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Abstract

We address the problem of multiclass object detection.

Our aims are to enable models for new categories to ben-

efit from the detectors built previously for other categories,

and for the complexity of the multiclass system to grow sub-

linearly with the number of categories. To this end we intro-

duce a visual alphabet representation which can be learnt

incrementally, and explicitly shares boundary fragments

(contours) and spatial configurations (relation to centroid)

across object categories.

We develop a learning algorithm with the following

novel contributions: (i) AdaBoost is adapted to learn

jointly, based on shape features; (ii) a new learning sched-

ule enables incremental additions of new categories; and

(iii) the algorithm learns to detect objects (instead of cate-

gorizing images). Furthermore, we show that category sim-

ilarities can be predicted from the alphabet.

We obtain excellent experimental results on a variety of

complex categories over several visual aspects. We show

that the sharing of shape features not only reduces the num-

ber of features required per category, but also often im-

proves recognition performance, as compared to individual

detectors which are trained on a per-class basis.

1 Introduction

Many recent papers on object category recognition have

proposed models and learning methods where a new model

is learnt individually and independently for each object cat-

egory [1, 5, 10, 12]. In this paper we investigate how models

for multiple object categories, or for multiple visual aspects

of a single category, can be built incrementally so that new

models benefit from those created earlier. Such models and

methods are necessary if we are to achieve the long sought

after system that can recognize tens of thousands of cate-

gories: we do not want to be in a position where, in order

to add one more category (after number 10,000), we have to

retrain everything from scratch. Of course, the constraint is

that our recognition performance should at least equal that

of methods which learn object category models individu-

ally.

In this paper we concentrate on object models consisting

of an assembly of curve fragments. This choice is because

the curve fragments more closely represent the object shape

(than the more commonly used appearance patches [3, 10,

12]). This representation can be complemented by adding

appearance patches, though we do not investigate that here.

Our object model is similar to those of [13, 14, 15] and is

briefly reviewed in section 2.

We introduce a novel joint learning algorithm which is a

variation on that of Torralba et al. [16], where weak classi-

fiers are shared between classes. The principal differences

are that our algorithm allows incremental as well as joint

learning, and we can control the degree of sharing. Less

significant differences follow from the use of the bound-

ary fragment model [13] in that we learn an object detector

(rather than the classification of an image window, and de-

tection by scanning over the whole image as is done in [16]).

The main benefits of the approach, over individual learning

of category detectors, are: (i) that we need less training data

when sharing across categories; and (ii) that we are able

to add new categories incrementally making use of already

acquired knowledge.

Others have also used information from previously learnt

classes. For example, Fei-Fei et al. [4] used prior infor-

mation from previously learnt categories to train a gener-

ative probabilistic model for a novel class, and Bart and

Ullman [2] introduced a cross-generalization method where

useful patches for one category guide the search within the

pool of possible patches for a new, but similar, category.

Krempp et al. [9] have a similar objective of incremental

learning of categories and a shared alphabet. However, their

category model and learning algorithm differ substantially

from that proposed here.

A brief outline of the paper is as follows: we start with an

introduction of the BFM and show that we need to train only

a few relevant aspects per category. Next, we present the

incremental learning of the visual alphabet, which is shared

over categories. Similarly, our detectors are learnt incre-

mentally and can be shared. Finally, our experiments show
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that this sharing leads to a sublinear growth of required al-

phabet entries / detectors, but maintains excellent detection

performance.

2 The boundary fragment model (BFM)

We present a very brief overview of our previous work

which introduced a boundary fragment model (BFM) de-

tector (see [13] for details). The BFM consists of a set of

curve fragments representing the edges of the object, both

internal and external (silhouette), with additional geomet-

ric information about the object centroid (in the manner

of [10]). A BFM is learnt in two stages. First, random

boundary fragments γi are extracted from the training im-

ages. Then costs K(γi) are calculated for each fragment

on a validation set. Low costs are achieved for boundary

fragments that match well on the positive validation im-

ages, not so well on the negative ones, and have good cen-

troid predictions on the positive validation images. Second,

combinations of k = 2 boundary fragments are learnt as

weak detectors (not just classifiers) within an AdaBoost [6]

framework. Detecting instances of the object category in a

new test image is done by applying the weak detectors and

collecting their votes in a Hough voting space. An object

is detected if a mode (obtained using Mean-Shift mode esti-

mation) is above a detection threshold. Following the detec-

tion, boundary fragments that contributed to that mode are

backprojected into the test image and provide an object seg-

mentation. An overview of the detection method is shown

in figure 1.

