
CS9840
Learning and Computer Vision

Prof. Olga Veksler

Lecture 6
Linear Machines

Today
• Optimization with Gradient descent
• Linear Classifier

• Two classes
• Multiple classes
• Perceptron Criterion Function

• Batch perceptron rule
• Single sample perceptron rule

• Minimum Squared Error (MSE) rule
• Pseudoinverse

• Generalized Linear Classifier
• Gradient Descent Based learning

() 0xJ
dx
d

=

Optimization
• How to minimize a function of a single variable

J(x) =(x-5)2

• From calculus, take derivative, set it to 0

• Solve the resulting equation
• maybe easy or hard to solve

• Example above is easy:

() () 5x05x2xJ
dx
d

=⇒=−=

()

()
() 0xJ

xJ
x

xJ
x

d

1

=∇=





















∂
∂

∂
∂



Optimization
• How to minimize a function of many variables

J(x) = J(x1,…, xd)

• From calculus, take partial derivatives, set them to 0
gradient

• Solve the resulting system of d equations
• It may not be possible to solve the system of equations

above analytically

Optimization: Gradient Direction

x2
x1

J(x1, x2)

Picture from Andrew Ng

• Gradient ∇J(x) points in the direction of steepest
increase of function J(x)

• - ∇J(x) points in the direction of steepest decrease

Gradient Direction in 2D

• J(x1, x2) =(x1-5)2+(x2-10)2

() ()5x2xJ
x 1

1

−=
∂
∂•

() ()10x2xJ
x 2

2

−=
∂
∂

•

• Let a = [10, 5]
 () 10aJ

x1

−=
∂
∂

−•

() 10aJ
x2

=
∂
∂

−•

a

[-10, 10]

global min

x1

x2

5

10

10

5

Gradient Descent: Step Size

• J(x1, x2) =(x1-5)2+(x2-10)2
• Which step size to take?
• Controlled by parameter α

• called learning rate
• From previous example:

• a = [10 5]
• -∇J(a) = [-10 10]

• Let α = 0.2

a

[-10, 10]

global min

x1

x2

5

10

10

5

• a - α ∇J(a) = [10 5]+0.2 [-10 10]=[8 7]
• J(10, 5) = 50
• J(8,7) = 18

J(x)

x

Gradient Descent Algorithm

x(1) x(2)

-∇J(x(1))
-∇J(x(2))

x(k)

-∇J(x(k))≈0

k = 1
x(1) = any initial guess
choose α, ε
while α||∇J(x(k))|| > ε
 x(k+1) = x (k) - α ∇J(x(k))
 k = k + 1

Gradient Descent: Local Minimum

• Not guaranteed to find global minimum
• gets stuck in local minimum

J(x)

x
x(1) x(2)

-∇J(x(1))

-∇J(x(2))

x(k)

-∇J(x(k))=0

global minimum

• Still gradient descent is very popular because it is
simple and applicable to any differentiable function

x

How to Set Learning Rate α?

• If α too large, may
overshoot the local
minimum and possibly
never even converge

J(x)

x

• If α too small, too
many iterations to
converge

x(2) x(1)

x(4) x(3)

• It helps to compute J(x) as a function of iteration
number, to make sure we are properly minimizing it

J(x)

How to Set Learning Rate α?
J(x)

x

• As we approach local
minimum, often gradient
gets smaller

• Step size may get smaller
automatically, even if α is
fixed

• So it may be unnecessary
to decrease α over time in
order not to overshoot a
local minimum

slope gets smaller

Variable Learning Rate

k = 1
x(1) = any initial guess
choose α, ε
while α||∇J(x(k))|| > ε
 x(k+1) = x (k) - α ∇J(x(k))
 k = k + 1

• If desired, can change learning rate α at each iteration

k = 1
x(1) = any initial guess
choose ε
while α||∇J(x(k))|| > ε
 choose α(k)
 x(k+1) = x (k) - α(k) ∇J(x(k))
 k = k + 1

Variable Learning Rate

k = 1
x(1) = any initial guess
choose α, ε
while α||∇J(x(k))|| > ε
 x(k+1) = x (k) - α ∇J(x(k))
 k = k + 1

