
Lecture 10

Neural Networks

Many slides are from A. Ng, Y. LeCun, G. Hinton, A. Ranzato

CS9840

Learning and Computer Vision
Prof. Olga Veksler

Outline

• Intro/History

• Perceptron (1 layer NN)

• Multilayer Perceptron (MLP)

• Deep Networks (DNN)

• convolutional Network

• Training Deep Network

• stacked autoencoders

Neural Networks

x1

x2

• Neural Networks correspond to some
classifier function fNN(x)

• Can carve out arbitrarily complex decision
boundaries without requiring as many
terms as polynomial functions

• Originally inspired by research in how
human brain works

• but cannot claim that this is how the brain
actually works

• Now very successful in practice, but took a
while to get there

ANN History: First Successes

• 1958, F. Rosenblatt, Cornell University

• perceptron, oldest neural network still in use today
• that’s what we studied in lecture on linear classifiers

• Algorithm to train the perceptron network

• Built in hardware

• Proved convergence in linearly separable case

• Early success lead to a lot of claims which were not fulfilled

• New York Times reports that perceptron is "the embryo of an
electronic computer that [the Navy] expects will be able to
walk, talk, see, write, reproduce itself and be conscious of its
existence."

ANN History: Stagnation

• 1969, M. Minsky and S. Pappert

• Book “Perceptrons”

• Proved that perceptrons can learn only linearly separable
classes

• In particular cannot learn very simple XOR function

• Conjectured that multilayer neural networks also limited by
linearly separable functions

• No funding and almost no research (at least in North
America) in 1970’s as the result of 2 things above

ANN History: Revival & Stagnation (Again)

• Revival of ANN in early 1980

• 1986, (re)discovery of backpropagation algorithm
by Werbos, Rumelhart, Hinton and Ronald Williams

• Allows training a MLP

• Many examples of mulitlayer Neural Networks appear

• 1998, Convolutional network (convnet) by Y. Lecun for
digit recognition, very successful

• 1990’s: research in NN move slowly again

• Networks with multiple layers are hard to train well (except
convnet for digit recognition)

• SVM becomes popular, works better

ANN History: Deep Learning Age
• Deep networks are inspired by brain architecture

• Until now, no success at training them, except convnet

• 2006-now: deep networks are trained successfully

• massive training data becomes available

• better hardware: fast training on GPU

• better training algorithms for network training when there are
many hidden layers
• unsupervised learning of features, helps when training data is limited

• Break through papers
• Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep

belief nets. Neural Computation, 18:1527-1554.

• Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007). Greedy Layer-Wise Training
of Deep Networks, Advances in Neural Information Processing Systems 19

• Industry: Facebook, Google, Microsoft, etc.

Neuron: Basic Brain Processor

• Neurons (or nerve cells) are special cells that
process and transmit information by
electrical signaling
• in brain and also spinal cord

• Human brain has around 1011 neurons

• A neuron connects to other neurons to form
a network

• Each neuron cell communicates to anywhere
from 1000 to 10,000 other neurons

Neuron: Main Components

9

dendrites

nucleus

cell
body

axon

axon
terminals

• cell body
• computational unit

• dendrites
• “input wires”, receive inputs from other neurons

• a neuron may have thousands of dendrites, usually short

• axon
• “output wire”, sends signal to other neurons

• single long structure (up to 1 meter)

• splits in possibly thousands branches at the end, “axon terminals”

Perceptron: 1 Layer Neural Network (NN)

• Linear classifier f(x) = sign(wtx+w0) is a single neuron “net”

x1

x2

sign(wtx+w0)

1

w1

w2

w0

layer 2
output layer

layer 1
input layer

bias unit

• Input layer units emits features, except bias emits “1”

• Output layer unit applies h(t) = sign(t)

• h(t) is also called an activation function

Multilayer Perceptron (MLP)

x1

x2

1

layer 3
output layer

layer 1
Input layer

layer 2
hidden layer

• First hidden unit outputs h(w0+w1x1 +w2x2)

w

w
 h(wh(·)+wh(∙))

• Network implements classifier f(x) = h(wh(∙)+wh(∙))

• More complex boundaries than Perceptron

• Second hidden unit outputs h(w0+w1x1 +w2x2)

