CS840a
Machine Learning in Computer Vision
Olga Veksler

Lecture 2
k Nearest Neighbors
k-Nearest Neighbors

- classify an unknown example with the most common class among \(k \) closest examples
 - “tell me who your neighbors are, and I’ll tell you who you are”

- Example:
 - \(k = 3 \)
 - 2 sea bass, 1 salmon
 - Classify as sea bass
kNN: Multiple Classes

• Easy to implement for multiple classes
• Example for $k = 5$
 • 3 fish species: salmon, sea bass, eel
 • 3 sea bass, 1 eel, 1 salmon \Rightarrow classify as sea bass
kNN: How to Choose k?

- In theory, if infinite number of samples available, the larger is k, the better is classification

- The caveat is that all k neighbors have to be close
 - Possible when infinite # samples available
 - Impossible in practice since # samples is finite
kNN: How to Choose k?

- Problems if "tune" k on training data
 - meta parameter, overfit if tune these on training data
- $k = 1$ is often used for efficiency, but sensitive to "noise"

For 1 NN, every example in the blue shaded area will be misclassified as the blue class.

For 3 NN, every example in the blue shaded area will be classified correctly as the red class.
kNN: How to Choose k?

- Larger k gives smoother boundaries, better for generalization
- But only if *locality* is preserved. Locality is not preserved if end up looking at samples too far away, not from the same class.
- Interesting theoretical properties if $k < \sqrt{n}$, n is # of examples
- Can choose k through cross-validation (study soon)
kNN: How Well does it Work?

- kNN is simple and intuitive, but does it work?
- Theoretically, the best error rate is the Bayes rate E^*
 - Bayes error rate is the best (smallest) error rate a classifier can have, for a given problem, but we do not study it in this course
- Assume we have an unlimited number of samples
- kNN leads to an error rate greater than E^*
- But even for $k = 1$, as $n \to \infty$, it can be shown that kNN error rate is smaller than $2E^*$
- As we increase k, the upper bound on the error gets better, that is the error rate (as $n \to \infty$) for the kNN rule is smaller than cE^*, with smaller c for larger k
- If we have lots of samples, kNN works well
• Many parametric distributions would not work for this 2 class classification problem

• Nearest neighbors will do reasonably well, provided we have a lot of samples
• Voronoi tessellation is useful for visualization
kNN Selection of Distance

- So far we assumed we use Euclidian Distance to find the nearest neighbor:

\[D(a, b) = \sqrt{\sum_k (a_k - b_k)^2} \]

- Euclidean distance treats each feature as equally important

- However some features (dimensions) may be much more discriminative than other features
kNN Distance Selection: Extreme Example

- feature 1 gives the correct class: 1 or 2
- feature 2 gives irrelevant number from 100 to 200
- dataset: \([1 \ 150]\)
 \([2 \ 110]\)
- classify \([1 \ 100]\)

\[
D(\begin{bmatrix} 1 \\ 100 \end{bmatrix}, \begin{bmatrix} 1 \\ 150 \end{bmatrix}) = \sqrt{(1-1)^2 + (100-150)^2} = 50
\]

\[
D(\begin{bmatrix} 1 \\ 100 \end{bmatrix}, \begin{bmatrix} 2 \\ 110 \end{bmatrix}) = \sqrt{(1-2)^2 + (100-110)^2} = 10.5
\]

- \([1 \ 100]\) is misclassified!
- The denser the samples, the less of this problem
- But we rarely have samples dense enough
• Decision boundary is in red, and is really wrong because
 • feature 1 is discriminative, but it’s scale is small
 • feature 2 gives no class information but its scale is large, it dominates distance calculation
kNN: Feature Normalization

- Notice that 2 features are on different scales:
- First feature takes values between 1 or 2
- Second feature takes values between 100 to 200
- **Idea:** normalize features to be on the same scale
- Different normalization approaches
- Linearly scale the range of each feature to be, say, in range \([0,1]\)

\[
\new f = \frac{\text{old } f - \text{min } f}{\text{max } f - \text{min } f}
\]
kNN: Feature Normalization

- Linearly scale to 0 mean variance 1:
- If Z is a random variable of mean m and variance σ^2, then $(Z - m)/\sigma$ has mean 0 and variance 1
- For each feature f let the new rescaled feature be
 \[f_{new} = \frac{f_{old} - \mu}{\sigma} \]
- Let us apply this normalization to previous example
kNN: Feature Normalization
kNN: Selection of Distance

- Feature normalization does not help in high dimensional spaces if most features are irrelevant

\[
D(a, b) = \sqrt{\sum_k (a_k - b_k)^2} = \sqrt{\sum_i (a_i - b_i)^2 + \sum_j (a_j - b_j)^2}
\]

- If the number of useful features is smaller than the number of noisy features, Euclidean distance is dominated by noise
kNN: Feature Weighting

- Scale each feature by its importance for classification

\[D(a, b) = \sqrt{\sum_{k} w_k (a_k - b_k)^2} \]

- Can use our prior knowledge about which features are more important

- Can learn the weights \(w_k \) using cross-validation (to be covered later)
kNN: Computational Complexity

- Basic kNN algorithm stores all examples
- Suppose we have \(n \) examples each of dimension \(d \)
- \(O(d) \) to compute distance to one examples
- \(O(nd) \) to computed distances to all examples
- Plus \(O(nk) \) time to find \(k \) closest examples
- Total time: \(O(nk + nd) \)
- Very expensive for a large number of samples
- But we need a large number of samples for kNN to work well!
Reducing Complexity

• Various exact and approximate methods for reducing complexity
 • reduce dimensionality of the data
 • find projection to a lower dimensional space so that the distances between samples are approximately the same
 • PCA
 • Projection to a Random subspace
 • use smart data structures, like kd trees
kNN Summary

• Advantages
 • Can be applied to the data from any distribution
 • for example, data does not have to be separable with a linear boundary
 • Very simple and intuitive
 • Good classification if the number of samples is large enough

• Disadvantages
 • Choosing k may be tricky
 • Test stage is computationally expensive
 • No training stage, all the work is done during the test stage
 • This is actually the opposite of what we want. Usually we can afford training step to take a long time, but we want fast test step
 • Need large number of samples for accuracy