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Today 
• Optimization with Gradient descent 
• Linear Classifier 

• Two classes  
• Multiple classes 
• Perceptron Criterion Function 

• Batch perceptron rule 
• Single sample perceptron rule 

• Minimum Squared Error (MSE) rule 
• Pseudoinverse 

• Generalized Linear Classifier 
• Gradient Descent Based learning 
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Optimization 
• How to minimize a function of a single variable 

J(x) =(x-5)2 

• From calculus, take derivative, set it to 0 

• Solve the resulting equation 
• maybe easy or hard to solve 

• Example above is easy:  
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Optimization 
• How to minimize a function of many variables 

J(x) = J(x1,…, xd) 

• From calculus, take partial derivatives, set them to 0 
gradient 

• Solve the resulting system of d equations 
• It may not be possible to solve the system of equations 

above analytically 



Optimization: Gradient Direction 

x2 
x1 

J(x1, x2) 

Picture from Andrew Ng 

• Gradient ∇J(x) points in the direction of steepest 
increase of function J(x) 

• - ∇J(x) points in the direction of steepest decrease 



Gradient Direction in 2D 

• J(x1, x2) =(x1-5)2+(x2-10)2 
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• Let a = [10, 5] 
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Gradient Descent: Step Size 

• J(x1, x2) =(x1-5)2+(x2-10)2 
• Which step size to take? 
• Controlled by parameter α  

• called learning rate 
• From previous example: 

• a = [10   5] 
• -∇J(a) = [-10  10] 

• Let α = 0.2 
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• a - α ∇J(a) =  [10   5]+0.2 [-10  10]=[8  7] 
• J(10, 5) = 50 
• J(8,7) = 18 



J(x) 

x 

Gradient Descent Algorithm 

x(1) x(2) 

-∇J(x(1)) 
-∇J(x(2)) 

x(k) 

-∇J(x(k))≈0 

k = 1   
x(1) = any initial guess 
choose α, ε 
while α||∇J(x(k))|| > ε 
 x(k+1) = x (k) - α ∇J(x(k)) 
 k = k + 1   



Gradient Descent: Local Minimum 

• Not guaranteed to find global minimum 
• gets stuck in local minimum 

J(x) 

x 
x(1) x(2) 

-∇J(x(1)) 

-∇J(x(2)) 

x(k) 

-∇J(x(k))=0 

global minimum 

• Still gradient descent is very popular because it is 
simple and applicable to any differentiable function 



x  
 

How to Set Learning Rate α? 

• If α  too large, may 
overshoot the local 
minimum and possibly 
never even converge 

J(x) 

x 

• If α  too small, too 
many iterations to 
converge 

x(2) x(1) 

 
 
x(4) x(3) 

• It  helps to compute J(x) as a function of iteration 
number, to make  sure we are properly minimizing it 

J(x) 



How to Set Learning Rate α? 
J(x) 

x 

• As we approach local 
minimum, often gradient 
gets smaller 

• Step size may get smaller 
automatically, even if α is 
fixed 

• So it may be unnecessary 
to decrease α over time in 
order not to overshoot a 
local minimum 

slope gets smaller 



Variable Learning Rate 

k = 1   
x(1) = any initial guess 
choose α, ε 
while α||∇J(x(k))|| > ε 
 x(k+1) = x (k) - α ∇J(x(k)) 
 k = k + 1   

• If desired, can change learning rate α at each iteration 

k = 1   
x(1) = any initial guess 
choose  ε 
while α||∇J(x(k))|| > ε 
 choose α(k)  
 x(k+1) = x (k) - α(k) ∇J(x(k)) 
 k = k + 1   



Variable Learning Rate 

k = 1   
x(1) = any initial guess 
choose α, ε 
while α||∇J(x(k))|| > ε 
 x(k+1) = x (k) - α ∇J(x(k)) 
 k = k + 1   