MLP Small Example

x1

x2

1

• Implements classifier

 f(x) = sign(4h()+2h() + 7)

 = sign(4 sign(3x1+5x2)+2 sign(6+3x2) + 7)

• Computing f(x) is called feed forward operation
• graphically, function is computed from left to right

• Edge weights are learned through training

7

6
3

5

3

4

2

MLP: Multiple Classes

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• 3 classes, 2 features, 1 hidden layer

• 3 input units, one for each feature

• 3 output units, one for each class

• 2 hidden units

• 1 bias unit, can draw in layer 1, or each layer has one

layer 3
output layer

MLP: General Structure

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• Classification:

layer 3
output layer

h(·)

h(·)

h(·)

• If f1(x) is largest, decide class 1

• If f2(x) is largest, decide class 2

• If f3(x) is largest, decide class 3

 = f1(x)

• f (x) is multi-dimensional

 = f2(x)

 = f3(x) 



















= f(x)

MLP: General Structure

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• Input layer: d features, d input units

• Output layer: m classes, m output units

• Hidden layer: how many units?

• more units correspond to more complex classifiers

layer 3
output layer

MLP: General Structure

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• Can have many hidden layers

• Feed forward structure

• ith layer connects to (i+1)th layer

• except bias unit can connect to any layer

• or, alternatively each layer can have its own bias unit

layer 4
output layer

layer 3
hidden layer

MLP: Overview

• MLP corresponds to rather complex classifier f(x,w)

• complexity depends on the number of hidden layers/units

• f(x,w) is a composition of many functions
• easier to visualize as a network

• notation gets ugly

• To train MLP, just as before

• formulate an objective or loss function L(w)

• optimize it with gradient descent
• lots of notation due to gradient complexity

• lots of tricks to get gradient descent work reasonably well

Expressive Power of MLP
• Every continuous function from input to output can be

implemented with enough hidden units, 1 hidden layer,
and proper nonlinear activation functions

• easy to show that with linear activation function, multilayer
neural network is equivalent to perceptron

 • This is more of theoretical than practical interest

• proof is not constructive (does not tell how construct MLP)

• even if constructive, would be of no use, we do not know the
desired function, our goal is to learn it through the samples

• but this result gives confidence that we are on the right track
• MLP is general (expressive) enough to construct any required decision

boundaries, unlike the Perceptron

Decision Boundaries

• Perceptron (single
layer neural net)

• Arbitrarily complex
decision regions

• Even not contiguous

Nonlinear Decision Boundary: Example

x1

x2

1 -1

-1

1

 – x1 + x2 – 1 > 0  class 1

x1

x2

1 -3

1

-1

 x1 - x2 – 3 > 0 class 1

x1

x2

-1

1
x1

x2

-3

3

Nonlinear Decision Boundary: Example

x1

x2

1
-1
-1
1

-3
 1
-1

• Combine two Perceptrons into a 3 layer NN

1.5

1

1

x1

x2

-1

1
x1

x2

-3

3 + x1

x2

-3

3

1

-1

Multi-Layer Neural Networks: Activation Function

• h() = sign() does not work for gradient
descent

• Can use sigmoid function

• Rectified Linear (RuLu) popular recently

• constructs locally linear function

• Due to historical reasons, training and testing stages
have special names

• Backpropagation (or training)

 Minimize objective function with gradient descent

• Feedforward (or testing)

NN: Modes of Operation

NN: Vector Notation

• Want more compact (vector) notation

• Compact notation for Perceptron

x1

x2

sign(w·x+w0)

1

w1

w2

w0

x =
x2

x1 w =
w2

w1

NN: Vector Notation

• Change notation a bit

x1

x2

sign(w·x+b)

1

w1

w2

b

NN: Vector Notation

• Do not draw bias unit

 x1

x2

sign(w·x+b)

w1

w2

• Compact picture

• h(t) = sign(t)

x
h(w·x +b) h

NN: Vector Notation

x2

h1

h1

h

h

h

h

1

3
5

2

x1

• For now, look just at the first layer (2 perceptrons)