Original Image All matched boundary
fragments Centroid Voting on a subset of the matched fragments

Backprojected MaximumSegmentation / Detection

Figure 1: Overview of object detection with the boundary

fragment model (BFM).

3 On multiple aspects

We want to enable an object to be detected over several

visual aspects. The BFM implicitly couples fragments via

the centroid, and so is not as flexible as, say, a “bag of”

features model where feature position is not constrained. In

this section we investigate qualitatively the tolerance of the

model to viewpoint change. The evaluation is carried out on

the ETH-80 dataset. This is a toy dataset (pun intended), but

is useful here for illustration because it contains image sets

of various instances of categories at controlled viewpoints.

We carry out the following experiment: a BFM is learnt

from instances of the cow category in side views. The

model is then used to detect cows in test images which vary

in two ways: (i) they contain cows (seven different object

instances) over varying viewpoints – object rotation about

a vertical and horizontal axis (see figure 2); (ii) they con-

tain instances of other categories (horses, apples, cars . . . ),

again over varying viewpoints.

Figure 2 shows the resulting Hough votes on the cen-

troid, averaged over the seven cow instances for a number

of rotations. It can be seen that the BFM is robust to signif-

icant viewpoint changes with the mode still clearly defined

(though elongated). The graph in figure 3 summarizes the

change in the detection response averaged over the different

cows or other objects under rotation about a vertical axis

(as in the top row of figure 2). Note that the cow detection

response is above that of other non-cow category objects.

The side-trained BFM can still discriminate the object class

based on detection responses with rotations up to 45 de-

grees in both directions. In summary: the BFM trained on

one visual aspect can correctly detect the object class over

a wide range of viewpoints, with little confusion with other

object classes. Similar results are obtained for BFM detec-

H:90,V:90 H:90,V:112 H:90,V:135 H:90,V:158 H:90,V:180 H:90,V:202 H:90,V:225 H:90,V:248 H:90,V:270

H:22,V:180 H:35,V:135 H:35,V:225 H:45,V:180 H:66,V:117 H:66,V:153 H:66,V:207 H:66,V:243 H:68,V:180

Figure 2: Robustness of the BFM to viewpoint changes un-

der rotations about a vertical (V) or horizontal (H) axis. Top

row: rotations about a vertical axis. Bottom row: rotations

about both vertical and horizontal. The viewpoint angles

are given above each image.

tors learnt for other object categories (e.g. horses), whilst

for some categories with greater invariance to viewpoint

(e.g. bottles) the response is even more stable. These re-

sults allow us to cut down the bi-infinite space of different

viewpoints to a few category relevant aspects. These as-

pects allow the object to be categorized and also to predict

its viewpoint.
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Figure 3: The detection response of a BFM trained on cows-

side, and tested on cows rotated about a vertical axis and on

other objects.

4 Learning the shape based alphabet incre-

mentally

In this section we describe how the basic alphabet is as-

sembled for a set of classes. Each entry in the alphabet

consists of three elements: (i) a curve fragment, (ii) asso-

ciated vectors specifying the object’s centroid, and (iii) the

set of categories to which the vectors apply. The alphabet

can be enlarged in two ways: (i) adding additional curve

fragments, or (ii) adding additional vectors to existing curve

fragments – so that a fragment can vote for additional ob-

ject’s centroids. Pairs of curve fragments are used to con-

struct the weak detectors of section 5.

We start from a set of boundary fragments for each cat-

egory. This set is obtained from the fragment extraction

stage (see section 2 or [13]) by choosing fragments whose

costs on the validation set of the category are below a given

threshold thK . Typically this threshold is chosen so that

there are about 100 fragments available per category. Our

aim is to learn a common alphabet from these pooled indi-

vidual sets that is suitable for all the categories one wants to

learn.

