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Outline 

• Intro/History 

• Perceptron (1 layer NN) 

• Multilayer Perceptron (MLP) 

• Deep Networks (DNN) 

• convolutional Network 

• Training Deep Network 

• stacked autoencoders 

 

 



Neural Networks 
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• Neural Networks correspond to some 
classifier function fNN(x) 

• Can carve out arbitrarily complex decision 
boundaries without requiring as many 
terms as polynomial functions 

• Originally inspired by research in how 
human brain works 

• but cannot claim that this is how the brain 
actually works 

• Now very successful in practice, but took a 
while to get there 

 

 



ANN History: First Successes 

• 1958, F. Rosenblatt, Cornell University 

• perceptron, oldest neural network still in use today 
• that’s what we studied in lecture on linear classifiers 

• Algorithm to train the perceptron network 

• Built in hardware 

• Proved convergence in linearly separable case 

• Early success lead to a lot of claims which were not fulfilled 

•  New York Times reports that  perceptron  is "the embryo of an 
electronic computer that [the Navy] expects will be able to 
walk, talk, see, write, reproduce itself and be conscious of its 
existence." 



ANN History: Stagnation 

• 1969, M. Minsky and S. Pappert 

• Book “Perceptrons” 

• Proved that perceptrons can learn only linearly separable 
classes 

• In particular cannot learn very simple XOR function 

• Conjectured that multilayer neural networks also limited by 
linearly separable functions 

• No funding and almost no research (at least in North 
America)  in 1970’s as the result of 2 things above   



ANN History: Revival & Stagnation (Again)  

• Revival of ANN in early 1980 

• 1986, (re)discovery of backpropagation algorithm 
by  Werbos, Rumelhart, Hinton and Ronald Williams  

• Allows training  a MLP 

• Many examples of mulitlayer Neural Networks appear 

• 1998, Convolutional network (convnet)  by Y. Lecun for 
digit recognition, very  successful 

• 1990’s: research in NN move slowly again 

• Networks with multiple layers are hard to train well  (except 
convnet for digit recognition) 

• SVM becomes popular, works better 

 

 



ANN History: Deep Learning Age  
• Deep networks are inspired by brain architecture 

• Until now, no success at training them, except convnet 

• 2006-now: deep networks are trained successfully 

• massive training data becomes available 

• better hardware:  fast training on GPU 

• better training  algorithms for  network training when there are 
many hidden layers 
• unsupervised learning of features,  helps when training data is limited 

• Break through papers 
• Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep 

belief nets. Neural Computation, 18:1527-1554. 

• Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007). Greedy Layer-Wise Training 
of Deep Networks, Advances in Neural Information Processing Systems 19 

• Industry: Facebook, Google, Microsoft, etc. 



Neuron: Basic Brain Processor 

• Neurons (or nerve cells) are special cells that 
process and transmit information by 
electrical signaling 
•  in brain and also spinal cord 

• Human brain has around 1011 neurons   

• A neuron connects to other neurons to form 
a network 

• Each neuron cell communicates to anywhere 
from 1000 to 10,000 other neurons 



Neuron: Main Components 
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dendrites 

nucleus 

cell 
body 

axon 

axon 
terminals 

• cell body 
• computational unit 

• dendrites  
• “input wires”, receive inputs from other neurons 

• a neuron may have thousands of dendrites, usually short 

• axon  
• “output wire”, sends signal to other neurons 

• single long structure (up to 1 meter) 

• splits in possibly thousands branches at the end, “axon terminals” 



Perceptron: 1 Layer Neural Network (NN) 

• Linear classifier f(x) = sign(wtx+w0) is a single neuron “net”  
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sign(wtx+w0) 
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layer 2 
output layer 

 

layer 1 
input layer 

 
bias unit 

• Input layer units  emits features, except bias emits “1” 

• Output layer unit applies h(t) = sign(t) 

• h(t) is also called an activation function 
 



Multilayer Perceptron (MLP) 
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layer 3 
output layer 

 

layer 1 
Input layer 

 

layer 2 
hidden layer 

 

• First hidden unit outputs          h(w0+w1x1 +w2x2)                

w 

w 
 h( wh(·)+wh(∙) ) 

• Network implements classifier  f(x) = h(wh(∙)+wh(∙))  