NN: Vector Notation, First Layer

x
h(w1·x +b1)

h1=h(w1·x +b1)

x
h(w2·x +b2)

h2=h(w2·x +b2)

w1 =
5

1

w2 =
2

3

x2

h

h

1

3
5

2

x1

• Red perceptron has weights w1 and bias b1

• Green perceptron has weights w2 and bias b2

NN: Vector Notation , First Layer

1 5

3 2

w1 =
5

1
w2 =

2

3

x
h(w1·x +b1)

h1=h(w1·x +b1)

x
h(w2·x +b2)

h2=h(w2·x +b2)

w1·x

w2·x

W1

x2

x1

=

 · x

NN: Vector Notation , First Layer

1 5

3 2

w1 =
5

1
w2 =

2

3

x
h(w1·x +b1)

h1=h(w1·x +b1)

x
h(w2·x +b2)

h2=h(w2·x +b2)

w1·x +b1

w2·x+b2

W1

x2

x1

=

 · x + b1

b2

b1

+

NN: Vector Notation , First Layer

1 5

3 2

w1 =
5

1
w2 =

2

3

x
h(w1·x +b1)

h1=h(w1·x +b1)

x
h(w2·x +b2)

h2=h(w2·x +b2)

h1

h2

h(W1

x2

x1

=

 · x + b1)

b2

b1

+ h

• h(v) for vector v – apply h to each component of v

NN: Vector Notation , First Layer

x
h(w1·x +b1)

h1=h(w1·x +b1)

x
h(w2·x +b2)

h2=h(w2·x +b2)

• h(v) for vector v – apply h to each component of v

more compact

x
h(W1x +b1) h1

W1 =
1 5

3 2

h1 =h(W1x +b1)=

h2

h1

b1 =
b2

b1

NN: Vector Notation, Next Layer

x2

x
h(W1x +b1)

h

h
h

h

h

h

h1

h(W2h1 +b2)
h2

1

3
5
2

x1

• W2 is a matrix of weights between hidden layer 1 and 2

• W2(r,c) is weight from unit c to unit r

• b2 is a vector of bias weights for second hidden layer

• b2
r is bias weight of unit r in second layer

• h2 is a vector of second layer outputs

• h2
r is output of unit r in second layer

NN: Vector Notation, all Layers

• Complete depiction

x

h(W1x +b1)
h1

h(W2h1 +b2)
h2

h(W3h2 +b3)

o

• o vector from the output layer

• o = h(W3h2 +b3)

 = h(W3h(W2h1 +b2)+b3)

 = h(W3h(W2h(W1x +b1)+b2)+b3)

x2

h

h
h

h

h

h

1

3
5
2

x1

NN: Output Representation
• Output of NN is a vector

• So label yi of sample xi should also be a vector

• Let xi be sample of class k

 yi= row k





























0

1

0





• Want output unit ok = 1

• Want other output units zero

 



























0

1

0





row k f(xi) = o =

• Want to minimize difference between yi and f(xi)

• Let W be all edge weights

• With squared difference loss (error)

• Loss on one example xi :

Training NN: Loss Function

      




m

j

i

j

i

j

iiii
yxfyxfWyxL

1

22

;,

row k

































0

1

0





































3.0

9.0

5.0





f(x) = o = yi =

• f depends on W, but too cumbersome to write f(x,W) everywhere

Training NN: Loss Function

   




n

i

ii
yxfWYXL

1

2

;,• Loss on all examples:

• Gradient descent

initialize w to random
choose , 
while ||L(X,Y;W)|| > 
 w = w - L(X,Y;W)

• Let X = x1 ,…, xn

 Y = y1 ,…, yn

• First put the output o through soft-max

Training NN: Cross Entropy Loss Function

 
 

  


m

j j

k

k

o

o
xf

1
exp

exp

• Cross entropy loss works well for classification

• Interpret fk(x) as probability of class k



































4

8

5

1

6.0

o = = f(x) = sofmax(o)

































17.0

94.0

047.0

0001.0

006.0

Training NN: Cross Entropy Loss Function

• One sample cross entropy loss, dropping superscripts from xi,yi:

   
j jj

xfyWyxL log;,

• Loss on all samples

    WyxLWYXL ;,;,

   xfWyxL
k

log;, 

• If sample x is of class k, then the above is equivalent to

• minimizing –log is equivalent to maximizing probability

• Need to find derivative of L wrt every network weight wi

Training NN: -Log Loss Function

• Update weight:

