentation window is reshaped to
100x 100, and the likelihood at each position is computed
as the fraction of times that the corresponding pixel belongs
to the object instance in the segmentation annotations. The
mask is smoothed with a Gaussian filter (o = 1).

Color models. Our color model aims to account for the typ-
ical colors of an object category (e.g. cats are rarely green)
and the colors of the specific instance being localized. Each
color model is a distribution of the pixel color ¢; under some
assumption for the foreground and background. The cate-

gory model assumes that the instance follows the same dis-
tribution as general object pixels of the same category. The
instance model assumes that the instance colors throughout
the object are similar to those found within the detection
window. The transfer model assumes that the instance col-
ors have the same distribution as one similar example in the
training set.

We learn the category model on the trainseg set, by com-
puting a histogram in L*a*b* space with 32 x 16 x 16
bins using counting. The histogram density is smoothed
with a uniform prior (weight=0.01) and an isotropic 3D
Gaussian filter (¢ = 1.5 for ranges of 100/50 for lu-
minance/chrominance). The category foreground model
Petg(cilo; = 1) is computed over all object pixels in train-
seg; the category background model Py (cilo; = 0) is
computed over all background pixels in the segmentation
windows of trainseg. Similarly, we compute an instance
color model within the detection window P, (c;|o; = 1)
and outside the maximum object window with a minimum
border of 5 pixels Ppg(cilo; = 0). Our subwindow detec-
tor is trained to be almost entirely within the ground truth
window, so the window usually includes a subset of the ob-
ject pixels and very few background pixels. To estimate
the color distribution over the entire object, we transfer the
color model Pnster(cilo; = 1) from the trainseg set that
best matches according to the P;r, estimates. The best
match is determined by histogram intersection, weighted
by Pcfg(ci|01:f§§i(1’§;;2m0i:0). Given these foreground and
background models, we can compute posterior likelihoods

— PCfg . — Rfé.l — Rransfer
P = Peg+Prpg’ P = Pig+ P’ and P, = Pranster+Pivg

Combining models. We combine different models to get
a better estimate of the foreground/background color dis-
tribution. A typical fusion approach is taken by Parkhi
et al. [16], which computes a weighted average of the
instance and category posterior color likelihoods. An-
other possible approach is to weigh the log likelihood
ratios, as in logistic regression. Our approach gen-
eralizes these two options by training a linear logis-
tic regressor, with inputs of each color log likelihood
(IOg Pcfg7 IOg Pcbga IOg infga IOg infg IOg Ptransfer)» each poste-
rior likelihood (P, P, F;), and position likelihood (Py,
Pr, > 0). Training features for category color and position
models are computed on trainseg in a leave-one-image-out
manner to avoid overfitting. Our experiments (Section 5,



Edge Pixels

Detection

Probability Maps Contours

Prediction

Segments

Figure 4. Illustration of edge cues. Detection window is shown as green box and maximum extent (whole image here) as dashed box.
Object edge/foreground pixels are black; background edge pixels are red. Object side of exterior pixels is green. Foreground likelihood
on each side is computed using one-sided Gaussian weighted averaging filter. Predictions are confidence-weighted (faded pixels are less
confident). Ground truth is labeled based on PASCAL VOC segmentation maps, causing slight labeling noise.

Figure 7) show that the logistic regression on separate pos-
teriors and log color likelihoods outperforms the weighted-
vote-of-posteriors method used by [16].

3.2. Edge Pixel Labeling

Localization, pose estimation, and many other object in-
terpretation problems require determining whether image
edges correspond to background, object interior or occlud-
ing contours of an object. For occluding contours, we also
want to know which side of the edge pertains to the object.
Specifically, we want to classify each edge pixel into four
labels: (1) background; (2) object internal; and (3,4) object
external side 1 or side 2. Many researchers have studied the
problem of identifying edges that correspond to a particu-
lar object category [17, 7]. Our problem is made easier by
the rough detector localization but sometimes made more
challenging by nearby objects from the same category.

We apply a variety of cues (Table 1, Figure 4), including
edge position and orientation, boundary magnitude, color
and texture on either side of the edge, as well as the posi-
tion and shape of contours. We compute features for Canny
edge pixels [5] and classify the edges using a trained logistic
regression classifier. Our experiments (Section 5, Figure 8)
indicate that each set of cues is helpful and that accuracy in
edge prediction is high.