• More complex boundaries than Perceptron 

• Second hidden unit outputs     h(w0+w1x1 +w2x2) 



MLP Small Example 
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• Implements classifier  
 

  f(x) = sign(  4h()+2h() + 7 )  

                     = sign(4 sign(3x1+5x2)+2 sign(6+3x2) + 7)  
 

• Computing  f(x) is called feed forward operation 
• graphically, function is computed from left to right 

• Edge weights are learned through training  
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MLP: Multiple Classes 
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x2 
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layer 1 
Input layer 

 

layer 2 
hidden layer 

 

• 3 classes, 2 features, 1 hidden layer 

• 3 input units, one for each feature 

• 3 output units, one for each class 

• 2 hidden units 

• 1 bias unit, can draw in layer 1, or each layer has one 

layer 3 
output layer 

 



MLP: General Structure 
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layer 1 
Input layer 
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hidden layer 

 

• Classification: 

layer 3 
output layer 

 
h(·) 

h(·) 

h(·) 

• If f1(x) is largest, decide class 1 

• If f2(x) is largest, decide class 2 

• If f3(x) is largest, decide class 3 

  

 =  f1(x) 

• f (x)  is multi-dimensional    

 =  f2(x) 
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MLP: General Structure 
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layer 1 
Input layer 

 

layer 2 
hidden layer 

 

• Input layer: d features, d input units 

• Output layer: m classes, m output units 

• Hidden layer: how many units? 

• more units correspond to more complex classifiers 

layer 3 
output layer 

 



MLP: General Structure 
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layer 1 
Input layer 

 

layer 2 
hidden layer 

 

• Can have many hidden layers 

• Feed forward structure 

• ith layer connects to (i+1)th  layer 

• except bias unit can connect to any layer 

• or, alternatively  each layer can have its own bias unit 

layer 4 
output layer 

 

layer 3 
hidden layer 

 



MLP: Overview 

• MLP corresponds to rather complex classifier f(x,w)  

• complexity depends on the number of hidden layers/units 

• f(x,w) is a composition of many functions 
• easier to visualize as a network 

• notation gets ugly 

• To train MLP, just as before 

•  formulate an objective or loss function L(w)   

• optimize it with gradient descent 
• lots of notation due to gradient complexity 

• lots of tricks to get gradient descent work reasonably well 

 



Expressive Power of MLP 
• Every continuous function from input to output can be 

implemented with enough hidden units, 1 hidden layer, 
and proper nonlinear activation functions 

• easy to show that with linear activation function, multilayer 
neural network is equivalent to perceptron  

 • This is more of theoretical than practical interest 

• proof is not constructive (does not tell how construct  MLP) 

• even if constructive, would be of no use, we do not know the 
desired function, our goal is to learn it through the samples 

• but this result gives confidence that we are on the right track  
• MLP is general (expressive) enough to construct any required decision 

boundaries, unlike the Perceptron 

 



Decision Boundaries 

• Perceptron (single 
layer neural net) 

• Arbitrarily complex 
decision regions 

• Even not contiguous 



Nonlinear Decision Boundary: Example 
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Nonlinear Decision Boundary: Example 
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• Combine two Perceptrons into a 3 layer NN 
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Multi-Layer Neural Networks: Activation Function 

• h() = sign() does not work for gradient 
descent 

• Can use sigmoid function 

• Rectified Linear (RuLu)  popular recently 

• constructs locally linear function 



• Due to historical reasons, training and testing stages 
have special names 

• Backpropagation (or training)  

 Minimize objective function with gradient descent 

• Feedforward (or testing) 

  

 

NN: Modes of Operation 



NN: Vector Notation 

• Want  more compact (vector) notation 

• Compact notation for Perceptron 
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sign(w·x+w0) 
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x = 
x2 

x1 w = 
w2 

w1 



NN: Vector Notation 

• Change notation a bit 
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sign(w·x+b) 
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NN: Vector Notation 

• Do not draw bias unit 

 

 x1 

x2 

sign(w·x+b) 

w1 

w2 

• Compact picture 

• h(t) = sign(t) 
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NN: Vector Notation 
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• For now, look just at the first layer (2 perceptrons) 

 



NN: Vector Notation, First Layer 
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• Red perceptron has weights w1 and bias b1 