• After derivative found, according to gradient descent,
weight update is:

iii
www 

i

i
w

L
w






i
w

L





• where α is the learning rate

Training NN: -Log Loss Function

• How many weights do we have in our network?

x
h(W1x +b1)

h1

h(W2h1 +b2)
h2

h(W3h2 +b3)

o

b1  

• Weights are in matrices W1,W2,…,Wl

• And are in matrices b1,b2,…,bl

 W2 W1   W3  

b3  b2  

• Consider matrix W1

Training NN: -Log Loss Function























11

1

1

1

1

11

1

dkd

k

ww

ww

W







• Need to compute derivative wrt every 1

js
w

• Organize derivatives in matrix


















































11

1

1

1

1

11

1

dkd

k

w

L

w

L

w

L

w

L

W

L







Training NN: -Log Loss Function

 

x

h

h

f

w

whf












)(

• Chain rule for derivatives of composed functions:

• NN is a composition of compositions … of compositions
of functions h(h(h ()))

• Have to apply the chain rule a lot

• f (x,W) = f(g(o(W)))

• So first take derivatives wrt oj

Training NN: -Log Loss Function

  yxf
o

L






 
jj

j

yxf
o

L






• Vector of derivatives wrt o

 
 

  


m

j j

k

k

o

o
xf

1
exp

exp
   

j jj
xfywyxL log;,










































m
o

L

o

L

o

L


1

 

  





































mm
yxf

yxf



11

• Compute derivatives “backwards”

Training NN: -Log Loss Function

33
W

o

o

L

W

L














x
h(W1x +b1)

h1

h(W2h1 +b2)
h2

h(W3h2 +b3)

o

22
h

o

o

L

h

L














  yxf
o

L






• Assume ReLu h(z) = max(z,0)

• Compute derivatives “backwards”

Training NN: -Log Loss Function

  
T

hyxf
W

o

o

L

W

L 2

33
)(














x
h(W1x +b1)

h1

h(W2h1 +b2)
h2

h(W3h2 +b3)

o

    yxfW
h

o

o

L

h

L T













 3

22

  yxf
o

L






• Assume ReLu h(z) = max(z,0)

Training NN: -Log Loss Function

• Sketch of derivation for














































33

33

3

2221

1211

w

L

w

L

w

L

w

L

W

L














3

22

3

21

3

12

3

113

ww

ww
W

3
W

L





Training NN: -Log Loss Function


















3

22

2

2

3

21

2

1

3

12

2

2

3

11

2

123

whwh

whwh
hW














3

22

3

21

3

12

3

113

ww

ww
W 












2

2

2

12

h

h
h


















3

2

3

22

2

2

3

21

2

1

3

1

3

12

2

2

3

11

2

1323

bwhwh

bwhwh
bhW














2

2

2

12

b

b
b

 
 

 

















3

2

3

22

2

2

3

21

2

1

3

1

3

12

2

2

3

11

2

1323

bwhwhh

bwhwhh
bhWho

• Recall

• Thus

Training NN: -Log Loss Function

• Using chain rule














































33

33

3

2221

1211

w

L

w

L

w

L

w

L

W

L



























































3

2

2

3

2

2

3

1

1

3

1

1

2221

1211

w

o

o

L

w

o

o

L

w

o

o

L

w

o

o

L

  


























3

2

3

22

2

2

3

21

2

1

3

1

3

12

2

2

3

11

2

1323

2

1

bwhwh

bwhwh
bhWh

o

o
o

3
W

o





Training NN: -Log Loss Function

• Assume ReLu h(z) = max(z,0)

 
 

 

















3

2

3

22

2

2

3

21

2

1

3

1

3

12

2

2

3

11

2

1323

bwhwhh

bwhwhh
bhWho

• Assuming non-negativity of input to function h

  
















3

2

3

22

2

2

3

21

2

1

3

1

3

12

2

2

3

11

2

1323

bwhwh

bwhwh
bhWho

• If there are negative components, replace by 0

• Need 3
W

o





Training NN: -Log Loss Function














































3

22

3

21

3

12

3

11

3

w

o

w

o

w

o

w

o

W

o


















3

2

3

22

2

2

3

21

2

1

3

1

3

12

2

2

3

11

2

1

bwhwh

bwhwh
o














2

2

2

1

2

2

2

1

hh

hh

• Continue






























































3

2

2

3

2

2

3

1

1

3

1

1

3

2221

1211

w

o

o

L

w

o

o

L

w

o

o

L

w

o

o

L

W

L

• Plug into










































2

2

2

2

1

2

2

2

1

2

1

1

h
o

L
h

o

L

h
o

L
h

o

L

Training NN: -Log Loss Function

• Rewrite














































2

2

2

2

1

2

2

2

1

2

1

1

3

h
o

L
h

o

L

h
o

L
h

o

L

W

L
 2

2

2

1

2

1 hh

o

L

o

L



































• Recall

 