Local Edge Cues. Relative edge position (x;, y;) and orien-
tation 6; to the detection box are important cues for object
shape. We compute histograms from the trainseg set for
each label e; € {1,2,3,4}, estimating Pyyg(x;, i, 0i]e;).
We use 16x16x16 histograms, computed and smoothed
similarly to our color histograms (Section 3.1). All posi-
tions are defined relative to the maximun object window
(computed from the detection window based on statistics
gathered from the training set). We use Pyyg and log Py
as logistic regression features. Edge magnitude is informa-
tive when differentiating between object interior and exte-
rior edges, due to large contrast between object and non
object regions, resulting in stronger edges. We represent
boundary magnitude as the gradient magnitude ||(gx, gy )|,

gradient magnitude squared ||(g,, g,)||*, Global Pb [15],

and thresholded Global Pb (Pb >0.1).

Color and Texture Cues. By estimating whether pixels
on each side of an edge are likely to belong to the object,
we can obtain valuable cues for differentiating between in-
terior, exterior, and background edges. We first compute
probability of color and texture maps using the instance
and learned color models described in Section 3.1 and ad-
ditional instance-based models learned for K-means clus-
tered L*a*b pixels (K = 128) and MR4 texture filters [24]
(K = 256). As features, we compute oriented, single-sided
Gaussian-weighted averaging filter responses and log filter
responses on either side of each edge pixel.

Contour and Segment Cues. Knowledge of connected
contours and straight line segments can also be helpful as
they are closely connected with object shape. For instance,
airplanes are likely to be composed of straight lines, while
dogs are more likely to have a curvy contour. Straight lines
that extend well beyond the object are unlikely to be part of
the object. To get contours from the edge map, we remove
junction pixels and find connected components. For each
edge pixel on a contour of minimum length (7 pixels), we
store the position, orientation, and the relative orientations
of two edge pixels on each side of the contour. In training,
these contour features are clustered (K = 250), and his-
tograms are estimated for each label to get P,qyour features.
For edges not on a contour, a default prior value is used for
the features. We use, as an additional feature, an indicator
whether an edge pixel is on a minimum-length contour. We
compute straight line segments using an algorithm similar
to Kosecka and Zhang [12] and then link co-linear, proxi-
mate edge segments. Features of position, segment length,
and maximum distance to the bounding box, normalized by
the detection window position and size, are computed, clus-
tered, and histogrammed (K = 100), to yield Pyegmen fea-
tures analogous to the contour features.

4. Object Localization

We propose two approaches to localize the entire ob-
ject based on local cues. The first is a segmentation ap-
proach using graph cuts inference to assign each pixel to



object or background. This approach makes it easy to in-
corporate data-driven smoothness constraints, but segment-
ing wiry objects like bicycles is difficult. We also propose
a structural learning approach to directly predict the bound-
ing box coordinates. This approach makes it easy to incor-
porate multiple sparse cues and its robustness comes from a
compact model, rather than smoothing priors.

4.1. Segmentation Based Inference

We find the best pixel labeling by solving the following
optimization problem:

L = argmin wy %, ®(1;)+wg % ;j(1-0(L;, ;) ¥ (1;, I;)

l1,0ln

where L = (Iy, s, ...,1,,) is the vector of labels assigned to
each pixel in the image, I; represents the i-th pixel in the
image, ®(I;) is the unary potential, W (/;, ;) is the pair-
wise potential, d(;, [;) is the indicator function for whether
l; and [; are the same, and w1y, wo are the weight vectors
associated with different potentials.

Unary potentials measure the affinity of pixels to the
object class. Pixels with negative potentials are likely to
be foreground. Our local cues provide us with: Py, the
likelihood that each pixel is assigned to foreground based
on color; Py, likelihood that edge is in background; Py,
likelihood that edge is inside the object; and Pigjgqe; and
Piigea, the likelihoods that the edge pixel is on the boundary
with a particular object side. These likelihoods are encoded
in our unary terms:

o Begior(l;) = — log erlds)

7Pcolm'(1i))
_ 1—Pepe (13)
® Dedge,,q, (1i) = —log 55~
Pan(L)+ Posger (i
, — oo Lenldi)+Peiaea (15) ;
Pedge,uiee (lima) = —log Tz praary» Where a s

an offset to one side of the oriented edge.