• Green perceptron has weights w2 and bias b2 



NN: Vector Notation , First Layer 
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NN: Vector Notation , First Layer 
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NN: Vector Notation , First Layer 
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• h(v) for vector v – apply h to each component of v 



NN: Vector Notation , First Layer 

x 
h(w1·x +b1) 

h1=h(w1·x +b1) 

 

x 
h(w2·x +b2) 

h2=h(w2·x +b2) 

 

• h(v) for vector v – apply h to each component of v 

more compact 
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NN: Vector Notation, Next Layer 
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• W2 is a matrix of weights between hidden layer 1 and 2 

• W2(r,c) is weight from unit  c  to unit r 

• b2 is a vector of bias weights for second hidden layer 

• b2
r is bias weight of unit r in second layer 

• h2 is a vector of second layer outputs 

• h2
r is output of unit r in second layer 

 



NN: Vector Notation, all Layers 

• Complete  depiction 
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• o vector from the output layer 

• o  = h(W3h2 +b3) 

  = h(W3h(W2h1 +b2 )+b3 ) 

  = h(W3h(W2h(W1x +b1)+b2)+b3 ) 
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NN: Output Representation 
• Output of NN is a vector 

• So label yi of sample xi should also be a vector 

• Let xi be sample of class k 
 

 

 

                                       yi=  row k 
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• Want to minimize difference between yi and f(xi) 

• Let W be all edge weights 

• With squared difference loss (error) 

• Loss on one example xi :  

 

Training NN: Loss Function 
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• f depends on W, but too cumbersome to write f(x,W) everywhere 



Training NN: Loss Function 
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;,• Loss on all examples:  

• Gradient descent 

initialize w to random 
choose  ,  
while ||L(X,Y;W)|| >  
 w = w - L(X,Y;W) 
  

• Let             X = x1 ,…, xn 

   Y = y1 ,…, yn 

 



• First put the output o through soft-max 

Training NN: Cross Entropy Loss Function 
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Training NN: Cross Entropy Loss Function 

• One sample cross entropy loss, dropping superscripts from xi,yi: 
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• Loss on all samples 
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• If sample x is of class k, then the above is  equivalent to 

• minimizing –log is equivalent to maximizing probability 



• Need to find derivative of L wrt every network weight wi  

Training NN: -Log Loss Function 

• Update weight: 

• After derivative found,  according to gradient descent, 
weight update is: 
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• where α  is the learning rate 



Training NN: -Log Loss Function 

• How many weights do we have in our network? 
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h(W1x +b1 ) 
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• Weights are in matrices W1,W2,…,Wl 

• And are in matrices b1,b2,…,bl  
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• Consider matrix W1 

Training NN: -Log Loss Function 
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Training NN: -Log Loss Function 
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• Chain rule for derivatives of composed functions: 

• NN is a composition of compositions … of compositions 
of functions  h(  h(  h ())) 

• Have to apply the chain rule a lot 



• f (x,W) = f(g(o(W))) 

• So first take derivatives wrt oj 

Training NN: -Log Loss Function 
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• Compute derivatives “backwards” 

Training NN: -Log Loss Function 
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• Compute derivatives “backwards” 

Training NN: -Log Loss Function 
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Training NN: -Log Loss Function 

• Sketch of derivation for  
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Training NN: -Log Loss Function 
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• Thus 



Training NN: -Log Loss Function 

• Using chain rule 
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Training NN: -Log Loss Function 

• Assume ReLu h(z) = max(z,0) 

 

 

 
 

 

















3

2

3

22

2

2

3

21

2

1

3

1

3

12

2

2

3

11

2

1323

bwhwhh

bwhwhh
bhWho

• Assuming non-negativity of input to function h 
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Training NN: -Log Loss Function 
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Training NN: -Log Loss Function 

• Rewrite 
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• Continue compute derivatives “backwards” 

Training NN: -Log Loss Function 

2

2

22
W

h

h

L

W

L














x 
h(W1x +b1 ) 

h1 

h(W2h1 +b2 ) 
h2 

h(W3h2 +b3 ) 

 

o 

1

2

21
h

h

h

L

h

L














2
h

L







• Continue computing derivatives “backwards” 

Training NN: -Log Loss Function 
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• Continue computing derivatives “backwards” 

Training NN: -Log Loss Function 
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Training Protocols 
• Batch Protocol 