4.1 Building the alphabet and sharing of
boundary fragments

In a sequential way each boundary fragment from each

category is compared (using Chamfer distance) to all exist-

ing alphabet entries. If the distance to a certain alphabet

entry is below a similarity threshold thsim, the geometric

information (for the centroid vote) is updated. If the exist-

ing alphabet entry originates from another category than the

boundary fragment we are currently processing, we also up-

date the information for which categories this entry is suit-

able. This is the first case where boundary fragments are

shared. This sharing is just based on the boundary fragment

similarity.

But there is more information that can be used for shar-

ing. The second possibility of sharing is achieved by eval-

uating each boundary fragment on the validation sets of all

other categories. This results in average matching costs of

the boundary fragment on all these other categories. These

costs indicate how suitable the boundary fragment is for

each of the other categories. The straight forward way

of sharing is now that each alphabet entry whose bound-

ary fragment has costs below thK on a certain category

is also shared for that category. However, costs are low if

the boundary fragment matches well on the validation im-

ages of that category and gives a reliable centroid predic-

tion. The final possibility of sharing is where the boundary

fragment matches well, but additional centroid vectors are

associated for the fragment for the new category. Figure 4

shows an example of a boundary fragment extracted from

one category also matching on images of another class (or

aspect). The first column shows the original boundary frag-

ment (in red/bold) on the training image from which it was

learnt (green/bold cross showing the true object centroid,

and blue/bold the centroid vote of this boundary fragment).

The other columns show sharing on another category (first

row), and within aspects of the same category (second row).

Note, that we share the curve fragment and update the geo-

metric information.

Figure 4: Sharing of boundary fragments over categories

(first row) and aspects (second row).

4.2 Class similarities on the alphabet level

We now have alphabet entries for a number of classes.

Using this information we can preview class similarities be-

fore training the final detector. A class similarity matrix is

calculated where each element is a count of the number of

alphabet entries in common between the classes. In turn,

the classes can be agglomeratively clustered based on their

similarity. For this clustering the normalized columns of

the similarity matrix provide feature vectors and Euclidean

distance is used as a distance measure. An example similar-

0-7695-2646-2/06 $20.00 (c) 2006 IEEE



ity matrix and dendrogram (representing the clustering) are

shown in figures 8(a) and (b) respectively.

5 Incremental Joint-Adaboost Learning

In this section we describe the new Adaboost based algo-

rithm for learning the strong object detectors. It is designed

to scale well for many categories and to enable incremen-

tal and/or joint learning. It has to do two jobs: (i) select

pairs of fragments to form the weak detectors (see section

2); and (ii) select weak detectors to form the strong detector

for each object category. Sharing occurs at two levels: first,

at the alphabet level where an alphabet entry may be ap-

plicable to several categories; second, at the weak detector

level, where weak detectors are shared across strong detec-

tors.

The algorithm can operate in two modes: either joint

learning (as in [16]); or incremental learning. In both cases

our aim is a reduction in the total number of weak detectors

required compared to independently learning each class.

For C classes this gain can be measured by
∑C

i=1 Tci
− Ts

(as suggested in [16]) where Tci
is the number of weak de-

tectors required for each class trained separately (to achieve

a certain error on the validation set) and Ts is the number of

weak detectors required when sharing is used. In the sepa-

rate training case this sum is O(C), whereas in the sharing

case it should grow sub-linearly with the number of classes.

The algorithm optimizes an error rate En over all classes.

Joint learning: involves for each iteration searching for

the weak detector for a subset Sn ∈ C that has the lowest

accumulated error En on all classes C. Subsets might be

e.g. S1 = {c2} or S3 = {c1, c2, c4}. A weak detector only

fits for a category if ǫci on this category ci is below 0.5 (and

is rejected otherwise). En is the sum of all class specific

errors ǫci if ci ∈ Sn and a penalty error ǫp (0.6 in our im-

plementation) otherwise. Searching for a minimum of En

over a set of subsets Sn guides the learning towards sharing

weak detectors over several categories. We give a brief ex-

ample of that behavior: imagine we learn three categories,

c1, c2 and c3. There is one weak detector with ǫc1 = 0.1 but

this weak detector does not fit any other category (ǫc2 > 0.5
and ǫc3 > 0.5). Another weak detector can be found with