• Usually don’t keep track of all intermediate solutions

x = any initial guess
choose α, ε
while α||∇J(x)|| > ε
 x = x - α ∇J(x)

Advanced Optimization Methods
• There are more advanced gradient-based

optimization methods
• Such as conjugate gradient

• automatically pick a good learning rate α
• usually converge faster
• however more complex to understand and

implement
• in Matlab, use fminunc for various advanced

optimization methods

Last Time: Supervised Learning

• Training samples (or examples)
 x1, x2, … xn

• Each example is typically multi-dimensional
• xi= [xi

1,xi
2 ,…, xi

d]
• xi is often called a feature vector

• Know desired output for each example

 y1, y2,… yn

• regression: continuous y
• classification: finite y

Last Time: Supervised Learning

• Wish to design a machine f(x,w) s.t.
 f(x,w) = y
• How do we choose f?

• last lecture studied kNN classifier
• this lecture in on liner classifier
• many other choices

• W is typically multidimensional vector of weights (also
called parameters)

 w = [w1,w2,…wk]
• By modifying w, the machine “learns”

Training and Testing Phases
• Divide all labeled samples x1, x2,…, xn into

training and test sets
• Training phase

• Uses training samples
• goal is to “teach” the machine
• find weights w s.t. f(xi,w) = yi “as much as possible”

• “as much as possible” needs to be defined

• Testing phase
• Uses only test samples
• for evaluating how well our machine works on

unseen examples

Loss Function

• How to quantify “f(xi,w) = yi as much as possible”?
• f(x,w) has to be “close” to the true output y
• Define Loss (or Error, or Criterion) function L
• Typically first define per-sample loss L(xi,yi,w)

• for classification, L(xi,yi,w) = I[f(xi,w) ≠ yi]
• where I[true] = 1, I[false] = 0

• for regression, L(xi,yi,w) = || f(xi,w) - yi ||2 ,
• how far is the estimated output from the correct one?

• Then loss function L = Σi L(xi,yi,w)
• classification: counts number of missclassified examples
• regression: sums distances to the correct output

Linear Machine: Regression

• f(x,w) = w0+Σi=1,2,...d wixi

• In vector notation
• x= [x1,x2,…,xd]
• f(x,w) = w0+wtx

• This is standard linear regression
• line fitting

• assume L(xi,yi,w) = ||f(xi,w) - yi||2

x

y

• optimal w can be found by solving
a system of linear equations

 w* = [Σxi (xi)T]-1 Σyixi

Linear Machine: Classification
• First consider the two-class case
• We choose the following encoding:

• y = 1 for the first class
• y = -1 for the second class

• Linear classifier
• -∞ ≤ w0+x1w1 + … + xdwd ≤ ∞
• we need f(x,w) to be either +1 or -1
• let g(x,w) = w0+x1w1 + … + xdwd = w0+wtx
• let f(x,w) = sign(g(x,w))

• 1 if g(x,w) is positive
• -1 if g(x,w) is negative
• other choices for g(x,w) are also used

• g(x,w) is called the discriminant function

g(x)
x

-1

1
f(x)

bad boundary

Linear Classifier: Decision Boundary

• f(x,w) = sign(g(x,w)) = sign(w0+x1w1 + … + xdwd)
• Decision boundary is linear
• Find the best linear boundary to separate two classes
• Search for best w = [w0,w1,…,wd] to minimize training error

better boundary

More on Linear Discriminant Function (LDF)

• LDF: g(x,w) = w0+x1w1 + … + xdwd
• Written using vector notation g(x) = wtx + w0

x1

x2

weight vector bias or threshold

decision boundary
g(x) = 0 g(x) > 0

decision region
for class 1

g(x) < 0
decision region

for class 2

More on Linear Discriminant Function (LDF)

• Decision boundary: g(x,w) = w0+x1w1 + … + xdwd = 0
• This is a hyperplane, by definition

• a point in 1D
• a line in 2D
• a plane in 3D
• a hyperplane in higher dimensions