 

  




























mm
yxf

yxf

yxf
o

L


11

• So, finally

   
T

hyxf
W

L 2

3






• Continue compute derivatives “backwards”

Training NN: -Log Loss Function

2

2

22
W

h

h

L

W

L














x
h(W1x +b1)

h1

h(W2h1 +b2)
h2

h(W3h2 +b3)

o

1

2

21
h

h

h

L

h

L














2
h

L





• Continue computing derivatives “backwards”

Training NN: -Log Loss Function

 
T

h
h

L

W

h

h

L

W

L 1

22

2

22


















x
h(W1x +b1)

h1

h(W2h1 +b2)
h2

h(W3h2 +b3)

o

 
2

2

1

2

21
h

L
W

h

h

h

L

h

L T



















2
h

L





• Continue computing derivatives “backwards”

Training NN: -Log Loss Function

 
T

x
h

L

W

h

h

L

W

L

11

1

11


















x
h(W1x +b1)

h1

h(W2h1 +b2)
h2

h(W3h2 +b3)

o

1
h

L





Training Protocols
• Batch Protocol

• full gradient descent

• weights are updated only after all examples are processed

• might be very slow to train

• Single Sample Protocol
• examples are chosen randomly from the training set

• weights are updated after every example

• weighs get changed faster than batch, less stable

• One iteration over all samples (in random order) is called an epoch

• Mini Batch
• Divide data in batches, and update weights after processing each batch

• Middle ground between single sample and batch protocols

• Helps to prevent over-fitting in practice, think of it as “noisy” gradient

• allows CPU/GPU memory hierarchy to be exploited so that it trains much
faster than single-sample in terms of wall-clock time

• One iteration over all mini-batches is called an epoch

Training DNN: Initialization

• For gradient descent, need to pick initialization
parameters w0

• do not set all the parameters w0 equal

• set the parameters in w0 randomly

Training DNN: Learning Rate

• Toy example

y


zw

b

x

1
zy 

x = [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5]
y = [0.1, 0.4, 0.9, 1.6, 2.2, 2.5, 2.8, 3.5, 3.9, 4.7, 5.1, 5.3, 6.3, 6.5, 6.7, 7.5, 8.1, 8.5, 8.9, 9.5]

 11 


ttt
wLww

• Training Data (20 examples)

• Set the learning rate carefully

• Optimal weights: w = 1, b = 0

• Gradient descent

Training DNN: Learning Rate

target

start

• Surface of the loss function L(w,b)

updates 30.~ k

1.0Training DNN: Learning Rate

updates 3~ k

001.0

01.0

1.0

• Can adjust  at the training time

• The loss function L(w) should decrease during gradient
descent

• If L(w) oscillates,  is too large, decrease it

• If L(w) goes down but very slowly,  is too small,
increase it

Training DNN: Learning Rate

Training DNN: Gradient descent

Gradient descent Stochastic gradient descent,

1 epoch

see all
examples

see only one
example

Update 20 times
in an epoch

Training DNN: Gradient descent

• Real Example: Handwriting Digit Classification

Batch size = 1 Gradient descent

• Gradient descent finds only a local minima

• Momentum: popular method to avoid local minima and
speed up descent in flat (plateau) regions

• Add temporal average direction in which weights have
been moving recently

• Previous direction: wt=wt-wt-1

• Weight update rule with momentum:

Training DNN: Momentum

previous
direction

steepest descent
direction

    11
1




tttt
wwLww

• Features should be normalized for faster convergence

• Suppose fish length is in meters and weight in grams

• typical sample [length = 0.5, weight = 3000]

