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Abstract. We introduce a new descriptor for images which allows the
construction of efficient and compact classifiers with good accuracy on
object category recognition. The descriptor is the output of a large num-
ber of weakly trained object category classifiers on the image. The trained
categories are selected from an ontology of visual concepts, but the in-
tention is not to encode an explicit decomposition of the scene. Rather,
we accept that existing object category classifiers often encode not the
category per se but ancillary image characteristics; and that these ancil-
lary characteristics can combine to represent visual classes unrelated to
the constituent categories’ semantic meanings.

The advantage of this descriptor is that it allows object-category
queries to be made against image databases using efficient classifiers (ef-
ficient at test time) such as linear support vector machines, and allows
these queries to be for novel categories. Even when the representation
is reduced to 200 bytes per image, classification accuracy on object cat-
egory recognition is comparable with the state of the art (36% versus
42%), but at orders of magnitude lower computational cost.

1 Introduction

The accuracy of object category recognition is improving rapidly, particularly
if the goal is to retrieve or label images where the category of interest is the
primary subject of the image. However, existing techniques do not scale well to
searching in large image collections. This paper identifies three requirements for
such scaling, and proposes a new descriptor which satisfies them.

We suggest that interesting large-scale applications must recognize novel
categories. This means that a new category can be presented as a set of train-
ing images, and a classifier learned from these new images can be run efficiently
against the large database. Note that kernel-based classifiers, which represent the
current state of the art, do not satisfy this requirement because the (kernelized)
distance between each database image and (a subset of) the novel training im-
ages must be computed. Without the novel-category requirement, the problem is
trivial—the search results can be precomputed by running the known category
detector on each database image at ingestion time, and storing the results as
inverted files.
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Table 1. Highly weighted classemes. Five classemes with the highest LP-β weights
for the retrieval experiment, for a selection of Caltech 256 categories. Some may appear
to make semantic sense, but it should be emphasized that our goal is simply to create
a useful feature vector, not to assign semantic labels. The somewhat peculiar classeme
labels reflect the ontology used as a source of base categories.

New category Highly weighted classemes 

cowboy-hat helmet sports_ track cake_ pan collectible muffin_ pan 

duck bomber_ plane body_ of_ water swimmer walking straight 

elk figure_ skater bull_ male_ herd_ 
animal cattle gravesite dead_ body 

frisbee watercraft_ surface scsi_ cable alarm_ clock hindu serving_ tray 

trilobite-101 convex_ thing mined_ area cdplayer roasting_ pan western_ hemisphere_ 
person 

wheelbarrow taking_ care_ of_ 
something baggage_ porter canopy_ closure_ open rowing_ shell container_ pressure_ 

barrier 

Large-scale recognition benefits from a compact descriptor for each image,
for example allowing databases to be stored in memory rather than on disk. The
descriptor we propose is 2 orders of magnitude more compact than the state of
the art, at the cost of a small drop in accuracy. In particular, performance of the
state of the art with 15 training examples is comparable to our most compact
descriptor with 30 training examples.

The ideal descriptor also provides good results with simple classifiers, such
as linear SVMs, decision trees, or tf-idf, as these can be implemented to run
efficiently on large databases.

Although a number of systems satisfy these desiderata for object instance
or place recognition [18,9] or for whole scene recognition [26], we argue that
no existing system has addressed these requirements in the context of object
category recognition.

The system we propose is a form of classifier combination, the components of
the proposed descriptor are the outputs of a set of predefined category-specific
classifiers applied to the image. The obvious (but only partially correct) intu-
ition is that a novel category, say duck, will be expressed in terms of the outputs
of base classifiers (which we call “classemes”), describing either objects similar
to ducks, or objects seen in conjunction with ducks. Because these base classi-
fier outputs provide a rich coding of the image, simple classifiers such as linear
SVMs can approach state-of-the art accuracy, satisfying the requirements listed
above. However, the reason this descriptor will work is slightly more subtle. It is
not required or expected that these base categories will provide useful semantic
labels, of the form water, sky, grass, beak. On the contrary, we work on the
assumption that modern category recognizers are essentially quite dumb; so a
swimmer recognizer looks mainly for water texture, and the bomber�plane rec-
ognizer contains some tuning for “C” shapes corresponding to the airplane nose,
and perhaps the “V” shapes at the wing and tail. Even if these recognizers are
perhaps overspecialized for recognition of their nominal category, they can still
provide useful building blocks to the learning algorithm that learns to recognize
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the novel class duck. Table 1 lists some highly-weighted classemes used to de-
scribe an arbitrarily selected subset of the Caltech256 categories. Each row of
the table may be viewed as expressing the category as a weighted sum of build-
ing blocks; however the true building blocks are not the classeme labels that
we can see, but their underlying dumb components, which we cannot. To com-
plete the duck example, it is a combination of body�of�water, bomber�plane,
swimmer, as well as walking and straight. To gain an intuition as to what
these categories actually represent, Figure 1 shows the training sets for the lat-
ter two. Examining the training images, we suggest that walking may represent
“inverted V outdoors” and straight might correspond to “clutter and faces”.