ǫc1 = 0.2, ǫc2 = 0.4 and ǫc3 = 0.4. In this case the al-

gorithm would select the second weak detector as its accu-

mulated error of En = 1.0 is smaller than the error of the

first weak detector of En = 1.3 (note that for each category

not shared ǫp is added). This makes the measure En useful

to find detectors that are suitable for both distinguishing a

class from the background, and for distinguishing a class

from other classes. Clearly, the amount of sharing is influ-

enced by the parameter ǫp which enables us to control the

degree of sharing in this algorithm. Instead of exploring all

2C − 1 possible subsets Sn of the jointly trained classes C,

we employ the maximally greedy strategy from [16]. This

starts with the first class that achieves alone the lowest er-

ror on the validation set, and then incrementally adds the

next class with the lowest training error. The combination

which achieves the best overall detection performance over

all classes is then selected. [16] showed that this approxi-

mation does not reduce the performance much.

Incremental learning: implements the following idea:

suppose our model was jointly trained on a set of cate-

gories CL = {c1, c2, c3}. Hence the “knowledge” learnt

is contained in a set of three strong detectors HL =
{H1, H2,H3} which are composed from a set of weak de-

tectors hL. The number of these weak detectors depends

on the degree of sharing and is defined as Ts ≤
∑C

i=1 Tci

(C = 3 here). Now we want to use this existing informa-

tion to learn a detector for a new class cnew (or classes) in-

crementally. To achieve this, one can search already learnt

weak detectors hL to see whether they are also suitable

(ǫcnew < 0.5) for the new class. If so, these existing weak

detectors are also used to form a detector for the new cate-

gory and only a reduced number of new weak detectors have

to be learnt using the joint learning procedure. Note that

joint and incremental training reduces to standard Boosting

if there is only one category.

Weak detectors: are formed from pairs of fragments.

The possible combinations of k fragments define the fea-

ture pool (the size of this set is the binomial coefficient

of k and the number of alphabet entries). This means for

each sharing of each iteration we must search over all these

possibilities to find our best weak detector. We can reduce

the size of this feature pool by using only combinations of

boundary fragments which can be shared over the same cat-

egories as candidates for weak detectors. E.g. it does not

make much sense to test a weak detector which is combined

from a boundary fragment representing a horses leg and one

that represents a bicycle wheel if the boundary horses leg

never matches in the bike images.

Details of the algorithm: The algorithm is summarized

in figure 5. We train on C different classes where each class

ci consists of Nci
validation images, and a set of Nbg back-

ground validation images (which are shared for all classes

and are labeled ℓ0i ). The total number of validation im-

ages for all classes and background is denoted by N . The

weights are initialized for each class separately. This re-

sults in a weight vector wc
i of length N for each class ci,

normalized with respect to the varying number of positive

validation images Nci
. In each iteration a weak detector

for a subset Sn is learnt. To encourage the algorithm to fo-

cus also on the categories which were not included in Sn
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we vary the weights of these categories slightly for the next

iteration (ǫc = p, ∀c /∈ Sn, with p = 0.47 in our implemen-

tation).

Input: Validation images (I1, ℓ01), . . . , (IN , ℓC
N ),

ℓc
i ∈ {C,−1}, N = Nbg +

PC
i=1 Nci

.

Initialization: Set the weight matrices wc
i :

wc
i =

8

<

:

1
2Nci

if ℓi = c.
1

2(Nbg+
PC

i=1,ci 6=ℓi
Nci

)
else

Learn incrementally:

For ci = 1 : C
For hL(I, Sn) ∈ HL(I, c)

if ǫci < 0.5: hL = hL(I, Sn ∩ ci), update wc
i , t = t + 1

Tci
= Tci

+ 1

For t = 1, ..., Tmax

1. For n = 1, 2, ..,
C(C+1)

2

(a) Find the best weak detector ht(I, Sn) w.r.t.

the weights wSn
i

.