• We have m classes
• Define m linear discriminant functions

gi(x) = wi
tx + wi0 for i = 1, 2, … m

Multiple Classes

• Assign x to class i if
gi(x) > gj(x) for all j ≠ i

• Let Ri be the decision region for class i
• That is all examples in Ri get assigned class i

g2(x) > g1(x)
g2(x) > g3(x)

R1
R2

R3

g1(x) > g2(x)
g1(x) > g3(x)

g3(x) > g1(x)
g3(x) > g2(x)

Multiple Classes
• Can be shown that decision regions are convex
• In particular, they must be spatially contiguous

Failure Cases for Linear Classifier
• Thus applicability of linear classifiers is limited to

mostly unimodal distributions, such as Gaussian
• Not unimodal data

• Need non-contiguous
decision regions

• Linear classifier will fail

Linear Classifiers
• Linear classifiers give simple decision boundary

• try simpler models first

• Linear classifiers are optimal for certain type of data
• Gaussian distributions with equal covariance

• May not be optimal for other data distributions, but
they are very simple to use



















dx

x

1

1

Fitting Parameters w

• Linear discriminant function g(x) = wtx + w0

• Can rewrite it g(x) = [w0 wt] = atz = g(z)

1
x
new

feature
vector z

new weight
vector a

• z is called augmented feature vector
• new problem equivalent to the old g(z) = atz



















dw

w
w


1

0

g(z) > 0

g(z) < 0 z

g(z) = 0

Augmented Feature Vector

• Feature augmenting is done to simplify notation
• From now on we assume that we have augmented

feature vectors
• given samples x1,…, xn convert them to augmented samples

z1,…, zn by adding a new dimension of value 1

• g(z) = atz

Training Error
• For the rest of the lecture, assume we have 2 classes
• Samples z1,…, zn

 some in class 1, some in class 2
• Use these samples to determine weights a in the

discriminant function g(z) = atz
• Want to minimize number of misclassified samples

 g(zi) > 0 ∀zi
 class 1

 g(zi) < 0 ∀zi
 class 2

• Thus training error is 0 if

• Recall that

 g(zi) > 0 ⇒ class 1
 g(zi) < 0 ⇒ class 2

Simplifying Notation Further
 atzi > 0 ∀zi

 class 1
 atzi < 0 ∀zi

 class 2

• Thus training error is 0 if

 atzi > 0 ∀zi
 class 1

 at(-zi) > 0 ∀zi
 class 2

• Equivalently, training error is 0 if

• Problem “normalization”:
1. replace all examples zi from class 2 by –zi
2. seek weights a s.t. atzi > 0 for ∀zi

• If exists, such a is called a separating or solution vector
• Original samples x1,… xn can also be linearly separated

before normalization

 seek a hyperplane that
separates samples from
different categories

 seek hyperplane that puts
normalized samples on the
same (positive) side

Effect of Normalization

after normalization

0zaza
d

0k

i
dk

it >=∑
=

a

a

 a

Solution Region

• Find weight vector a s.t. for all samples z1,…,zn

• If there is one such a, then there are infinitely many a

a

Solution Region

• Solution region: the set of all possible solutions for a

• MSE procedure
• choose positive constants b1, b2,…, bn
• try to find weight vector a s.t. atzi = bi for all samples zi

• if succeed, then a is a solution because bi’s are positive
• consider all the samples (not just the misclassified ones)

• Linear Regression is a very well understood problem
• Problem is not regression, but let’s convert to regression!

atzi > 0 for all samples zi

solve system of linear inequalities

atzi = bi for all samples zi

solve system of linear equations

Minimum Squared Error Optimization (MSE)

• By setting atzi = bi, we expect zi to be at a
relative distance bi from the separating
hyperplane

• Thus b1, b2,…, bn are expected relative
distances of examples from the separating
hyperplane

• Should make bi small if sample i is
expected to be near separating hyperplane,
and make bi larger otherwise

• In the absence of any such information,
there are good reasons to set

 b1 = b2 =… = bn = 1

MSE: Margins

• Solve system of n equations

• Using matrix notation:























=









































n
dn

d
nn

d

d

b

b
b

a

a
a

zzz

zzz
zzz
















2

1

1

0

10

22
1

2
0

11
1

1
0

• Solve a linear system Za = b

n
nt

t

bza

bza

=

=


1
1

MSE: Matrix Notation

Z a b

• No exact solution for Za = b in this case
• Find an approximate solution a, that is Za ≈ b