• full gradient descent 

• weights are updated only after all examples are processed 

• might be very slow to train 

• Single Sample Protocol 
• examples are chosen randomly from the training set 

•  weights are updated after every example 

• weighs get changed faster than batch, less stable 

• One iteration over all samples  (in random order) is called an epoch 

• Mini Batch 
• Divide data in batches, and update weights after processing each batch 

• Middle ground between single sample and batch protocols 

• Helps to prevent over-fitting in practice, think of it as “noisy” gradient 

• allows CPU/GPU memory hierarchy to be   exploited so that it trains much 
faster than single-sample in terms of wall-clock time 

• One iteration over all mini-batches is called an epoch 

 



Training DNN: Initialization 

• For gradient descent, need to pick  initialization 
parameters w0 

• do not set all the parameters w0 equal 

• set the parameters in w0 randomly  



Training DNN: Learning Rate 

• Toy example 
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x = [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5] 
y = [0.1, 0.4, 0.9, 1.6, 2.2, 2.5, 2.8, 3.5, 3.9, 4.7, 5.1, 5.3, 6.3, 6.5, 6.7, 7.5, 8.1, 8.5, 8.9, 9.5] 
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• Training Data (20 examples) 

 

• Set the learning rate carefully 

• Optimal weights:   w = 1, b = 0 

• Gradient descent 

 



Training DNN: Learning Rate 

target 

start 

• Surface of the loss function  L(w,b) 



updates 30.~ k

1.0Training DNN: Learning Rate 

updates 3~ k

001.0

01.0

1.0



• Can adjust  at the training time 

• The loss function L(w) should decrease during gradient 
descent 

• If L(w) oscillates,  is too large, decrease it 

• If L(w) goes down but very slowly,   is too small, 
increase it 

Training DNN: Learning Rate 



Training DNN: Gradient descent 

Gradient descent Stochastic gradient descent,  

1 epoch 

see all 
examples 

see only one 
example 

Update 20 times 
in an epoch 



Training DNN: Gradient descent 

• Real Example: Handwriting Digit Classification 

Batch size = 1 Gradient descent 



• Gradient descent finds only a local minima 

• Momentum: popular method to avoid local minima and 
speed up descent in flat (plateau) regions 

• Add temporal average direction in which weights have 
been moving recently 

• Previous direction: wt=wt-wt-1 

• Weight update rule with momentum: 

Training DNN: Momentum 

previous  
direction 

steepest descent  
direction 
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• Features should be normalized for faster convergence 

• Suppose  fish length is in meters and weight in grams 

• typical sample [length = 0.5, weight = 3000] 

• feature length will be almost ignored 

• If length is in fact important, learning will be very slow 

• Any normalization we looked at before  will do 

• test samples should be normalized exactly as training samples 

 

Training DNN: Normalization 



training time 

Large training error: 
random decision 
regions in the 
beginning - underfit 

Small training error: 
decision regions 
improve with time 

Zero training error:  
decision regions fit 
training data 
perfectly - overfit 

Trainind DNN: How Many Epochs?  

can learn when to stop training through validation 



NN as Non-Linear Feature Mapping 

x1 

x2 

1 

• 1 hidden layer NN can be interpreted as first 
mapping input features to new features 

• Then applying  (linear classifier) to the new 
features 



NN as Non-Linear Feature Mapping 

x1 

x2 

1 

 this part implements 
Perceptron (liner classifier) 

y1 

y2 

y3 



NN as Non-Linear Feature Mapping 

x1 

x2 

1 

 this part implements 
mapping to new features y 

y1 

y2 

y3 



NN as Nonlinear Feature Mapping 

x1 

x2 

1 
-1 
-1 
1 

-3 
 1 

-1 

1.5 

1 

1 

• Consider 3 layer NN example we saw previously: 

x1 

x2 

non linearly separable in 
the original feature space 

+ 

y1 

y2 

linearly separable in the 
new feature space 



NN as Nonlinear Feature Mapping 

• Features are  key to recent success in object recognition 

• Multitude of hand-crafted features, time consuming 

• With NN, change in paradigm: instead of hand-
crafting , learn features automatically from data 

Textons 

SIFT HOG 

Patches 



• How many layers should we choose? 