(b) Evaluate error:

En =


PC

c ǫc if ǫc < 1
2 , ∀c ∈ Sn

C else

with ǫc =

8

<

:

PN
i=1 wc

i
·( 1

2
(ℓc

i
−ht(Ii,Sn))2)

PN
i=1

wc
i

if ℓi ∈ Sn,

ǫp otherwise.

2. Get best sharing by selecting: n = argminnEn

and pick corresponding ht, Sn

3. Update additive model and weights:

H(I, c) = H(I, c) + αtht(I, Sn)

wc
i ← wc

i · αℓc
i

ht(Ii,c)

with αt = 1
2 log

“

1−ǫc

ǫc

”

, and ǫc = p for c /∈ Sn

4. Update Tci
, and if Tci

≥ T ∀ci → STOP

Figure 5: Incremental joint-Adaboost learning algorithm.

6 Experiments

We will measure detector performance in two ways: first,

by applying the detector to a category specific test set (posi-

tive images vs. background). The measure used is the Recall

Precision Curve (RPC)-equal-error rate. This rate is com-

monly used for detection and pays respect to false positive

detections (see [1] for more details); second, by a confusion

table computed on a multi-class testset. Note that a detec-

tion is correct if
area(boxpred∩boxgt)
area(boxpred∪boxgt)

≥ 0.5, with boxpred

being the predicted bounding box and boxgt the bounding

box denoting the ground truth.

The detectors are trained in three ways: (i) independently

using the category’s validation set (images with the object,

and background images); (ii) jointly over multiple cate-

gories; and (iii) incrementally. We compare performance,

learning complexity, and efficiency of the final strong de-

tectors over these three methods.

For all experiments training is over a fixed number of

weak detectors T = 100 per class (for C classes the max-

imum number of weak detectors is Tmax = T · C). This

means we are not searching and comparing the learning ef-

fort for a certain error rate (as is done in [16]), but we re-

port the RPC-equal-error-rate for a certain learning effort

(namely T weak detectors). Keeping track of the training

error is more difficult in our model, as we detect in the

Hough voting space manner of [13] instead of classifying

subwindows like [16].

The experiments are organized as follows: First we

briefly explain how the detection procedure works for the

multi-class case. Then we specify the used data, and show

results on the plain alphabet followed by a comparison of

incremental and joint learning. Finally we present results of

learning many categories independently or jointly.

Detection algorithm: For a test image our task is to de-

tect one or more objects from C classes. This is carried

out by the standard detection procedure (see section 2, and

for details [13]) extended to the multi-class case. All weak

detectors trained for the C classes are applied to the test im-

age. For each class we then manage a separate Hough vot-

ing space and add votes for all weak detectors that matched

on that image and are shared by that category (included in

the strong detector for that category). Finally, we search

each of the voting spaces for maxima and detect an object

of class ci if there is a maximum in the corresponding vot-

ing space above threshold.

Dataset: we have combined different categories from sev-

eral available datasets (at [8]) together with new images

from Google Image Search, in order to assemble a dataset

containing 17 categories of varying complexity and aspect.

Figure 6 overviews the dataset, giving an example image for

each of the 17 categories. Table 1 summarizes the data used

for training, validation and testing.

We use the same test set as [5] for the first four cate-

gories so that our performance can be compared to others

(although fewer training images are used). The same is

done for category 11 (CowSide) so that performance can

be compared with [10]. For the other categories we are not

directly comparable as subsets of the training and test data

have been selected. As background images we used a sub-

set of the background images used in [5] and [12] (the same

number of background as positive training images). To de-

termine to what extent the model confuses categories, we

select a multiclass test dataset M which consists of the first

10 test images from each category1.

The alphabet: Figure 7 shows entries of the alphabet

trained on horses only. This nicely illustrates the different

properties of each entry: shape and geometric information

for the centroid. When we train on 17 categories each of the

1The whole dataset is available at [7].
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Figure 6: Example images of the 17 different categories (or aspects) used in the experiments.