• approximate solution a does not necessarily give a
separating hyperplane in the separable case

• but hyperplane corresponding to an approximate a
may still be a good solution

• Least Squares Solution: a = (ZtZ)-1 Ztb

• Typically Z is overdetermined
• more rows (examples) than columns (features)

Z b a =

MSE:Approximate Solution

• Class 1: (6 9), (5 7)
• Class 2: (5 9), (0 4)
• Add extra feature and “normalize”

•


















−−
−−−

=

401
951
751
961

Z
















=

9
6
1

1z















=

7
5
1

2z
















−
−
−

=
9
5
1

3z
















−

−
=

4
0
1

4z

MSE: Example

• Choose b=
















1
1
1
1

• Use a=Z\b to solve in Matlab















−
=

90
01
72

.

.

.
a

• Note a is an approximation since Za =
















≠
















1
1
1
1

11
60
31
40

.

.

.

.

• Gives a separating hyperplane since
Za > 0

MSE: Example

• Class 1: (6 9), (5 7)
• Class 2: (5 9), (0 10)
• One example is far compared to

others from separating hyperplane

•
















−−
−−−=

1001
951
751
961

Z














=

9
6
1

1z













=

7
5
1

2z














−
−
−

=
9
5
1

3z














−

−
=

10
0
1

4z

MSE: Example

• Choose b =
















1
1
1
1

• Solve a = Z\b =














− 40
20
23

.

.

.

• Za =
















≠
















−
1
1
1
1

161
040

90
20

.

.
.
.

• Does not give a separating hyperplane since atz3 < 0

MSE: Example

• MSE wants all examples to be at the same distance
from the separating hyperplane

• Examples that are “too right”, i.e. too far from the
boundary cause problems

desired solution

MSE solution

• No problems with convergence though, both in
separable and non-separable cases

• Can fix it in linearly separable case, i.e find better b

MSE: Problems

“too right”

Another Approach: Design a Loss Function

• Find weight vector a s.t. ∀z1,…, zn , at zi
 > 0

• Design a loss function J(a), which is minimum
when a is a solution vector

• Let Z(a) be the set of examples misclassified by a
Z(a) = { zi | at zi

 < 0 }
• Natural choice: number of misclassified examples

J(a) = |Z(a)|
• Unfortunately, can’t be

minimized with gradient descent
• piecewise constant, gradient zero

or does not exist

a

J(a)

() ()
()
∑
∈

−=
aZz

t
p zaaJ

Perceptron Loss Function
• Better choice: Perceptron loss function

• If z is misclassified, atz < 0
• Thus J(a) ≥ 0
• Jp(a) is proportional to the sum

of distances of misclassified
examples to decision boundary

• Jp(a) is piecewise linear and
suitable for gradient descent

a

J(a)

• Gradient of Jp(a) is () ()
()
∑
∈

−=∇
aZz

p zaJ

• Gradient decent update rule for Jp(a) is:
() ()

()
∑
∈

+ +=
aZz

kk zαaa 1

• called batch rule because it is based on all examples
• true gradient descent

• cannot solve ∇Jp(a) = 0 analytically because of Z(a)

() ()
()
∑
∈

−=
aZz

t
p zaaJ

• Recall update rule for gradient descent
 x(k+1)= x(k+1)– α ∇J(x(k))

Optimizing with Gradient Descent

• Gradient decent single sample rule for Jp(a) is
 a(k+1) =a(k) +α⋅zM

• zM is one sample misclassified by a(k)

• Geometric Interpretation:

• must have a consistent way to visit samples

• zM misclassified by a(k)

()() 0≤M
tk za a(k)

• zM is on the wrong side of
decision boundary

• adding α⋅zM to a moves decision
boundary in the right direction

Perceptron Single Sample Rule

zM

a(k+1)

αzM

 if α is too large, previously
correctly classified sample zi

 is
now misclassified

Perceptron Single Sample Rule

a(k) zM

a(k+1)

zi

a(k)

 if α is too small, zM is still
misclassified

zM

a(k+1)