• feature length will be almost ignored

• If length is in fact important, learning will be very slow

• Any normalization we looked at before will do

• test samples should be normalized exactly as training samples

Training DNN: Normalization

training time

Large training error:
random decision
regions in the
beginning - underfit

Small training error:
decision regions
improve with time

Zero training error:
decision regions fit
training data
perfectly - overfit

Trainind DNN: How Many Epochs?

can learn when to stop training through validation

NN as Non-Linear Feature Mapping

x1

x2

1

• 1 hidden layer NN can be interpreted as first
mapping input features to new features

• Then applying (linear classifier) to the new
features

NN as Non-Linear Feature Mapping

x1

x2

1

 this part implements
Perceptron (liner classifier)

y1

y2

y3

NN as Non-Linear Feature Mapping

x1

x2

1

 this part implements
mapping to new features y

y1

y2

y3

NN as Nonlinear Feature Mapping

x1

x2

1
-1
-1
1

-3
 1

-1

1.5

1

1

• Consider 3 layer NN example we saw previously:

x1

x2

non linearly separable in
the original feature space

+

y1

y2

linearly separable in the
new feature space

NN as Nonlinear Feature Mapping

• Features are key to recent success in object recognition

• Multitude of hand-crafted features, time consuming

• With NN, change in paradigm: instead of hand-
crafting , learn features automatically from data

Textons

SIFT HOG

Patches

• How many layers should we choose?

 Shallow network

Shallow vs. Deep Architecture

 Deep network

• Deep network lead to many successful
applications recently

• Evidence from biology

Why Deep Networks

• 2 layer networks can represent any function

• But deep architectures are more efficient for
representing some functions

• problems that can be represented with a polynomial
number of nodes with k layers, may require an exponential
number of nodes with k-1 layers

• thus with deep architecture, less units might be needed
overall

• less weights, less parameter updates, more efficient

Why Deep Networks

Why Deep Networks

• Sub-features created in deep architecture can
potentially be shared between multiple tasks

• Deep architecture works well for hierarchical feature
extraction

• hierarchies features are especially natural in vision

• Each stage is a trainable feature transform

• Level of abstraction increases up the hierarchy

Why Deep Networks: Hierarchical Feature Extraction

Input layer
pixels

First layer
edges

Second layer
object parts

Third layer
objects

• Another example (from M. Zeiler’2013)

Why Deep Networks: Hierarchical Feature Extraction

visualization of
learned features

Patches that result in high
response

Layer 1

Layer 2

Why Deep Networks: Hierarchical Feature Extraction

Layer 3

Layer 4

visualization of
learned features

Patches that result in high
response

Early Work on Deep Networks

• Fukushima (1980) – Neo-Cognitron

• LeCun (1998) – Convolutional Networks (convnets)

• Similarities to Neo-Cognitron

• Other attempts at deeply layered Networks
trained with backpropagation

• not much success

• very slow

• diffusion of gradient

• recent work has shown significant training
improvements with various tricks (drop-out,
unsupervised learning of early layers, etc.)

ConvNets: Prior Knowledge for Network Architecture

• Convnets use prior knowledge about recognition task
into network architecture design

• connectivity structure

• weight constraints

• neuron activation functions

• This is less intrusive than hand-designing the features

• but it still prejudices the network towards the particular way
of solving the problem that we had in mind

Convolutional Network: Motivation

• Consider a fully connected
network

• Example: 200 by 200 image,
4x104 connections to one
hidden unit

• For 105 hidden units → 4x109
connections

• But spatial correlations are
mostly local

• Should not waste resources
by connecting unrelated
pixels

Convolutional Network: Motivation

• Connect only pixels in a local
patch, say 10x10

• For 200 by 200 image, 102
connections to one hidden
unit

• For 105 hidden units → 107
connections

• factor of 400 decrease

Convolutional Network: Motivation

• If a feature is useful in one image
location, it should be useful in all
other locations
• Stationarity: statistics is similar at

different locations

• All neurons detect the same
feature at different positions in the
input image
• i.e. share parameters (network

weights) across different locations

• bias is usually not shared

• also greatly reduces the number of
tunable parameters

all red connections
have the same weight

all green connections
have the same weight

all blue connections
have the same weight

ConvNets: Weight Sharing

• Much fewer parameters to
learn

• For 105 hidden units and
10x10 patch
• 107 parameters to learn

without sharing

• 102 parameters to learn with
sharing

Weight Sharing Constraints
• Easy to modify backpropagation algorithm to incorporate