C Name train val test source

1 Plane 50 50 400 Caltech [5]

2 CarRear 50 50 400 Caltech [5]

3 Motorbike 50 50 400 Caltech [5]

4 Face 50 50 217 Caltech [5]

5 BikeSide 45 45 53 Graz02 [12]

6 BikeRear 15 15 16 Graz02 [12]

7 BikeFront 10 10 12 Graz02 [12]

8 Cars2-3Rear 17 17 18 Graz02 [12]

9 CarsFront 20 20 20 Graz02 [12]

10 Bottles 24 30 64 ImgGoogle [13]

11 CowSide 20 25 65 [11]

12 HorseSide 30 25 96 ImgGoogle

13 HorseFront 22 22 23 ImgGoogle

14 CowFront 17 17 17 ImgGoogle

15 Person 19 20 19 Graz02 [12]

16 Mug 15 15 15 ImgGoogle

17 Cup 16 15 16 ImgGoogle

Table 1: The number of training, validation and test images.

alphabet entries is on average shared over approximately 5
categories. The alphabet can be used to take a first glance

at class similarities. Figures 8(a) and (b) show the results

of the procedure described in section 4.2. The correlations

visible in the similarity matrix are due to alphabet entries

that can be shared over categories. The dendrogram for the

17 categories shows some intuitive similarities (e.g. for the

CarRear and CarFront classes).

Incremental learning: Here we investigate our incre-

mental learning at the alphabet level, and on the number

of weak detectors used. We compare its sharing abilities

to independent and joint learning. A new category can be

learnt incrementally, as soon as one or more categories have

already been learnt. This saves the effort of a complete re-

training procedure, but only the new category will be able to

share weak detectors with previously learnt categories, not

the other way round. However, with an increasing number

of already learnt categories the pool of learnt weak detec-

tors will enlarge and give a good basis to select shareable

weak detectors for the new unfamiliar category. We thus

can expect a sublinearly growing number of weak detec-

Figure 7: Example alphabet entries from learning only

horses. Each column shows the shape of the boundary

fragment (top), the associated centroid vector for this entry

(middle), and the training image where the boundary frag-

ment (shown in red/bold) was extracted.

tors when adding categories incrementally. The more sim-

ilar categories are already known the more can be shared.

This can be confirmed by a simple experiment where the

category HorseSide is incrementally learnt, based on the

previous knowledge of an already learnt category CowSide,

showing that 18 weak detectors are shared. In comparison,

the joint learning shares a total of 32 detectors (CowSide

also benefits from HorseSide features). For the 17 cate-

gories incremental learning shows its advantage at the al-

phabet level. We observe (see figure 8(c)) that the alphabet

requires only 779 entries (worst case approximately 1700
for our choice of the threshold thK , giving roughly a set of

100 boundary fragments per category).

Figure 8(c) shows the increase in number of shared weak

detectors, when a number of new categories are added in-

crementally, one category at a time. Assuming we do learn

100 weak detectors per category the number of the worst

case (1700) can be reduced to 1116 by incremental learn-

ing. Learning all categories jointly reduces the number of

used weak detectors even further to 623. However, a major

advantage of the incremental approach is the significantly

reduced computational complexity. While the joint learn-

ing with I validation images requires O(2CI) steps for each

weak detector, incremental learning has a complexity of

only O(hLI) for those weak classifiers (from already learnt
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Figure 8: (a) Similarity matrix of alphabet entries for the different categories (brighter is more similar). (b) Dendrogram

generated from this similarity matrix. (c) The increase in the number of alphabet entries and weak detectors when adding

new classes incrementally or training a set of classes jointly. The values are compared to the worst case (linear growth,

dotted line). For weak detectors the worst case is training independent and given by (
∑C

i=1 Tci
), and for the alphabet we

approximate the worst case by assuming an addition of 100 boundary fragments per category. Classes are taken sequentially

(Planes(1), CarRear(2), Motorbike(3), ...). Note the sublinear growth. (d) Error averaged for 6 categories (Planes, CarRear,

Motorbike, Face, BikeSide and HorseSide) either learnt independently or jointly with a varying number of training images

per category.

weak classifiers) that can be shared. One could use the in-

formation from the dendrogram from figure 8(b) to find out

the optimal order of the classes for the incremental learning,

but this is future work.