     Shallow network 

Shallow vs. Deep Architecture 

    Deep network 

• Deep network lead to many successful 
applications recently 



• Evidence from biology 

 

 

 

 

 

 

 

Why Deep Networks 



• 2 layer networks can represent any function 

• But deep architectures are more efficient for 
representing some functions 

• problems  that can be represented with a polynomial 
number of nodes with k layers, may require an exponential 
number of nodes with k-1 layers 

• thus with deep architecture, less units might be needed 
overall 

• less weights, less parameter updates, more efficient 

 

 

 

 

Why Deep Networks 



Why Deep Networks 
 

• Sub-features created in deep architecture can 
potentially be shared between multiple tasks 

 

 

 

 

 

 

 



• Deep architecture works well for  hierarchical feature 
extraction 

• hierarchies features are especially natural in vision 

• Each stage is a trainable feature transform 

• Level of abstraction increases up the hierarchy 

 

 

 

 

 

 

 

Why Deep Networks: Hierarchical Feature Extraction 

Input layer  
pixels 

First layer  
edges 

Second layer  
object parts 

Third layer   
objects 



• Another example (from M. Zeiler’2013) 

  

 

 

 

 

 

 

 

Why Deep Networks: Hierarchical Feature Extraction 

visualization of 
learned features 

Patches that result in high 
response 

Layer 1 

Layer 2 



Why Deep Networks: Hierarchical Feature Extraction 

Layer 3 

Layer 4 

visualization of 
learned features 

Patches that result in high 
response 



Early Work on Deep Networks 

• Fukushima (1980) – Neo-Cognitron 

• LeCun (1998) – Convolutional Networks (convnets) 

• Similarities to Neo-Cognitron 

• Other attempts at deeply layered Networks 
trained with backpropagation 

• not much success 

• very slow 

• diffusion of gradient 

• recent work has shown significant training 
improvements with various tricks (drop-out, 
unsupervised learning of early layers, etc.) 



ConvNets: Prior Knowledge for Network Architecture 

• Convnets use prior knowledge about recognition task 
into network architecture design 

• connectivity structure 

• weight constraints 

• neuron activation functions 

• This is less intrusive than hand-designing the features 

• but it still prejudices the network towards the particular way 
of solving the problem that we had in mind 



Convolutional Network: Motivation 

• Consider a fully connected 
network 

• Example: 200 by 200 image, 
4x104 connections to one 
hidden unit 

• For 105 hidden units → 4x109   
connections 

• But spatial correlations are 
mostly local 

• Should not waste resources 
by connecting unrelated 
pixels 

 
 



Convolutional Network: Motivation 

• Connect only pixels in a local 
patch, say 10x10 

• For 200 by 200 image,  102 
connections to one hidden 
unit 

• For 105 hidden units → 107   
connections 

• factor of 400 decrease 



Convolutional Network: Motivation 
 

• If a feature is useful in one image 
location, it should be useful in all 
other locations 
• Stationarity: statistics is similar at 

different locations 

• All neurons detect the same 
feature at different positions in the 
input image 
• i.e. share parameters (network 

weights) across different locations 

• bias is usually not shared 

• also greatly reduces the number of 
tunable parameters 

all red connections  
have the same weight 
 

all green connections 
have the same weight 
 

all blue connections 
have the same weight 
 



ConvNets: Weight Sharing 

• Much fewer parameters to 
learn 

• For 105 hidden units and 
10x10 patch 
• 107 parameters to learn 

without sharing 

• 102 parameters to learn with  
sharing 



Weight Sharing Constraints 
• Easy to modify  backpropagation algorithm to incorporate 

weight sharing 

• Compute the gradients as usual, and then modify the gradients 
so that they satisfy the constraints. 
• if the weights started off satisfying the constraints, they will continue to 

satisfy them 

• To constrain w1 = w2, we need  ∆w1 = ∆w2 
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Convolutional Layer 
• Share parameters 

(network weights) across 
different locations 

• Note similarity to 
convolution with some 
fixed filter 

• But here the filter is 
learned 



Convolutional Layer 



Convolutional Layer 



Convolutional Layer 



Convolutional Layer 



Convolutional Layer 



Convolutional Layer 



Convolutional Layer 



Convolutional Layer 



Convolutional Layer 



Convolutional Layer 



Convolutional Layer 



Convolutional Layer 



Convolutional Layer 



* 
-1 0 1 

-1 0 1 

-1 0 1 
= 

Convolutional Layer 



Convolutional Layer 
• Each filter is responsible for 

one feature type 

• Learn multiple filters 

• Example: 
• 10x10 patch 

• 100 filters 

• only 104 parameters to learn 

• because parameters are 
shared between different 
locations 

 