2 Background

Before describing the details of the system, and experimental investigations, we
shall briefly summarize related literature, and discuss how existing systems fit
the requirements.

The closest existing approach is probably image representation via attributes
[5,11]. Here object categories are described by a set of boolean attributes, such
as “has beak”, “no tail”, “near water”. Classifiers for these attributes are built
by acquiring labels using Amazon’s Mechanical Turk. In contrast, we do not
design our attributes to have specific semantic meanings, but expect meaning to
emerge from intersections of properties, and we obtain training data directly from
web image search without human cleanup. Furthermore, prior attribute-based
methods have relied on a “zero-shot” learning approach: instead of learning a
classifier for a novel category from training examples, a user designs the classifier
by listing attributes, limiting such systems to categories for which humans can
easily extract attributes, and increasing the workload on the user even for such
categories.

Our approach is also evocative of Malisiewicz and Efros’s “Recognition by
Association” [14], in which object classes are represented by sets of object in-
stances to which they are associated. In contrast, we represent object classes as
a combination of other object classes to which they are related. This change of
viewpoint allows us to use the powerful classifiers produced by recent advances
in object category recognition.

Because we represent images by a (relatively) low-dimensional feature vector,
our approach is related to dimensionality reduction techniques exemplified by
semantic hashing [20,26]. These data-driven techniques find low-dimensional,
typically nonlinear, projections of a large feature vector representing each image,
such that the low-dimensional vectors are an effective proxy for the original.
These techniques can achieve tremendous compressions of the image (for example
to 64 bits [26]), but are of course correspondingly lossy, and have not been shown
to be able to retain category-level information.

It is also useful to make a comparison to systems which, while less related in
form, represent the state of the art in object category recognition. The assess-
ment is thus in terms of how far the existing systems meet the requirements we
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Fig. 1. Classeme training images. A subset of the training images for two of the
2659 classemes: walking, and straight. The top 150 training images are downloaded
from Bing image search with no filtering or reranking. As discussed in the text, we do
not require classeme categories to have a semantic relationship with the novel class;
but to contain some building blocks useful for classification.
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have set out. In the discussion below, let N be the size of the test set (i.e. the
image database, which may in principle be very large). Let n be the number
of images in the training set, typically in the range 5 − 100 per class. Let d be
the dimensionality of the representation stored for each image. For example, if
a histogram of visual words is stored, d is the minimum of the number of words
detected per image and the vocabulary size. For a GIST descriptor [19], d is of
the order of 1000. For multiple-kernel techniques [6], d might be of the order
of 20, 000. For the system in this paper, d can be as low as 1500, while still
leveraging all the descriptors used in the multiple-kernel technique. Note that
although we shall later be specific about the number of bits per element of d,
this is not required for the current discussion.

Boiman et al. [2] shows one of the most intriguing results on the Caltech 256
benchmark: a nearest-neighbour-like classifier on low-level feature descriptors
produces excellent performance, especially with small training sets. Its training
cost is effectively zero: assemble a bag of descriptors from the supplied training
images (although one might consider building a kd-tree or other spatial data
structure to represent large training sets). However, the test-time algorithm re-
quires that each descriptor in the test image be compared to the bag of descrip-
tors representing the class, which has complexity O(nd). It may be possible to
build a kd-tree for the test set, and reverse the nearest-neighbor lookups, but
the metric is quite asymmetric, so it is not at all clear that this will preserve the
properties of the method.