Joint learning: First we learn detectors for different

aspects of cows, namely the categories CowSide and

CowFront independently, and then compare this perfor-

mance with joint learning. For CowSide the RPC-equal-

error is 0% for both cases. For CowFront the error is re-

duced from 18% (independent learning) to 12% (joint learn-

ing). At the same time the number of learnt weak hypothe-

ses is reduced from 200 to 171. We have carried out a sim-

ilar comparison for horses which again shows the same be-

havior. This is due to the reuse of some information gath-

ered from the side aspect images to detect instances from

the front. Information that is shared here are e.g. legs,

or parts of the head. This is precisely what the algorithm

should achieve – fewer weak detectors with the same or a

superior performance. The joint algorithm has the opportu-

nity of selecting and sharing a weak detector that can sep-

arate both classes from the background. This only has to

be done once. On the other hand, the independent learning

does not have this opportunity, and so has to find such a

weak detector for each class.

In figure 8(d) we show that joint learning can achieve

better performance with less training data as a result of shar-

ing information over several categories (we use 6 categories

in this specific experiment).

Finally we focus on many categories, and compare in-

dependent learning performance to that achieved by learn-

ing jointly. Table 2 shows the detection results on the cat-

egories test set (category images and background images),

denoted by T and on the multiclass test set (M) for both

cases. It also gives comparisons to some other methods that

used this data in the single category case where we used the

same test data. The joint learning procedure does not sig-

nificantly reduce the detection error (although we gain more

than we loose), but we gain in requiring just 623 weak de-

tectors instead of the straightforward 1700 (i.e. 100 times

the number of classes for independent learning). Errors are

more often because of false positives than false negatives.

We are superior or similar in our performance compared to

state-of-the-art approaches (note that classification is easier

than detection) as shown in table 2. Looking at the multi-

class case (I, M, and J, M, in error per image), we obtain

comparable error rates for independent and joint learning.

Figure 9 shows examples of weak detectors learnt in this

experiment, and their sharing over various categories.

7 Discussion

It is worth comparing our algorithm and results to that

of Torralba et al. [16]. We have used AdaBoost instead of

GentleBoost (used in [16]) as in experiments it gave supe-

rior performance and proofed that it is more suitable for our

type of weak detectors. Compared to [16] we share signif-

icantly fewer entries as they have a 4-fold reduction, com-

pared to our 2-fold reduction. This is mainly caused by their

type of basic features which are much less complex and thus

more common over different categories than ours.

Initial experiments show that a combination of our model

with appearance patches increases the detection perfor-

mance, but this is the subject of future work.
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Class Plane CarR Mb Face B-S B-R B-F Car23 CarF Bottle CowS H-S H-F CowF Pers. Mug Cup

Ref.
6.3 6.1 7.6 6.0 0.0

[5],C [10],D [15],D [15],D [10],D

I,T 7.4 2.3 4.4 3.6 28.0 25.0 41.7 12.5 10.0 9.0 0.0 8.2 13.8 18.0 47.4 6.7 18.8

J,T 7.4 3.2 3.9 3.7 22.4 20.8 31.3 12.5 7.6 10.7 0.0 7.8 11.5 12.0 42.0 6.7 12.5

I,M 1.1 7.0 6.2 1.4 10.3 7.7 8.5 5.2 7.6 7.1 1.6 10.0 8.2 9.5 29.1 5.1 8.0

J,M 1.5 4.3 4.5 1.6 8.9 5.9 7.7 3.8 8.5 6.1 1.3 11.0 4.7 6.8 27.7 5.8 8.3

Table 2: Detection results. In the first row we compare categories to previously published results. We distinguish between

detection D (RPC-eq.-err.) and classification C (ROC-eq.err.). Then we compare our model, either trained by the independent

method (I) or by the joint (J) method, and tested on the class test set T or the multiclass test set M. On the multiclass set

we count the best detection in an image (over all classes) as the object category. The abbreviations are: B=Bike, H=Horse,

Mb=Motorbike, F=Front, R=Rear, S=Side.
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Figure 9: Examples of weak detectors that have been learnt for the whole dataset (resized to the same width for this illus-

tration). The black rectangles indicate which classes share a detector. Rather basic structures are shared over many classes

(e.g. column 2). Similar classes (e.g. rows 5, 6, 7) share more specific weak detectors (e.g. column 12, indicated by the arrow,

where parts of the bike’s wheel are shared).
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