L4 (pmin(li) = min((pinterior(li) + (pexter*ior(li>7 q)color(ji))

® Deong(r,) = 1 (bias term)

Binary potentials enforce smoothness and continuity
of object regions. We use two measurements of object
boundary: Global Pb and the edge probability Pegee(/;) =
Prsidger (1) + Pesige2(I;). For each (I;, I;) pair, we choose
the pixel with stronger boundary response as the binary po-
tential and calculate Upy, (15, I;) = min,—, ; exp(—Pb(I})),
and \I/edge(lhjj) = mint:i’j eXp(_Pedge(It))~ We set Pb
values below 0.1 to 0, and assign maximum binary poten-
tial value to pixels with zero Pb value. Similarly, for non
canny edge pixels, we use the Pb value if it is non-zero, or
the maximum binary potential otherwise.

Inference Procedure. Graph cuts [3] is used to find
the minimum energy solution and the parameters associated
with different potentials are learned on the trainseg set using
the large margin structural framework proposed in [22]. In
particular, we use the loss-augmented inference with mar-
gin rescaling, minimizing training loss directly in the ob-
jective function. To be consistent with our evaluation, we

Figure 5. Illustration of structural feature. Left: the 10 regions
used for computing structural features for a candidate detection
window. The interior bounding box boundaries (4), the exterior
bounding box boundaries (4), the interior of the bounding box (1),
and the exterior of the bounding box (1). Right: The max value of
each region for smoothed color map. The boundary width/height
is set to 0.1 of the bounding box height/width.

use bounding box overlap (4.2) as our loss function. The
final prediction is obtained by fitting a bounding box to the
largest connected component of the segmentation mask.

4.2. Structural Prediction For Bounding Box

The structural prediction approach uses aggregated prob-
ability information to directly predict the location of the
bounding box. We base our model upon the Structural SVM
method of Tsochantaridis et al. [23] and use the four coor-
dinates of the bounding box as the output structure.

Training Data Generation. Our training examples are
detection window and ground truth pairs. For each ground
truth object, we choose the highest scoring detection with
sufficient overlap (at least 0.2 intersection/object, 0.8 in-
tersection/gt) and ignore ground truth with no such corre-
sponding detection. Our features are based on aggregated
color and edge likelihoods at different positions. Given a
candidate window, we divide the image into 10 regions, as
shown in Figure 5. For each region we compute the max
and average color/edge responses. For edge responses, we
use the object probability and exterior object edge proba-
bility as defined in Section 3.2, and for color features we
use the smoothed version of the learned color map and
smoothed version of the instance color map such that the
classifier is more robust to noise. To account for the lo-

cation prior, we add bounding box overlap as an additional
Area(initNcand) Area(initNicand) Area(initNcand)
feature, defined as ( Area(init) ’  Area(cand) ’ Area(initUcand))

where Area(init) is the area of the initial detection and
Area(cand) is the area of the candidate window. Together
with the color/edge based features, we have a 83 dimen-
sion feature vector for each candidate bounding box. Our
feature selection is based on the intuition that there should
be large contrast in terms of edge/color response along the
boundaries of a bounding box, with the inside having higher
object probability.

Loss Function. We define our loss based on the overlap
with ground truth as:

1 if overlap(y;, 9;) < 0.25
Ay, 9) =4 0 if overlap(y;, §;) > 0.75
1 — overlap(y;, ;) otherwise

_ Area(y;Ny;)

where overlap(yi, 9;) = Arcale:05.) "
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Figure 6. The improvement in localization measured as overlap with ground truth. We show error bars (25 percentile, median, 75
percentile) for the two integration methods, and lines (median) for the subwindow detector and the baseline method. The x axis is the
overlap for subwindow detector, the y axis is the final prediction. The numbers above the x axis are the number of detections with the

initial overlap specified on the x axis.

Objective Function and Optimization Algorithm. The
Structural SVM (margin-rescaling) requires larger margins
for examples with higher loss by solving the following op-
timization problem:

1
min —w!w + Z c¢;

w,E>0 2

s.t. Vi wld(y;) > H%ax(wTCI)(g)i) + Ay, §3)) — &
where ®(y;) = o&(x;, ;) is the feature vector associated
with prediction ;, A(yi,¥;) is the loss function, and &; is
the slack variable. We modify this by removing any con-
straints based on zero-loss solutions, so that any zero-loss
solution is acceptable.