• Suppose we have examples:
• class 1: [2,1], [4,3], [3,5]
• class 2: [1,3] , [5,6]
• not linearly separable
















=

1
2
1

1z















=

3
4
1

2z















=

5
3
1

3z
















−
−
−

=
6
5
1

5z
















−
−
−

=
3
1
1

4z

Non-Linearly Separable Case

• Still would like to get approximate
separation

• Good line choice is shown in green
• Let us run gradient descent

• Add extra feature and “normalize”

• atz1 = [1 1 1] · [1 2 1]t > 0
• atz2 = [1 1 1] · [1 4 3]t > 0
• atz3 = [1 1 1] · [1 3 5]t > 0

• single sample perceptron rule
• Initial weights a(1) = [1 1 1]
• This is line x1 + x2 + 1 = 0
• Use fixed learning rate α = 1
• Rule is: a(k+1) =a(k) + zM
















=

1
2
1

1z















=

3
4
1

2z















=

5
3
1

3z
















−
−
−

=
6
5
1

5z
















−
−
−

=
3
1
1

4z

Non-Linearly Separable Case

• atz4
 = [1 1 1] · [-1 -1 -3]t = -5 < 0

• Update: a(2) = a(1) + zM = [1 1 1] + [-1 -1 -3] = [0 0 -2]

 • atz5

 = [0 0 -2] · [-1 -5 -6]t = 12 > 0
• atz1

 = [0 0 -2] · [1 2 1]t < 0
• Update: a(3) = a(2) + zM = [0 0 -2] + [1 2 1] = [1 2 -1]

• a(1) = [1 1 1]
• rule is: a(k+1) =a(k) + zM
















=

1
2
1

1z















=

3
4
1

2z















=

5
3
1

3z
















−
−
−

=
6
5
1

5z
















−
−
−

=
3
1
1

4z

Non-Linearly Separable Case

• a(3) = [1 2 -1]
• rule is: a(k+1) =a(k) + zM

 • atz2

 = [1 4 3] · [1 2 -1]t = 6 > 0
• atz3

 = [1 3 5] · [1 2 -1]t = 2 > 0
• atz4

 = [-1 -1 -3] · [1 2 -1]t = 0
• Update: a(4) = a(3) + zM = [1 2 -1] + [-1 -1 -3] = [0 1 -4]
















=

1
2
1

1z















=

3
4
1

2z















=

5
3
1

3z
















−
−
−

=
6
5
1

5z
















−
−
−

=
3
1
1

4z

Non-Linearly Separable Case

• We can continue this forever
• there is no solution vector a satisfying for all atzi > 0 for all i

• Need to stop at a good point

• Solutions at iterations
900 through 915

• Some are good some
are not

• How do we stop at a
good solution?

Non-Linearly Separable Case

 1. Classes are linearly separable:
• with fixed learning rate, both single sample and batch rules converge to a

correct solution a
• can be any a in the solution space

2. Classes are not linearly separable:
• with fixed learning rate, both single sample and batch do not converge
• can ensure convergence with appropriate variable learning rate

• α → 0 as k → ∞
• example, inverse linear: α = c/k, where c is any constant

• also converges in the linearly separable case
• no guarantee that we stop at a good point, but there are good reasons

to choose inverse linear learning rate

• Practical Issue: both single sample and batch algorithms converge
faster if features are roughly on the same scale
• see kNN lecture on feature normalization

Convergence of Perceptron Rules

• True gradient descent, full
gradient computed

• Smoother gradient because
all samples are used

• Takes longer to converge

Batch
• Only partial gradient is

computed
• Noisier gradient, therefore

may concentrates more than
necessary on any isolated
training examples (those
could be noise)

• Converges faster
• Easier to analyze

Single Sample

Batch vs. Single Sample Rules

Linear Machine: Logistic Regression
• Despite the name, used for

classification, not regression
• Instead of putting g(x) through a

sign function, can put it through a
smooth function

• smooth function is better for gradient
descent

• Logistic sigmoid function

• g(x,w) = w0+x1w1 + … + xdwd
• let f(x,w) = Ϭ(g(x,w))

()
()a

a
−+

=σ
exp1

1

g(x)
x

-1

1
f(x)