Convolutional Layer 
• Can apply convolution to 

every other pixel, to reduce 
the number of parameters 
even further 

• Example 
• stride = 2 

• apply convolution every 
second pixel 

• makes image twice smaller in 
each dimension 

 

 



convolutional  

layer 
hn1 

1 

h2 

n1 

h3 

n1 

hn 

1 

hn 

2 

Convolutional Layer 
• Each layer h is a d-dimensional  image or map  r x c x d 

• Thus perform d-dimensional convolution 

• If using d’ filters, next layer is a map of size  r’ x c’ x d’ 

• Example with d = 3 and d’ = 2 (i.e. 2 filters) 

• r’ and c’ depend on whether convolution crops image border 
and the stride of convolution 



h1 
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h3 
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h1 
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hn 
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Convolutional Layer 
• Example with d = 3 and d’ = 2 (i.e. 2 filters) 

• Applying the first filter 
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Convolutional Layer 
• Example with d = 3 and d’ = 2 (i.e. 2 filters) 

• Applying the second filter 



h j  max (0, k  1 
h k                    ) 

n 
K 

n1 
w kj  

n 

Convolutional  

layer 
hn1 

1 

h2 

n1 

h3 

n1 

hn 

1 

hn 

2 

output 

feature map 

kernel 

Convolutional Layer 

input feature 

map  

• Formula for convolution application to  K  dimensional layer hn-1 

• Also with application of ReLu activation function 



Pooling Layer 

• Say a filter is an eye detector 

• Want to detection to be robust to precise eye location  

 



Pooling Layer 

• Pool  filter responses at different locations gain 
robustness to exact spatial location 

• pooling could be taking max, average, etc.  

 
• Usually pooling applied 

with stride > 1 

• This reduces resolution 
of  output map 

• But  we already lost 
resolution (precision)   
by pooling   



CONV  

layer 

hn1 h 
n 

POOL 

layer 

h 
n+1 

Pooling Layer: Receptive Field Size 

• If convolution filters have size K x K and stride 1, and pooling layer 
has pools of size P x P, then each unit in pooling layer depends on 
patch (in preceding convolution layer) of size  (P+K-1) x (P+K-1) 

 

 



CONV  

layer 

hn1 h 
n 

POOL 

layer 

h 
n+1 

Pooling Layer: Receptive Field Size 

• If convolution filters have size KxK and stride 1, and pooling layer 
has pools of size PxP, then each unit in the pooling layer depends 
upon a patch (in the preceding convolution layer) of size           
(P+K-1)x(P+K-1) 

 

 



Problem with Pooling 

• After several levels of pooling, we have lost 
information about the precise positions of things 

• This makes it impossible to use the precise spatial 
relationships between high-level parts for 
recognition. 

 



Local Contrast Normalization 
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want the same response 
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Local Contrast Normalization 
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Local Contrast Normalization 

• Performed also across 
features and in higher layers 

• Effects 

• Improves invariance 

• Improves optimization 
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Convolution 

One Stage (zoom) 

ConvNets: Typical Stage 

LCN Pooling 

Conceptually similar to: SIFT, HoG, etc. 



Fully Connected 

Layers 

Whole System 

1st  stage 2nd  stage 3rd  stage 

Input 
Image 

Class 
Labels 

Typical Architecture 

Convolution 

One Stage (zoom) 

LCN Pooling 

Conceptually similar to: SIFT → K-Means → Pyramid Pooling → SVM 



Fully Connected Layer 
• Can have just one fully connected layer 

• Example for 3-class classification problem 

 

hn1 

1 

h2 

n1 

h3 

n1 

every unit of the previous 
layer connects to every unit 
of the next layer  

• Can have many fully connected layer 

• Example for 3-class classification problem 
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n1 

h3 

n1 

every unit of the previous 
layer connects to every unit 
of the next layer  

every unit of the previous 
layer connects to every unit of 
the next layer  



ConvNets: Training 

• All Layers are differentiable 

• Use standard back-propagation (gradient descent) 

• At test time, run only in forward mode 

 

 



Conv Nets: Character Recognition 

• http://yann.lecun.com/exdb/lenet/index.html 

http://yann.lecun.com/exdb/lenet/index.html


ConvNet for ImageNet 

• Krizhevsky et.al.(NIPS 2012) developed  deep 
convolutional neural net of the type pioneered by  
Yann LeCun 

•  Architecture: 

• 7 hidden layers not counting some max pooling layers. 