Gehler and Nowozin [6] represents the state of the art in classification accuracy
on the Caltech 256 benchmarks, using a kernel combination classifier. However,
training this classifier is expensive, and more importantly, test-time evaluation
requires that several kernels be evaluated between each test image and several
images of the training set. Note that these kernels cannot be precomputed, be-
cause in our problem the training set is different for every new query. Therefore
the complexity is again O(nd), but with large d, and a relatively large constant
compared to the nearest-neighbor approach.

Another class of related techniques is the use of classifier combination other
than multiple-kernel approaches. Zehnder et al. [27] build a classifier cascade
which encourages feature sharing, but again requires the set of classes to be
predefined, as is true for Griffin and Perona [7] and Torralba et al. [23]. Heitz et
al. [8] propose to learn a general cascade similar to ours (although with a different
goal), but our approach simplifies training by pre-training the first layer, and
simplifies test by successfully working with simple top-layer classifiers.

3 Method Overview

Our approach is now described precisely, but briefly, with more details supplied in
§4. There are two distinct stages: once-only classeme learning; followed by any
number of object-category-related learning tasks. Note that there are distinct
training sets in each of the two stages.
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3.1 Classeme Learning

A set of C category labels is drawn from an appropriate term list. For each
category c ∈ {1..C}, a set of training images is gathered by issuing a query on
the category label to an image search engine.

A one-versus-all classifier φc is trained for each category. The classifier output
is real-valued, and is such that φc(x) > φc(y) implies that x is more similar to
class c than y is. Given an image x, then, the feature vector (descriptor) used
to represent x is the classeme vector f(x) = [φ1(x), . . . , φC(x)].

Given the classeme vectors for all training images, it may be desired to per-
form some feature selection on the descriptors. We shall assume this has been
done in the sequel, and simply write the classeme vector in terms of a reduced
dimensionality d ≤ C, so f(x) = [φ1(x), . . . , φd(x)]. Where d is not specified it
may be assumed that d = C.

Given the parameters of the φc, the training examples used to create the
classemes may be discarded. We denote by Φ the set of functions {φc}d

c=1, which
encapsulates the output of the classeme learning, and properly we shall write
f(x) = f(x; Φ).

3.2 Using the Classemes

Given Φ, the rest of our approach is conventional. A typical situation might be
that a new object category, or set of categories, is defined by a set of training
images (note again that this is a new set of training images, unrelated to those
used to build Φ). The training images are converted to classeme vectors, and
then any classifier can be trained taking the classeme vectors as input. As we
show in experiments, the features are sufficiently powerful that simple and fast
classifiers applied to the classemes can give accuracies commensurate with much
more expensive classifiers applied to the low-level image features. Useful candi-
date classifiers might be those which make a sparse linear combination of input
features, so that test cost is a small fraction of d per image; or predicate-based
classifiers so that test images with nonzero score can be retrieved rapidly using
inverted files [18,24], achieving test complexity sublinear in N , the size of the
test set.

4 Further Details

Several details are now expanded.

4.1 Selecting Category Labels

The set of category labels used to build the classemes should consist primar-
ily of visual concepts. This will include concrete nouns, but may also include
more abstract concepts such as “person working”. Although we know of no gen-
eral rules for category selection, the category labels should probably be chosen
to be representative of the type of applications in which one plans to use the
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descriptors. As we considered general-category image search as a target appli-
cation domain, we selected concepts from the Large Scale Concept Ontology for
Multimedia (LSCOM) [17]. The LSCOM categories were developed specifically
for multimedia annotation and retrieval, and have been used in the TRECVID
video retrieval series. This ontology includes concepts selected to be useful, ob-
servable and feasible for automatic detection, and as such are likely to form a
good basis for image retrieval and object recognition tasks. We took the LSCOM
CYC ontology dated 2006-06-30 [13], which contains 2832 unique categories. We
removed 97 categories denoting abstract groups of other categories (marked in
angle brackets in [13]), and then removed plural categories that also occurred
as singulars, and some people-related categories which were effectively near-
duplicates, and arrived at C = 2659 categories. Some examples have already
been seen in table 1. We were conservative in removing categories because, as
discussed in the introduction, it is not easy to predict a priori what categories
will be useful.