Inference Procedure. To solve the structural learn-
ing problem, we need to find the highest scoring zero
loss bounding box and the bounding box with the highest
loss augmented score. Though searching over all possible
bounding boxes in a sliding window fashion seems straight-
forward and easy to implement, examining O(n?) possible
bounding boxes (n being the number of pixels in the given
image) is infeasible in terms of memory and time. There-
fore, we approximate the best solution using a “coordinate
ascent” approach that searches over a subset of all possible
bounding boxes, iteratively maximizing the score over each
bounding box coordinate. When searching for the highest
scoring ground truth bounding box, we use the real ground
truth as start point, and perform coordinate ascent with 4
different coordinate ordering, choosing the highest scoring
bounding box among the four.

5. Experiments

Our experiments measure the accuracy of our local cues
in pixel label assignment and the improvement in object lo-
calization achieved by our integration method. We show
that our proposed set of features can accurately determine
which pixels are part of the object and our integration
method provides great improvement in localization for most
categories, which also leads to improved average precision

SW SW-+Ir sw+seg swstruct
aeroplane  0.446  +0.036  +0.184 +0.087
bicycle 0.546  +0.009  -0.016 +0.049
boat 0364  +0.028  +0.040 +0.041
bus 0.542  +0.002  +0.051 +0.052
car 0.558  -0.003  +0.041 +0.043
motorbike  0.547  +0.000  +0.042 +0.037
train 0.439  +0.040  +0.100 +0.045
vehicleay, 0492 +0.016  +0.063 +0.051

SW SWHIr sw+seg  swistruct
bird 0.400  +0.044  +0.145 +0.106
cat 0.363  +0.176  +0.257 +0.279
cow 0465 +0.031 +0.108 +0.073
dog 0351 +0.135  +0.212 +0.212
horse 0483  +0.029  +0.054 +0.057
sheep 0.501  -0.022  +0.042 +0.028
animalyye 0427 +0.066  +0.136 +0.126

Table 2. Improvement in overlap with ground truth bounding
box compared with the initial detection. The first column shows
the initial overlap and the rest of the table shows improvement
over subwindow results. sw: subwindow detector, Ir+sw: baseline
regressor, sw+seg: graph cut segmentation, sw+struct: structural
prediction.

when measuring detector performance. We conduct our
training on the trainseg and train set of PASCAL VOC 2010
[8] and test on the valseg set for feature accuracy and the val
set for localization and detector performance. Qualitative
results are shown in Figure 9.

Localization Improvement. To measure gains in local-
ization (i.e. overlap with ground truth bounding box com-
pared to the subwindow detector), we compare with a sim-
ple linear regressor baseline. The linear regressor baseline
is trained on the training set to repredict the coordinates of
the new bounding box, based on the relative location of the
initial detection within the image and the width/height of
the initial detection window. We take subwindow detections
with above 0.1 ground truth overlap, and compute overlap
for the relocalized bounding boxes. The average overlap
improvement is shown in Table 2. The results show that
both methods achieve great improvement in localization for
almost all classes, except for the graph cut method on bicy-
cle. We also show improvement in overlap as error bar plots
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Figure 7. Color-based Pixel Classification Accuracy. We mea-
sure the accuracy of assigning a pixel to a particular object in-
stance. The numbers are AUC, averaged over instances for each
category, then averaged over categories for animals and vehicles.
Inst: instance model; Class: class model; I+C Pr: combina-
tion of instance and class probabilities; I+C: combination of in-
stance/class probabilities and instance/class log likelihood; +Xfer:
addition of transfer model to I+C; +Pos: addition of position fea-
ture; +Smth: with Gaussian smoothing. Linear logistic regression
models are learned on trainseg and evaluated on valseg.
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Figure 8. Edge Classification Accuracy. The figure displays ac-
curacy of classifying edge pixels into: (1) object vs. background;
(2) object interior vs. exterior boundary; (3) for exterior bound-
aries, which side is object. The numbers are AUC, first averaged
over instances for each category, then averaged over categories, for
animals and vechicles. Feature combinations are learned via linear
logistic regression on the trainseg set, with evaluation on valseg.

in Fig 6.