• the early layers were convolutional. 

• the last two layers were globally connected. 

 
 

• Activation function: 

• rectified linear units in every hidden layer 

• train much faster and are more expressive than logistic unit 



Results: ILSVRC 2012 



ConvNet on Image Classification 



Tricks to Improve Generalization 

• To get more data: 

• Use left-right reflections of the images 

• Train on random 224x224 patches from the 256x256 images  

• At test time: 

• combine the opinions from ten different patches:  
• four 224x224 corner patches plus the central 224x224 patch  

• the reflections of those five patches 

 • Use dropout to regularize weights in the fully connected layers 
• half of the hidden units in a layer are randomly removed  for each 

training example 

• This stops hidden units from relying too much on other hidden 
units 



Going Deeper with Convolutions 

http://arxiv.org/abs/1409.4842 



Difficulties in Supervised Training of Deep Networks 

• Early layers do not get trained well 

• diffusion of gradient – error attenuates as it propagates to 
earlier layers 

• exacerbated since top  layers can learn any task pretty well  

• thus  error to earlier layers drops quickly as the top layers 
"mostly" solve the task 

• lower layers never get the opportunity to use their capacity to 
improve results, they just do a random feature map 

• need a way for early layers to do effective work 

• Often not enough labeled data available while there may 
be lots of unlabeled data 

• can we use unsupervised/semi-supervised approaches to take 
advantage of the unlabeled data 



Greedy Layer-Wise Training 

• Greedy layer-wise training to insure lower layers learn 

1. Train first layer using your data without the labels (unsupervised) 

• we do not know targets at this level anyway 

• can use the more abundant unlabeled data which is not part of the training set  

2. Freeze the first layer parameters and start training the second layer using 
the output of the first layer as the unsupervised input to the second layer 

3. Repeat this for as many layers as desired 

• This builds our set of robust features 

4. Use the outputs of the final layer as inputs to a supervised layer/model and 
train the last supervised layer(s)  

• leave early weights frozen 

5. Unfreeze all weights and fine tune the full network by training with a 
supervised approach, given the pre-processed weight settings 

 



Greedy Layer-Wise Training 

• Greedy layer-wise training avoids many of the problems of trying 
to train a deep net in a supervised fashion 

• Each layer gets full learning focus in its turn since it is the only 
current "top" layer 

• Can take advantage of the unlabeled data 

• When you finally tune the entire network with supervised 
training the network weights have already been adjusted so 
that you are in a good error basin and just need fine tuning  
This helps with problems of 

• ineffective early layer learning 

• deep network local minima 



Auto-Encoders 
• Unsupervised learning to discover generic features of the data 

• Learn identity function f(x,w) = x 

• through learning important sub-features, not by just passing through data 

• Constrain layer 2 to have less units than the input layer, or to be sparse 

bottleneck 

encode 
layer 

decode 
layer 



Auto-Encoders 
• Layer 2 units are the new learned features 

 

 



Auto-Encoders 
• Layer 2 units are the new learned features 

• Can fix their weights, replace decode layer with supervised 
learning layer and do supervised learning 



Stacked Auto-Encoders 
 

• Stack many (sparse) auto-encoders in succession and train 
them using greedy layer-wise training 

• Drop the decode output layer each time 



Stacked Auto-Encoders 
• Do supervised training on the last layer using final features 



Stacked Auto-Encoders 
• Do supervised training on the last layer using final features 

• Then do supervised training on full network to fine-tune all weights 



• Advantages 

• NN can learn complex mappings from inputs to 
outputs, based only on the training samples 

• Easy to incorporate a lot of heuristics 

• Many competitions won recently 

• Disadvantages 

• A lot of tricks for successful implementation 

• Theory is not as developed yet 

 

Concluding Remarks 