4.2 Gathering Category Training Data

For each category label, a set of training images was gathered by taking the
top 150 images from the bing.com image search engine. For a general appli-
cation these examples would not need to be manually filtered in any way, but
in order to perform fair comparisons against the Caltech image database, near
duplicates of images in that database were removed by a human-supervised pro-
cess. Conversely, we did not remove overlap between the classeme terms and the
Caltech categories (28 categories overlap, see supplementary data on [25]), as a
general-purpose system can expect to see overlap on a small number of queries.
However, we do include one test (CsvmN, figure 2) which shows no significant
drop in performance by removing these terms.

4.3 Learning Classifiers φc

The learning algorithm used for the φ(·) is the LP-β kernel combiner of Gehler
and Nowozin [6]. They used 39 kernels, but we reduced this to 13 for experi-
mentation. We employed kernels defined in terms of χ2 distance between feature
vectors, i.e. k(x, x′) = exp(−χ2(x, x′)/γ), using the following 13 feature types:

– Kernel 1: Color GIST, d1 = 960. The GIST descriptor [19] is applied to color
images. The images were resized to 32× 32 (aspect ratio is not maintained),
and then orientation histograms were computed on a 4×4 grid. Three scales
were used with the number of orientations per scale being 8, 8, 4.

– Kernels 2-5: Pyramid of Histograms of Oriented Gradients, d2..5 = 1700.
The PHOG descriptor [4] is computed using 20 bins at four spatial pyramid
scales.

– Kernels 6-9: PHOG (2π unwrapped), d6..9 = 3400. These features are ob-
tained by using unoriented gradients quantized into 40 bins at four spatial
pyramid scales.

bing.com
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– Kernels 10-12: Pyramid self-similarity, d10..12 = 6300. The Shechtman and
Irani self-similarity descriptor [21] was computed as described by Bosch [3].
This gives a 30-dimensional descriptor at every 5th pixel. We quantized these
descriptors into 300 clusters using k-means, and a pyramid histogram was
recorded with three spatial pyramid levels.

– Kernel 13: Bag of words. d13 = 5000. SIFT descriptors [12] were computed at
interest points detected with the Hessian-Affine detector [16]. These descrip-
tors were then quantized using a vocabulary of size 5000, and accumulated
in a sparse histogram.

A binary LP-β classifier was trained for each classeme, using a setup following
the one described in section 7 of [6] in terms of kernel functions, kernel param-
eters, values of ν and number of cross validations. The only difference is that
the objective of their equation (4) was modified in order to handle the uneven
training set sizes. We used N+ = 150 images as positive examples, and one image
chosen at random from each of the other training sets as negative examples, so
N− = C − 1. The objective was modified by scaling the positive entries in the
cost vector by (νN+) and the negative entries by (νN−). The cross-validation
yields a per-class validation score which is used for feature selection.

4.4 Feature Selection

We perform some simple dimensionality reduction of the classeme vectors f as
follows. The classemes are sorted in increasing order of cross-validation error.
Given a desired feature dimensionality, d, the reduced classeme vector is then
simply the first d components f(x) = [φ1(x), . . . , φd(x)]. Again in situations
where d is not specified it may be assumed that d = C

4.5 Classeme Quantization

For a practical system, the classeme vectors should not be stored in double
precision, but instead an explicit quantization of the values should be used.
This may be achieved by a simple quantization, or by defining binary “decision
stumps” or predicates. Quantization can be performed either at novel-category
learning time (i.e. on the novel training set) or at classeme-learning time. For
1-bit quantization we just thresholded at 0. For higher numbers, we use the
following “histogram-equalized” quantization. Given a training set of classeme
vectors {fi}n

i=1, write fi = [φik]dk=1. Write the rows of the matrix [f1, . . . , fn]
as rk = [φik]ni=1. To quantize to Q levels, quantization centres ziq are chosen
as follows: r′k = sort(rk), defining a row-sorted matrix φ′

ik. Then make the set
Zk = {φ′

�nq/(Q+1)�,k}Q
q=1, and each value φik is replaced by the closest value in

Zk.

5 Experiments

Given the simplicity of the approach, the first question that naturally arises is
how it compares to the state-of-the-art recognition approaches. Here we compare
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to the LP-β kernel combiner as this is the current front-runner. Note that the
key metric here is performance drop with respect to LP-β with 13 kernels, as
this means that the base features are the same between LP-β and classemes.