• Usually don’t keep track of all intermediate solutions 

x = any initial guess 
choose α, ε 
while α||∇J(x)|| > ε 
 x = x  - α ∇J(x) 
  



Advanced Optimization Methods 
• There are more advanced gradient-based 

optimization methods 
• Such as conjugate gradient 

• automatically pick a good learning rate α  
• usually converge faster 
• however more complex to understand and 

implement 
• in Matlab, use fminunc for various advanced 

optimization methods 
 

 



Last Time: Supervised Learning 

• Training samples (or examples) 
     x1, x2, … xn 

• Each example is typically multi-dimensional 
• xi= [xi

1,xi
2 ,…, xi

d]  
• xi  is often called a feature vector 

• Know desired output for each example 
 
    y1, y2,… yn 

 
• regression:      continuous y 
• classification:  finite y 



Last Time: Supervised Learning 

• Wish to design a machine  f(x,w)  s.t.                    
   f(x,w) = y  
• How do we choose f? 

• last lecture studied kNN classifier 
• this lecture in on liner classifier 
• many other choices 

• W is typically multidimensional vector of weights (also 
called parameters)  

    w = [w1,w2,…wk] 
• By modifying w, the machine  “learns” 



Training and Testing Phases 
• Divide all labeled samples x1, x2,…, xn  into 

training and test sets 
• Training phase 

• Uses training samples 
• goal is to “teach” the machine  
• find weights w s.t. f(xi,w) = yi “as much as possible”  

• “as much as possible” needs to be defined 

• Testing phase  
• Uses only test samples 
• for evaluating how well our machine works on 

unseen examples 
 



Loss Function 

• How to quantify   “f(xi,w) = yi as much as possible”? 
• f(x,w) has to be “close” to the true output y 
• Define Loss (or Error, or Criterion) function L 
• Typically first define per-sample loss L(xi,yi,w) 

• for classification, L(xi,yi,w)  = I[f(xi,w) ≠ yi] 
• where I[true] = 1, I[false] = 0  

• for regression, L(xi,yi,w) = || f(xi,w) - yi ||2 , 
• how far is the estimated output from the correct one? 

• Then loss function L = Σi L(xi,yi,w) 
• classification: counts number of missclassified examples 
• regression: sums distances to the correct output 



Linear Machine: Regression 

• f(x,w) = w0+Σi=1,2,...d wixi 

• In vector notation  
• x= [x1,x2,…,xd] 
• f(x,w) = w0+wtx 

• This is standard linear regression 
• line fitting 

• assume L(xi,yi,w) = ||f(xi,w) - yi||2 

 
 

x 

y 

• optimal w can be found by solving 
a system of linear  equations 

 w* = [Σxi (xi )T]-1 Σyixi 
 



Linear Machine: Classification 
• First consider the two-class case 
• We choose the following encoding: 

• y  =   1  for the first class       
• y  =  -1  for the second class 

• Linear classifier 
•  -∞ ≤  w0+x1w1 + … + xdwd  ≤ ∞ 
• we need f(x,w) to be either  +1   or   -1 
• let  g(x,w) = w0+x1w1 + … + xdwd = w0+wtx 
• let   f(x,w) = sign(g(x,w)) 

•   1  if  g(x,w) is positive 
•  -1 if  g(x,w) is negative 
• other choices for  g(x,w) are also used 

• g(x,w) is called the discriminant  function 

 

g(x) 
x 

-1 

1 
f(x) 



bad boundary 

Linear Classifier: Decision Boundary 

• f(x,w) = sign(g(x,w)) = sign(w0+x1w1 + … + xdwd) 
• Decision boundary is linear 
• Find the best linear boundary to separate two classes 
• Search for best w = [w0,w1,…,wd] to minimize training error 

better boundary 



More on Linear Discriminant Function (LDF) 