weight sharing

• Compute the gradients as usual, and then modify the gradients
so that they satisfy the constraints.
• if the weights started off satisfying the constraints, they will continue to

satisfy them

• To constrain w1 = w2, we need ∆w1 = ∆w2

21
w

E

w

E









• Now use to update w1 and w2 , use

2
w

L




• Before we used to update w1 and to update w2

1
w

L





Convolutional Layer
• Share parameters

(network weights) across
different locations

• Note similarity to
convolution with some
fixed filter

• But here the filter is
learned

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

*
-1 0 1

-1 0 1

-1 0 1
=

Convolutional Layer

Convolutional Layer
• Each filter is responsible for

one feature type

• Learn multiple filters

• Example:
• 10x10 patch

• 100 filters

• only 104 parameters to learn

• because parameters are
shared between different
locations

Convolutional Layer
• Can apply convolution to

every other pixel, to reduce
the number of parameters
even further

• Example
• stride = 2

• apply convolution every
second pixel

• makes image twice smaller in
each dimension

convolutional

layer
hn1

1

h2

n1

h3

n1

hn

1

hn

2

Convolutional Layer
• Each layer h is a d-dimensional image or map r x c x d

• Thus perform d-dimensional convolution

• If using d’ filters, next layer is a map of size r’ x c’ x d’

• Example with d = 3 and d’ = 2 (i.e. 2 filters)

• r’ and c’ depend on whether convolution crops image border
and the stride of convolution

h1

n1

h2

n1

h3

n1

h1

n

hn

2

Convolutional Layer
• Example with d = 3 and d’ = 2 (i.e. 2 filters)

• Applying the first filter

h1

n1

h2

n1

h3

n1

h1

n

hn

2

Convolutional Layer
• Example with d = 3 and d’ = 2 (i.e. 2 filters)

• Applying the second filter

h j  max (0, k  1
h k)

n
K

n1
w kj

n

Convolutional

layer
hn1

1

h2

n1

h3

n1

hn

1

hn

2

output

feature map

kernel

Convolutional Layer

input feature

map

• Formula for convolution application to K dimensional layer hn-1

• Also with application of ReLu activation function

Pooling Layer

• Say a filter is an eye detector

• Want to detection to be robust to precise eye location

Pooling Layer

• Pool filter responses at different locations gain
robustness to exact spatial location

• pooling could be taking max, average, etc.

• Usually pooling applied

with stride > 1

• This reduces resolution
of output map

• But we already lost
resolution (precision)
by pooling

CONV

layer

hn1 h
n

POOL

layer

h
n+1

Pooling Layer: Receptive Field Size

• If convolution filters have size K x K and stride 1, and pooling layer
has pools of size P x P, then each unit in pooling layer depends on
patch (in preceding convolution layer) of size (P+K-1) x (P+K-1)

CONV

layer

hn1 h
n

POOL

layer

h
n+1

Pooling Layer: Receptive Field Size

• If convolution filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (in the preceding convolution layer) of size
(P+K-1)x(P+K-1)

Problem with Pooling

• After several levels of pooling, we have lost
information about the precise positions of things

• This makes it impossible to use the precise spatial
relationships between high-level parts for
recognition.

Local Contrast Normalization

    

  yxN

yxNyxh
yxh

i

ii

i

,

,,
),(

1








want the same response

    

  yxN

yxNyxh
yxh

i

ii

i

,

,,
),(

1








Local Contrast Normalization

    

  yxN

yxNyxh
yxh

i

ii

i

,

,,
),(

1








Local Contrast Normalization

• Performed also across
features and in higher layers

• Effects

• Improves invariance

• Improves optimization

71

Convolution

One Stage (zoom)

ConvNets: Typical Stage

LCN Pooling

Conceptually similar to: SIFT, HoG, etc.