As our classifiers introduce an extra step in the recognition pipeline, perfor-
mance might be expected to suffer from a “triangle inequality”: the raw kernel
combiner can optimize kernels on the dLP features directly, while the classeme
classifiers are forced to go via the d classemes. We will show that this does hap-
pen, but to a small enough extent that the classemes remain competitive with
the state of the art, and are much better than the closest “efficient” system.

There are two main experiments. In the first, we wish to assess the repre-
sentational power of classemes with respect to existing methods, so we use the
standard Caltech 256 accuracy measure, with multiclass classifiers trained on all
classes. In the second, we want to test classemes in a framework closer to their
intended use, so we train one-vs-all classifiers on each Caltech class, and then
report precision on ranking a set of images including distractors from the other
classes.

5.1 Experiment 1: Multiclass Classification

To use classemes for multiclass classification, several strategies were implemented:
multiclassSVMs [10],neuralnetworks,decision forests [22] andanearest-neighbour
classifier. Comments on each of these follow. The variable T is the number of train-
ing examples per class. Figures 2 and 3 summarize the results.

Multiclass SVMs were trained using the SVMlight software [10], with regu-
larization parameter λ = 3000, and d = 1500. The regularization parameter was
determined by cross-validation for T = 15, and fixed for all subsequent tests.

Decision trees were trained using a standard information gain criterion. Be-
cause the small training set size limits the tree depth (depth 9 was found by
cross-validation at T = 15), decision forests were found to require large forests
(around 50 trees), and were not included in subsequent testing. Similarly, a
nearest-neighbour classifier was tested and found to give low performance, so it
is not included in these results, but complete results can be seen at [25].

A standard 1-hidden-layer network with tanh nonlinearities and a softmax
over 256 outputs was trained. The number of hidden units ranged between 500
and 1000, chosen on a validation set, and training used an L1 weight decay
regularizer fixed at 0.1 and was stopped early at 40–80 iterations.

For each class, the number of training images was varied, and 25 test images
were used. Performance is quoted as the mean of average accuracy per class as
in [6], and plotted in figure 2. It can be seen that the classeme-based neural net-
work (Cnet) and SVM classifiers (Csvm) beat all but LP-β and NBNN. However
the size of the representation is considerably reduced for classemes compared to
LP-β and NBNN: 2.5K for classemes versus 23K and 128K respectively. Fur-
thermore, the training and test times of our approach are considerably lower
than LP-β: training the multiclass classifier Csvm with 5 examples for each Cal-
tech class takes about 9 minutes on a AMD Opteron Processor 280 2.4GHz while
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Fig. 2. Caltech 256. A number of classifiers are compared on the Caltech 256 dataset.
The key claim is this: on 30 training examples, and using the same underlying features,
Cnet1q1 and Csvm have 36% accuracy, and LPbeta13 has 42% accuracy, but the
classeme-based systems are orders of magnitude faster to train and test.
(Top): Classeme neural net compared to results in the literature: LPbeta [6], NBNN:
Naive Bayes Nearest Neighbor [2]; MKL: Multiple Kernel learning, as implemented
in [6]; EMK: Efficient Match Kernel [1]. In addition we add our implementations of:
LPbeta13 (LP-β on our base features §4.3); GIST: One-vs-all SVM on GIST feature
alone; Cnet: Neural network trained on floating point classeme vector; Cq1net: Neural
network on 1 bit-per-channel (1bpc) classeme vector.
(Bottom): Comparison of classeme-based classifiers. (Except LPbeta13, included for
reference). Csvm: SVM, floating point, d = 1500; CsvmN: SVM, floating point,
Caltech terms removed from training (§4.2); Cq4svm: SVM, input quantized to 4 bits
per channel (bpc), d = 1500; Cq1svm: SVM, input quantized to 1 bit, d = 1500.
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Fig. 3. Accuracy versus compactness of representation on Caltech-256. On both axes,
higher is better. (Note logarithmic y-axis). The lines link performance at 15 and 30
training examples.

the method of [6] requires more than 23 hours on the same machine; predicting
the class of a test example takes 0.18ms with our model and 37ms with LP-β.

Furthermore, when moving from floating point classemes (Csvm) to a quan-
tization of 4 bits per channel (Cq4svm) the change in accuracy is negligible.
Accuracy drops by 1–2 percentage points using a 1 bit per channel neural net-
work (Cq1net, 312 bytes per image), and 1–2 more using a 1bpc SVM (Cq1svm,
d = 1500, 187.5 bytes per image). This storage requirement increases the number
of images that can be stored in an index by a factor of 100 over LP-β, which is
especially significant for RAM-based indices.