• LDF: g(x,w) = w0+x1w1 + … + xdwd 
• Written using vector notation   g(x) = wtx + w0           

x1 

x2
 

weight vector bias or threshold 

decision boundary 
g(x) = 0 g(x) > 0 

decision region 
for class 1 

g(x) < 0 
decision region 

for class 2 



More on Linear Discriminant Function (LDF) 

• Decision boundary: g(x,w) = w0+x1w1 + … + xdwd = 0 
• This is a hyperplane, by definition 

• a point in 1D 
• a line in 2D 
• a plane in 3D 
• a hyperplane in higher dimensions 

 



• We have m classes 
• Define m  linear discriminant functions 

gi(x) = wi
tx + wi0  for i = 1, 2, … m 

Multiple Classes 

• Assign x  to class i  if 
gi(x)  >  gj(x) for all j ≠ i  

• Let Ri be the decision region for class i  
• That is all examples in Ri get assigned class i   

g2(x) > g1(x) 
g2(x) > g3(x) 

R1 
R2 

R3 

g1(x) > g2(x) 
g1(x) > g3(x) 

g3(x) > g1(x) 
g3(x) > g2(x) 

 



Multiple Classes 
• Can be shown that decision regions are convex 
• In particular, they must be spatially contiguous 

 



Failure Cases for Linear Classifier 
• Thus applicability of linear classifiers is limited to 

mostly unimodal distributions, such as Gaussian 
• Not unimodal data 

• Need non-contiguous 
decision regions 

• Linear classifier will fail 

 



Linear Classifiers 
• Linear classifiers give simple decision boundary 

• try simpler models first 

• Linear classifiers are optimal for certain type of data 
•  Gaussian distributions with equal covariance 

• May not be optimal for other data distributions, but 
they are very simple to use 
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Fitting Parameters w 

• Linear discriminant function g(x) = wtx + w0 
 

• Can rewrite it  g(x) = [w0    wt]        =  atz  = g(z) 
 

1 
x 
new 

feature  
vector z 

new weight  
vector a 

• z is called augmented feature vector 
• new problem equivalent to the old   g(z) = atz  
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g(z) > 0 

g(z) < 0 z 

g(z) = 0 

Augmented Feature Vector 

• Feature augmenting is done to simplify notation 
• From now on we assume that we have augmented 

feature vectors 
• given samples x1,…, xn  convert them to augmented samples 

z1,…, zn  by adding  a new dimension of value 1  

• g(z) = atz 
 

 



Training Error 
• For the rest of the lecture, assume we have 2 classes 
• Samples z1,…, zn

  some  in class 1, some in class 2 
• Use these samples to determine weights a in the 

discriminant function g(z) = atz 
• Want to minimize number of misclassified samples 

 

                                                     g(zi) > 0     ∀zi
 class 1 

                                                     g(zi) < 0     ∀zi
 class 2 

 

• Thus training error is 0 if 

• Recall that 
 

                           g(zi) > 0  ⇒ class 1 
                           g(zi) < 0  ⇒ class 2 
 

 

 



Simplifying Notation Further 
                                                     atzi > 0     ∀zi

 class 1 
                                                     atzi < 0     ∀zi

 class 2 
 

• Thus training error is 0 if 

                                                     atzi     >  0  ∀zi
 class 1 

                                                     at(-zi) > 0  ∀zi
 class 2 

 

• Equivalently, training error is 0 if 

• Problem “normalization”: 
1. replace all examples zi from class 2 by –zi 
2. seek weights a s.t. atzi > 0 for ∀zi

  

• If exists, such a is called a separating or solution vector 
• Original samples x1,… xn can also be linearly separated 



before normalization 

 seek a hyperplane that 
separates samples from 
different categories 

 seek hyperplane that puts 
normalized samples on the 
same (positive) side  

Effect of Normalization 

after normalization 
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Solution Region 

• Find weight vector a s.t. for all samples z1,…,zn 

• If there is one such a, then there are infinitely many a 



a 

Solution Region 

• Solution region: the set of all possible solutions for a  



• MSE procedure 
• choose positive constants b1, b2,…, bn  
• try to find weight vector a s.t. atzi = bi  for all samples zi

