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Today

• New Machine Learning Topics:
• Ensemble Learning

• Bagging 
• Boosting



Ensemble Learning: Bagging and Boosting

• So far we have talked about design of a single classifier 
that generalizes well (want to “learn”  f(x) )

• From statistics, we know that it is good to average your 
predictions (reduces variance)

• Bagging is based on ensemble learning ideas
• Boosting was inspired by bagging



Bagging
• Generate a random sample from training set by selecting l elements 

(out of N elements available) with replacement
• New sampled dataset  has, on  average,  63.2% of training examples

• each example has a probability of  1-(1-1/N)N of being selected at least once. 
For N→∞, this converges to (1-1/e) or 0.632 [Bauer and Kohavi, 1999]

• Repeat the sampling procedure, getting a sequence of k
independent training sets

• Train classifiers f1(x),f2(x),…,fk(x) for each of these training sets, using 
the same classification algorithm 

• To classify an unknown sample x, let each classifier predict  
• The bagged classifier fFINAL(x) combines predictions of individual 

classifiers, frequently by simple voting  

fFINAL(x) =sign[1/k Σ fi(x) ]



Boosting: Motivation
• Hard to design accurate classifier which generalizes well
• Easy to find many rule of thumb or weak classifiers

• a classifier is weak if it is slightly better than random guessing
• example: if an email has word “money” classify it as spam, otherwise  

classify it as not spam
• likely to be better than random guessing

• How combine weak classifiers to produce an accurate classifier?
• Question people have been working on since 1980’s
• Ada-Boost (1996)  was the first practical boosting algorithm

• Boosting
• Assign different weights to training samples in a “smart” way so that 

different classifiers pay more attention to different samples
• Weighted majority voting, the weight of individual classifier is 

proportional to its accuracy
• Ada-boost was influenced by bagging, and it is  superior to bagging



Ada Boost
• Assume 2-class problem, with labels +1 and -1

• yi in {-1,1} 

• Ada boost produces a discriminant function: 
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• Where ht(x) is a weak classifier, for example:

• The final classifier is the sign of the discriminant function 
ffinal(x) = sign[g(x)] 

( )


−= 1

1xht
if email has word “money”
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Idea Behind Ada Boost

• Algorithm is iterative
• Maintains distribution of weights over the training 

examples
• Initially weights are equal
• Main Idea: at successive iterations, the weight of 

misclassified examples is increased
• This forces the algorithm to concentrate on examples 

that have not been classified correctly so far



Idea Behind Ada Boost
• Examples of high weight are shown more often at later rounds
• Face/nonface classification problem:

Round 1
1/7 1/7 1/7 1/7 1/7 1/7 1/7

change weights: 1/16 1/4 1/16 1/16 1/4 1/16 1/4
   best weak classifier:

     best weak classifier:

1/8 1/32 11/32 1/2 1/8 1/32 1/32change weights:

Round 2



Idea Behind Ada Boost
Round 3

       

• out of all available weak classifiers, we choose the one 
that works best on the data we have at round 3

• we assume there is always a weak classifier better than 
random (better than 50% error)    

• image is half of the data given to the classifier
• chosen weak classifier has to classify this image correctly        



More Comments on Ada Boost

• Ada boost is simple to implement, provided you have 
an implementation of a “weak learner”

• Will work as long as the “basic” classifier ht(x) is at 
least slightly better than random 
• will work if the error rate of ht(x) is less than  0.5 
• 0.5 is the error rate of a random guessing  for a 2-class 

problem

• Can be applied to boost any classifier, not necessarily 
weak
• but there may be no benefits in boosting a “strong” classifier



Ada Boost for 2 Classes
Initialization step: for each example x, set 

Iteration step (for t = 1…T):
1. Find best weak classifier ht(x) using weights D(x)
2. Compute the error rate  εt as 
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3. compute weight αt of classifier  ht

αt = log ((1- εt)/ εt )
4. For each xi , D(xi) =D(xi)⋅exp(αt⋅I[yi ≠ ht(xi ) ])
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Ada Boost: Step 1
1. Find best weak classifier ht(x) using weights D(x)

• some classifiers accept weighted samples, but most don’t
• if classifier does not take weighted samples, sample from 

the training samples according to the distribution D(x)

1/16 1/4 1/16 1/16 1/4 1/16 1/4

• Draw k samples, each x with probability equal to D(x): 

re-sampled examples



1. Find best weak classifier ht(x) using weights D(x)

• To find the best weak classifier, go through all
weak classifiers, and find the one that gives the 
smallest error on the re-sampled examples

h1(x) h2(x) h3(x) hm(x) ……..…

errors: 0.46 0.36 0.16 0.43
the best classifier ht(x)
to choose at  iteration t

Ada Boost: Step 1

• Give to the classifier the re-sampled examples:

weak 
classifiers



2. Compute εt the error rate as 

• εt is the weight of all misclassified examples added
• the error rate is computed over original examples, not the 

re-sampled examples
• If a weak classifier is better than random, then εt < ½

1/16 1/4 1/16 1/16 1/4 1/16 1/4
   

16
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16
1
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Ada Boost: Step 2
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3. compute weight αt of classifier ht