Also plotted for reference is the accuracy of GIST as a single feature, being
an important contributor to LP-β’s kernel pool. We note that the GIST vector
at 960 bytes is already much longer than the 187.5 bytes of Cq1svm while being
much less accurate.

5.2 Experiment 2: Retrieval

The retrieval experiment attempts to gain insight into the behaviour of classemes
in a retrieval task. The test database is a concatenation of 25 images from each
Caltech category. A query against the database is specified by a set of training
images taken from one category, and the retrieval task is to order the database
by similarity to the query. Success is measured as precision at 25: the proportion
of the top 25 images which are in the same category as the query set. The
maximum score is 1, obtained if all the matching images are ranked above all
the distractors. For this experiment, we compare classemes with bags of visual
words (BOW), which are a popular model for efficient image retrieval. We use
as BOW features the quantized SIFT descriptors of Kernel 13.
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Fig. 4. Retrieval. Percentage of the top 25 in a 6400-document set which match the
query class. Random performance is 0.4%.

We consider two different retrieval methods. The first method is a linear SVM
learned for each of the Caltech classes using the one-vs-all strategy. We compare
these classifiers to the Rocchio algorithm [15], which is a classic information
retrieval technique for implementing relevance feedback. In order to use this
method we represent each image as a document vector d(x). In the case of the
BOW model, d(x) is the traditional tf-idf-weighted histogram of words. In the
case of classemes instead, we define d(x)i = [φi(x) > 0]·idfi, i.e. d(x) is computed
by multiplying the binarized classemes by their inverted document frequencies.
Given, a set of relevant training images Dr, and a set of non-relevant examples
Dnr, Rocchio’s algorithm computes the document query

q = β
1

|Dr|
∑

xr∈Dr

d(xr) − γ
1

|Dnr|
∑

xnr∈Dnr

d(xnr) (1)

where β and γ are scalar values. The algorithm then retrieves the database
documents having highest cosine similarity with this query. In our experiment,
we set Dr to be the training examples of the class to retrieve, and Dnr to
be the remaining training images. We report results for two different settings:
(β, γ) = (0.75, 0.15), and (β, γ) = (1, 0) corresponding to the case where only
positive feedback is used.

Figure 4 shows that methods using classemes consistently outperform the
algorithms based on traditional BOW features. Furthermore, SVM yields much
better precision than Rocchio’s algorithm when using classemes. Note that these
linear classifiers can be evaluated very efficiently even on large data sets; further-
more, they can also be trained efficiently and thus used in applications requiring
fast query-time learning: for example, the average time required to learn a one-
vs-all SVM using classemes is 674 ms when using 5 training examples from each
Caltech class.
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6 Discussion

We have introduced a new descriptor for images which is intended to be useful for
high-level object recognition. By using the noisy training data from web image
search in a novel way: to train “category-like” classifiers, the descriptor is es-
sentially given access to knowledge about what humans consider “similar” when
they search for images on the web (note that most search engines are considered
to use “click-log” data to rank their image search results, so the results do reflect
human preferences). We have shown that this knowledge is effectively encoded
in the classeme vector, and that this vector, even when quantized to below 200
bytes per image, gives competitive object category recognition performance.

An important question is whether the weakly trained classemes actually do
contain any semantic information. We have emphasized throughout the paper
that this is not the main motivation for their use, and we do so again here. It
may be that one might view the classemes as a form of highly nonlinear random
projection, and it is interesting future work to see if something close to random
splits will yield equivalent performance.

We have focused here on object category recognition as characterized by the
Caltech 256 training data, which we consider adequate for clip-art search, but
which will not be useful for, for example, home photo retrieval, or object indexing
of surveillance footage. It should be straightforward to retrain the classemes on
images such as the PASCAL VOC images, but a sliding-window approach would
probably be required in order to achieve good performance.

Several avenues remain open to improve these results. Our feature selection
from among the 2659 raw features is currently very rudimentary, and it may be
helpful to apply a sparse classifier. The various hashing techniques can immedi-
ately be applied to our descriptor, and might result in considerable reductions
in storage and computational cost.

Additional material including the list of classemes, the retrieved training im-
ages, and precomputed classeme vectors for standard datasets, may be obtained
from [25].
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