Fully Connected

Layers

Whole System

1st stage 2nd stage 3rd stage

Input
Image

Class
Labels

Typical Architecture

Convolution

One Stage (zoom)

LCN Pooling

Conceptually similar to: SIFT → K-Means → Pyramid Pooling → SVM

Fully Connected Layer
• Can have just one fully connected layer

• Example for 3-class classification problem

hn1

1

h2

n1

h3

n1

every unit of the previous
layer connects to every unit
of the next layer

• Can have many fully connected layer

• Example for 3-class classification problem

hn1

1

h2

n1

h3

n1

every unit of the previous
layer connects to every unit
of the next layer

every unit of the previous
layer connects to every unit of
the next layer

ConvNets: Training

• All Layers are differentiable

• Use standard back-propagation (gradient descent)

• At test time, run only in forward mode

Conv Nets: Character Recognition

• http://yann.lecun.com/exdb/lenet/index.html

http://yann.lecun.com/exdb/lenet/index.html

ConvNet for ImageNet

• Krizhevsky et.al.(NIPS 2012) developed deep
convolutional neural net of the type pioneered by
Yann LeCun

• Architecture:

• 7 hidden layers not counting some max pooling layers.

• the early layers were convolutional.

• the last two layers were globally connected.

• Activation function:

• rectified linear units in every hidden layer

• train much faster and are more expressive than logistic unit

Results: ILSVRC 2012

ConvNet on Image Classification

Tricks to Improve Generalization

• To get more data:

• Use left-right reflections of the images

• Train on random 224x224 patches from the 256x256 images

• At test time:

• combine the opinions from ten different patches:
• four 224x224 corner patches plus the central 224x224 patch

• the reflections of those five patches

 • Use dropout to regularize weights in the fully connected layers
• half of the hidden units in a layer are randomly removed for each

training example

• This stops hidden units from relying too much on other hidden
units

Going Deeper with Convolutions

http://arxiv.org/abs/1409.4842

Difficulties in Supervised Training of Deep Networks

• Early layers do not get trained well

• diffusion of gradient – error attenuates as it propagates to
earlier layers

• exacerbated since top layers can learn any task pretty well

• thus error to earlier layers drops quickly as the top layers
"mostly" solve the task

• lower layers never get the opportunity to use their capacity to
improve results, they just do a random feature map

• need a way for early layers to do effective work

• Often not enough labeled data available while there may
be lots of unlabeled data

• can we use unsupervised/semi-supervised approaches to take
advantage of the unlabeled data

Greedy Layer-Wise Training

• Greedy layer-wise training to insure lower layers learn

1. Train first layer using your data without the labels (unsupervised)

• we do not know targets at this level anyway

• can use the more abundant unlabeled data which is not part of the training set

2. Freeze the first layer parameters and start training the second layer using
the output of the first layer as the unsupervised input to the second layer

3. Repeat this for as many layers as desired

• This builds our set of robust features

4. Use the outputs of the final layer as inputs to a supervised layer/model and
train the last supervised layer(s)

• leave early weights frozen

5. Unfreeze all weights and fine tune the full network by training with a
supervised approach, given the pre-processed weight settings

Greedy Layer-Wise Training

• Greedy layer-wise training avoids many of the problems of trying
to train a deep net in a supervised fashion

• Each layer gets full learning focus in its turn since it is the only
current "top" layer

• Can take advantage of the unlabeled data

• When you finally tune the entire network with supervised
training the network weights have already been adjusted so
that you are in a good error basin and just need fine tuning
This helps with problems of

• ineffective early layer learning

• deep network local minima

Auto-Encoders
• Unsupervised learning to discover generic features of the data

• Learn identity function f(x,w) = x

• through learning important sub-features, not by just passing through data

• Constrain layer 2 to have less units than the input layer, or to be sparse

bottleneck

encode
layer

decode
layer

Auto-Encoders
• Layer 2 units are the new learned features

Auto-Encoders
• Layer 2 units are the new learned features

• Can fix their weights, replace decode layer with supervised
learning layer and do supervised learning

Stacked Auto-Encoders

• Stack many (sparse) auto-encoders in succession and train
them using greedy layer-wise training

• Drop the decode output layer each time

Stacked Auto-Encoders
• Do supervised training on the last layer using final features

Stacked Auto-Encoders
• Do supervised training on the last layer using final features

• Then do supervised training on full network to fine-tune all weights

• Advantages

• NN can learn complex mappings from inputs to
outputs, based only on the training samples

• Easy to incorporate a lot of heuristics

• Many competitions won recently

• Disadvantages

• A lot of tricks for successful implementation

• Theory is not as developed yet

Concluding Remarks