 

• if succeed, then a is a solution because bi’s are positive 
• consider all the samples (not just the misclassified ones) 

• Linear Regression is a very well understood problem 
• Problem is not regression, but let’s convert to regression! 

atzi  > 0  for all samples zi
 

solve system of linear inequalities 

atzi = bi  for all samples zi
 

solve system of linear equations 

Minimum Squared Error Optimization (MSE) 
 



• By setting atzi = bi, we expect zi to be at  a 
relative distance bi from the separating 
hyperplane 

• Thus b1, b2,…, bn  are expected relative 
distances of examples from the separating 
hyperplane  

• Should make bi small if sample i  is 
expected to be near separating hyperplane, 
and make bi larger otherwise 

• In the absence of any such information, 
there are good reasons to set 

 b1 =  b2 =… = bn  = 1 

MSE: Margins 
 



• Solve system of n equations 

• Using matrix notation: 
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• Solve a linear system Za = b 
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MSE: Matrix Notation 

Z a b 

 



• No exact solution for Za = b in this case 
• Find an approximate solution a, that is Za ≈ b  

• approximate solution a does not necessarily give a 
separating hyperplane in the separable case 

• but hyperplane corresponding to an approximate a 
may still be a good solution 

• Least Squares Solution: a = (ZtZ)-1 Ztb 
 

• Typically Z  is overdetermined 
• more rows (examples) than columns (features) 

Z b a = 

MSE:Approximate Solution 
 



• Class 1: (6 9), (5 7) 
• Class 2: (5 9), (0 4) 
• Add extra feature and “normalize”  
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MSE: Example 
 



• Choose  b= 
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• Use a=Z\b to solve in Matlab 
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• Gives a separating hyperplane since 
Za > 0 

MSE: Example 
 



• Class 1: (6 9), (5 7) 
• Class 2: (5 9), (0 10) 
• One example is far compared to 

others from separating hyperplane 
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• Choose b = 
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• Does not give a separating hyperplane since atz3 < 0 

MSE: Example 
 



• MSE wants all examples to be at the same distance 
from the separating hyperplane 

• Examples that are “too right”, i.e. too far from the 
boundary cause problems 

desired solution 

MSE solution 

• No problems with convergence though, both in 
separable and non-separable cases 

• Can fix it in linearly separable case, i.e find better b 

MSE: Problems 

“too right” 

 



Another Approach: Design a Loss Function 

• Find weight vector a s.t. ∀z1,…, zn , at zi
  > 0  

• Design a loss function J(a), which is minimum 
when a is a solution vector 

• Let Z(a) be the set of examples misclassified by a 
Z(a) = { zi | at zi

 < 0 } 
• Natural choice: number of misclassified examples 

J(a) = |Z(a)| 
• Unfortunately, can’t be                                  

minimized with gradient descent 
• piecewise constant, gradient zero                                               

or does not exist 

 
 

a 

J(a) 
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Perceptron Loss Function 
• Better choice: Perceptron loss function 

• If z is misclassified, atz < 0 
• Thus J(a) ≥ 0  
• Jp(a) is proportional to the sum 

of distances of misclassified 
examples to decision boundary 

• Jp(a) is piecewise linear and 
suitable for gradient descent 

a 

J(a) 



• Gradient of Jp(a) is ( ) ( )
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∑
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• Gradient decent update rule for Jp(a) is: 
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• called batch rule because it is based on all examples 
• true gradient descent 

• cannot  solve ∇Jp(a) = 0 analytically because of Z(a) 
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• Recall update rule for gradient descent 
 x(k+1)= x(k+1)– α ∇J(x(k)) 

Optimizing with Gradient Descent 



• Gradient decent single sample rule for Jp(a) is 
 a(k+1) =a(k) +α⋅zM 

• zM is one sample misclassified by a(k) 