αt = log ((1 – εt )/εt )

• Recall that  εt < ½
• Thus (1- ε t)/ εt > 1  ⇒ αt > 0
• The smaller is εt, the larger is αt, and thus the more 

importance (weight) classifier ht(x)  
final(x) =sign [ ∑ αt ht (x) ]

In example from previous slide: 
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Ada Boost: Step 3



4. For each xi , D(xi) =D(xi)⋅exp(αt⋅I[yi ≠ ht(xi ) ])

• weight of misclassified examples is increased

1/16 1/4 1/16 1/16 1/4 1/16 1/4
   

from previous slide αt = 0.8 

1/16

⇒

1/4

⇒

1/16

⇒ ⇒
(1/16) exp(0.8)

⇒
(1/4) exp(0.8)

1/16 1/4

⇒ ⇒

Ada Boost: Step 4



5. Normalize D(xi) so that  ∑D(xi) = 1

1/16 1/4 1/16 0.14 0.56 1/16 1/4

from previous slide: 

• after normalization

0.05 0.18 0.05 0.10 0.40 0.05 0.18

Ada Boost: Step 5



AdaBoost  Example

D

1x

2x

from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire

• Initialization: all examples have equal weights



AdaBoost Example
ROUND 1

( ) ( )11 3= xsignxh -
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AdaBoost Example

( ) ( )12 7= xsignxh -
7 1x

2x

ROUND 2

D

1x

2x



AdaBoost Example

1x

2x

4

( ) ( )423 −= xsignxh

ROUND 3



AdaBoost Example

ffinal (x)=

( )
( ) ( ) ( )( )4920+7650+3420

=

211 --- xsign.xsign.xsign.sign

xffinal

• note non-linear decision boundary



AdaBoost Comments

• Can show that training error drops exponentially fast

( )∑−≤
t ttrain expErr 22 γ

• Here γt = ε t – 1/2, where εt is classification error at 
round t  

• Example: let errors for the first four rounds be, 0.3, 
0.14, 0.06, 0.03, 0.01 respectively. Then
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AdaBoost Comments
• We are really interested in the generalization properties of  

fFINAL(x), not the training error
• AdaBoost was shown to have excellent generalization 

properties in practice
• the more rounds, the more complex is the final classifier, so overfitting 

is expected as the training proceeds 
• but in the beginning researchers observed no overfitting of the data
• It turns out it does overfit data eventually, if you run it really long

• It can be shown that boosting increases the margins of 
training examples, as iterations proceed
• larger margins help better generalization
• margins continue to increase even when training error reaches zero
• helps to explain empirically observed phenomena: test error continues 

to drop even after training error reaches zero



AdaBoost Example

+
+

+ -

-

-
+

+

+ -

-

-

• zero training error • zero training error
• larger margins helps 

better genarlization

keep

training

+

new (test) example

+



Margin Distribution

Iteration number 5 100 1000
training error 0.0 0.0 0.0
test error 8.4 3.3 3.1
%margins≤0.5 7.7 0.0 0.0
Minimum margin 0.14 0.52 0.55



Boosting As Additive Model

• The final prediction in boosting g(x) can be expressed 
as an additive expansion of individual classifiers
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• Typically we would try to minimize a loss function on 
the N training examples

• For example, under squared-error loss:
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fixed

fixed

Boosting As Additive Model
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• Under the squared difference loss function:

• Forward stage-wise optimization seems to produce 
classifier with better generalization, doing the process 
stagewise seems to overfit less quickly

);()()( 1 ttttt xfxgxg γα+= −

• Forward stage-wise modeling is iterative and fits the 
fk(x,γk) sequentially, fixing the results of previous 
iterations

model at 
iteration t

fit γt, αt to produce 
improved gt(x) 



Boosting As Additive Model

• It can be shown that AdaBoost uses forward stage-wise 
modeling under the following loss function:
• L(y, g (x)) = exp(-y ∙ g (x))  

• the exponential loss function

• At stage (or iteration) m, we fit:
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Exponential Loss vs. Squared Error Loss
• L(y, g (x)) = exp(-y ∙ g (x))

y ∙ g (x)
0-2 •-

1
1 2

• L(y, g (x)) = (y - g (x))2

1

SE loss

exponential loss

• Squared Error Loss penalizes classifications that are “too correct”, 
with  y ∙ g (x) >1, and thus it is inappropriate for classification

• Exponential loss encourages large margins, want y ∙ g (x) large

Loss



Logistic Regression Model

• It can be shown that Adaboost builds a logistic regression 
model:
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• It can also be shown that the the training error on 
the samples is at most:



Practical Advantages of AdaBoost

• Can construct arbitrarily complex decision 
regions

• Fast
• Simple
• Has only one parameter to tune, T
• Flexible: can be combined with any classifier 
• provably effective (assuming weak learner)

• shift in mind set: goal now is merely to find 
hypotheses that are better than random guessing



Caveats

• AdaBoost can fail if
• weak hypothesis too complex (overfitting)
• weak hypothesis too weak (γt→0 too quickly),

• underfitting

• empirically, AdaBoost seems especially 
susceptible to noise
• noise is the data with wrong labels
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