Linear Machine: Logistic Regression

• f(x,w) = Ϭ(g(x,w))
• bigger 0.5 if g(x,w) is positive

• decide class 1

• less 0.5 if g(x,w) is negative
• decide class 2

• Has an interesting probabilistic
interpretation

• P(class 1|x) = Ϭ(g(x,w))
• Under a certain loss function, can

be optimized exactly with gradient
decent

()
()a

a
−+

=σ
exp1

1

x1

x2 • Can use other discriminant functions,
like quadratics

 g(x) = w0+w1x1+w2x2+ w12x1x2 +w11x1
2 +w22x2

2

• Methodology is almost the same as
in the linear case:
• f(x) = sign(w0+w1x1+w2x2+w12x1x2 +w11x1

2 + w22x2
2)

• z = [1 x1 x2 x1 x2 x1
2 x2

2]
• a = [w0 w1 w2 w12 w11

 w22]
• “normalization”: multiply negative class samples by -1
• all the other procedures remain the same, i.e. gradient

descent to minimize Perceptron loss function, or MSE
procedure, etc.

Generalized Linear Classifier

Generalized Linear Classifier
• In general, to the liner function:

g(x,w) = w0+Σi=1…d wixi

• can add quadratic terms:

g(x,w) = w0+Σi=1...d wixi+Σi=1...d Σj=1,..d wijxixj
 • This is still a linear function in its parameters w

• g(y,v) = v0+vty
v0 = w0

 y = [x1 x2 … xd x1x1 x1x2 … xdxd]

 v = [w1 w2 … wd w11 w12 … wdd]

• Can use all the same training methods as before

Generalized Linear Classifier
• Generalized linear classifier

 g(x,w) = w0+Σi=1…m wihi(x)

• h(x) are called basis function, can be arbitrary functions
• in strictly linear case, hi(x)= xi

• Linear function in its parameters w

 g(x,w) = w0+wth
h = [h1(x) h2(x) … hm(x)]

[w1 … wm]

• Can use all the same training methods as before

Generalized Linear Classifier
• Usually face severe overfitting

• too many degrees of freedom
• Boundary can “curve” to fit to the noise in the data

• Helps to regularize by keeping w small
• small w means the boundary is not as curvy

• Usually add λ||w||2 to the loss function
• Recall quadratic loss function

 L(xi,yi,w) = || f(xi,w) - yi ||2

• Regularized version
L(xi,yi,w) = || f(xi,w) - yi ||2 +λ||w||2

• How to set λ?
• With cross-validation

 Learning by Gradient Descent

• Can have classifiers even more general
• More general than generalized linear 
• Suppose we suspect that the machine has to have

functional form f(x,w), not necessarily linear
• Pick differentiable per-sample loss function L(xi,yi,w)
• Need to find w that minimizes L = Σi L(xi,yi,w)
• Use gradient-based minimization:

• Batch rule: w = w - αL(w)
• Or single sample rule: W = W - αL (xi,yi,w)

	CS9840 �Learning and Computer Vision Prof. Olga Veksler
	Today
	Optimization
	Optimization
	Optimization: Gradient Direction
	Gradient Direction in 2D
	Gradient Descent: Step Size
	Gradient Descent Algorithm
	Gradient Descent: Local Minimum
	How to Set Learning Rate ?
	How to Set Learning Rate ?
	Variable Learning Rate
	Variable Learning Rate
	Advanced Optimization Methods
	Last Time: Supervised Learning
	Last Time: Supervised Learning
	Training and Testing Phases
	Loss Function
	Linear Machine: Regression
	Linear Machine: Classification
	Slide Number 21
	More on Linear Discriminant Function (LDF)
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Linear Classifiers
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Simplifying Notation Further
	Effect of Normalization
	Solution Region
	Solution Region
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	MSE: Example
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Another Approach: Design a Loss Function
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Convergence of Perceptron Rules
	Slide Number 55
	Linear Machine: Logistic Regression
	Linear Machine: Logistic Regression
	Slide Number 58
	Generalized Linear Classifier
	Generalized Linear Classifier
	Generalized Linear Classifier
	 Learning by Gradient Descent