• Geometric Interpretation: 

• must have a consistent way to visit samples 

• zM  misclassified by a(k) 

( )( ) 0≤M
tk za a(k) 

• zM is on the wrong side of 
decision boundary 

• adding α⋅zM  to a moves  decision 
boundary in the right direction  

Perceptron Single Sample Rule 

zM 

a(k+1) 

αzM 



 if α is too large, previously 
correctly classified sample zi

  is 
now misclassified 

Perceptron Single Sample Rule 

a(k) zM 

a(k+1) 

zi 

a(k) 

 if α is too small,  zM  is still 
misclassified 

zM 

a(k+1) 



• Suppose we have examples: 
• class 1:  [2,1], [4,3], [3,5] 
• class 2: [1,3] , [5,6] 
• not linearly separable 
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Non-Linearly Separable Case 

• Still would like to get approximate 
separation 

• Good line choice is shown in green 
• Let us run gradient descent 

• Add extra feature and “normalize” 



• atz1 = [1 1 1] · [1 2 1]t  > 0       
• atz2 = [1 1 1] · [1 4 3]t  > 0      
• atz3 = [1 1 1] · [1 3 5]t  > 0      

• single sample perceptron rule 
• Initial weights a(1) = [1  1  1] 
• This is line x1 + x2 + 1 = 0 
• Use fixed learning rate α = 1 
• Rule is:   a(k+1) =a(k) + zM 
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Non-Linearly Separable Case 



• atz4
 = [1 1 1] · [-1 -1 -3]t  =  -5 <  0 

• Update:  a(2) = a(1) + zM = [1  1  1] + [-1  -1  -3] = [0  0  -2]    
 
 • atz5

 = [0 0 -2] · [-1 -5 -6]t  = 12 > 0 
• atz1

 = [0 0 -2] · [1 2 1]t  < 0 
• Update:  a(3) = a(2) + zM = [0  0  -2] + [1  2  1] = [1  2  -1] 

 
 

• a(1) = [1  1  1] 
• rule is:   a(k+1) =a(k) + zM 
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Non-Linearly Separable Case 



• a(3) = [1  2  -1] 
• rule is:   a(k+1) =a(k) + zM 
 

 
 
 • atz2

 = [1 4 3] · [1  2 -1]t  =  6 > 0 
• atz3

 = [1 3 5] · [1  2 -1]t  =  2 > 0 
• atz4

 = [-1 -1 -3] · [1  2 -1]t  =  0 
• Update:  a(4)  = a(3) + zM = [1   2  -1] + [-1  -1  -3] = [0  1  -4] 

 
 
















=

1
2
1

1z















=

3
4
1

2z















=

5
3
1

3z
















−
−
−

=
6
5
1

5z
















−
−
−

=
3
1
1

4z

Non-Linearly Separable Case 



• We can continue this forever 
• there is no solution vector a satisfying for all atzi > 0 for all i 

• Need to stop at a good point 

• Solutions at iterations 
900 through 915  

• Some are good some 
are not 

• How do we stop at a 
good solution? 

Non-Linearly Separable Case 



 1. Classes are linearly separable: 
• with fixed learning rate, both single sample and batch rules converge to a 

correct solution a 
• can be any a in the solution space 

2. Classes are not linearly separable: 
• with fixed learning rate, both single sample and batch do not converge 
• can ensure convergence with appropriate variable learning rate 

• α → 0  as  k → ∞ 
• example, inverse linear:  α = c/k, where c is any constant 

• also converges in the linearly separable case   
• no guarantee that we stop at a good point, but there are good reasons 

to choose inverse linear learning rate 

• Practical Issue: both single sample and batch algorithms converge 
faster if features are roughly on the same scale 
• see kNN lecture on feature normalization 

 

 

 