Feature Improvement. We evaluate our proposed lo-
cal features on the valseg set using pixel accuracy. We
show in Figure 7 the accuracy of different color model and
combination mechanism measured as area under the ROC
curve(AUC). For both animal and vehicle categories, we see
improvements brought by model combination, position in-
formation and local consistency as a result of smoothing.
Figure 7 evaluates the effectiveness of different features in
predicting different types of edge labels. We see gains in
classification accuracy introduced by reasoning about color
and material of image patches on both sides of the edge
pixel and object shape information gathered from edge con-
tours.

Detection Performance. We show the improvement in de-
tection performance (Table 3) resulting from better object
localization. Results of the DPM detector [10] are included

DPM SW swHlr  sw+seg  swastruct  sw ub

aeroplane  0.442  0.346  0.366 0.430 0.411 0.490
bicycle 0.496 0.456  0.481 0.376 0.482 0.534
boat 0.066 0.035 0.051 0.042 0.045 0.108
bus 0.535  0.509  0.520 0.522 0.556 0.601
car 0379 0.333  0.351 0.340 0.368 0.419
motorbike  0.388  0.359  0.367 0.346 0.376 0.411
train 0342 0.289 0.319 0.369 0.313 0.453
vehicleaye  0.378  0.332  0.351 0.346 0.364 0.431

DPM SW sw+lr  sw+seg  swistruct  sw ub

bird 0.054  0.039  0.049 0.071 0.053 0.079

cat 0.237  0.079  0.265 0.438 0.438 0.352
cow 0.079  0.061  0.084 0.059 0.084 0.118
dog 0.078  0.040  0.093 0.141 0.128 0.152

horse 0.355 0308  0.367 0.300 0.338 0.395
sheep 0.260 0.214  0.176 0.217 0.203 0.243

animalyye  0.177  0.124  0.172 0.204 0.207 0.223

Table 3. Detection performance as average precision for differ-
ent methods. Last column: upper bound on sw detectors when all
initial detection with >0.2 overlap is localized correctly.

as reference. We compute average precision on the 5000
most confident detections produced by each method and
perform non-maximum suppression with a threshold of 0.5
before computing the average precision values. For our in-
tegration method, we use the confidence of the initial detec-
tion. Note that even without reranking or pruning subwin-
dow results, our relocalized detectors achieved comparable
results with the DPM detector and outperformed it for sev-
eral categories. To compare with [16], we implemented a
color based graph cut baseline using the the same unary and
binary potentials as their work. (Direct comparison is not
possible due to lack of annotation.) Our implementation
differs from theirs in that we use our subwindow detector
as initial detection instead of trained cat/dog face detectors
and rather than choosing a specific portion of the detection
window as object foreground, we determine instance level
foreground and background the same way as Section 3.1.
The graph cut baseline achieved comparable results (with
an AP of 0.401) for cat and dog (with an AP of 0.147), but
performed poorly for the rest of the categories (with an aver-
age AP of 0.135 for animals and 0.182 for vehicles). A few
failed examples suggest that for more rigid objects, edge in-
formation and location prior are important cues for object
location while color based models sometimes suffer from
background pixels included in the initial detection window.

6. Conclusion and Discussion

We proposed an approach to improve the localization of
a given detection based on color and edge features. Our
contributions are: 1) We show that for flexible objects, if
we do not force the detector to localize well, false positives
caused by confusion with background or other objects can
be greatly reduced; 2) We evaluate various cues in pixel
assignment and provide models that labels color and edge
pixels with high accuracy based on initial estimates of ob-
ject bounding box; 3) We show that we can greatly improve
the localization of the initial detection and generate accurate
segmentation by integrating edge and color cues.
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Figure 9. Qualitative Results. For each image pair, the left shows initial detection and the right shows segmentation and structural
prediction result. First two rows: success. Last row: failure. Left to right: structural failure, segmentation failure and failure for both.

Our method only takes into account cues computed from
a single detection. Therefore, it can be further improved if
we leverage information from other nearby detections. For
instance, if we could successfully identify different detec-
tions as belonging to the same object or different objects,
we could reduce the number of false positives caused by
duplicated detections and deal with the difficulties caused
by nearby objects from the same category.
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