Convergence of Perceptron Rules 



• True gradient descent, full 
gradient computed 

• Smoother gradient because 
all samples are used  

• Takes longer to converge 

Batch 
• Only partial gradient is 

computed 
• Noisier gradient, therefore 

may concentrates more than 
necessary on any isolated 
training examples (those 
could be noise) 

• Converges faster 
• Easier to analyze 

Single Sample 

Batch  vs. Single Sample Rules 
 



Linear Machine: Logistic Regression 
• Despite the name, used for 

classification, not regression 
• Instead of putting g(x) through a 

sign function, can put it through a 
smooth function  

• smooth function is better for gradient 
descent 

• Logistic sigmoid function 

• g(x,w) = w0+x1w1 + … + xdwd 
• let   f(x,w) = Ϭ(g(x,w)) 
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Linear Machine: Logistic Regression 

• f(x,w) = Ϭ(g(x,w)) 
•  bigger 0.5 if  g(x,w) is positive 

• decide class 1 

•  less 0.5 if  g(x,w) is negative 
• decide class 2 

• Has an interesting probabilistic 
interpretation 

• P(class 1|x) = Ϭ(g(x,w)) 
• Under a certain loss function, can 

be optimized exactly with gradient 
decent 
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x1 

x2 • Can use other discriminant functions, 
like quadratics 

            g(x) = w0+w1x1+w2x2+ w12x1x2 +w11x1
2 +w22x2

2 

• Methodology is almost the same as 
in the linear case: 
•  f(x)   = sign(w0+w1x1+w2x2+w12x1x2 +w11x1

2 + w22x2
2) 

•      z   =        [ 1        x1        x2            x1 x2         x1
2           x2

2] 
•      a   =       [ w0      w1       w2         w12           w11

          w22] 
• “normalization”:  multiply negative class samples by -1 
• all the other procedures remain the same, i.e. gradient 

descent to minimize Perceptron loss function, or MSE 
procedure, etc. 

  

Generalized Linear Classifier 
 



Generalized Linear Classifier 
• In general, to the liner function: 

g(x,w) = w0+Σi=1…d wixi 

 

• can add quadratic terms: 

g(x,w) = w0+Σi=1...d wixi+Σi=1...d Σj=1,..d wijxixj 
 • This is still a linear function in its parameters w 

• g(y,v) = v0+vty 
v0 = w0 

    y = [x1     x2 …   xd    x1x1   x1x2    …   xdxd] 

    v = [w1    w2 … wd    w11    w12    …   wdd] 
 

• Can use all the same training methods as before 

 



Generalized Linear Classifier 
• Generalized linear classifier 

 g(x,w) = w0+Σi=1…m wihi(x) 
 

• h(x) are called basis function, can be arbitrary functions 
• in strictly linear case, hi(x)= xi 

 

 
• Linear function in its parameters w 

 g(x,w) = w0+wth 
h = [h1(x)   h2(x)   …  hm(x)] 

[w1    …   wm] 

• Can use all the same training methods as before 
 
 



Generalized Linear Classifier 
• Usually face severe overfitting 

• too many degrees of freedom 
• Boundary can “curve” to fit to the noise in the data 

• Helps to regularize by keeping w small 
• small w means the boundary is not as curvy 

• Usually add  λ||w||2 to the loss function 
• Recall quadratic loss function 

 L(xi,yi,w) = || f(xi,w) - yi ||2  

• Regularized version 
L(xi,yi,w) = || f(xi,w) - yi ||2 +λ||w||2  

• How to set λ? 
• With cross-validation 

 



 Learning by Gradient Descent 

• Can have classifiers even more general 
• More general than generalized linear  
• Suppose we suspect that the machine has to have 

functional form f(x,w), not necessarily linear 
• Pick differentiable per-sample loss function L(xi,yi,w) 
• Need to find w that minimizes L = Σi L(xi,yi,w) 
• Use gradient-based minimization: 

• Batch rule: w = w - αL(w) 
• Or single sample rule: W = W - αL (xi,yi,w) 
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