Outline

• Performance evaluation and model selection methods
 • validation
 • cross-validation
 • k-fold
 • Leave-one-out
• In this lecture, it is convenient to show examples in the context of regression.

• In regression, labels y_i are continuous.

• Classification/regression are solved very similarly.

• Everything we have done so far transfers to regression with very minor changes.

• Error: sum of distances from examples to the fitted model.
Training/Test Data Split

- Talked about splitting data in training/test sets
 - training data is used to fit parameters
 - test data is used to assess how classifier generalizes to new data

- What if classifier has “non-tunable” parameters?
 - a parameter is “non-tunable” if tuning (or training) it on the training data leads to overfitting

- Examples:
 - k in kNN classifier
 - T (number of training epoch) in adaBoost
 - Kernel width in SVM
 - etc
Example of Overfitting

- Want to fit a polynomial machine \(f(x,w) \)
- Instead of fixing polynomial degree, make it parameter \(d \)
 - learning machine \(f(x,w,d) \)
- Consider just three choices for \(d \)
 - degree 1
 - degree 2
 - degree 3
- Training error is a bad measure to choose \(d \)
 - degree 3 is the best according to the training error, but overfits the data
• What about test error? Seems appropriate
 • degree 2 is the best model according to the test error
• Except what do we report as the test error now?
• Test error should be computed on data that was **not** used for training at all
• Here used “test” data for training, i.e. choosing model
Validation data

- Same question when choosing among several classifiers
- our polynomial degree example can be looked at as choosing among 3 classifiers (degree 1, 2, or 3)
- Solution: split the labeled data into three parts

<table>
<thead>
<tr>
<th></th>
<th>Training</th>
<th>Validation</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≈60%</td>
<td>≈20%</td>
<td>≈20%</td>
</tr>
</tbody>
</table>

- train tunable parameters \mathbf{w}
- train other parameters, or to select classifier
- use **only** to assess final performance
Training/Validation/Test Data

- **Training Data**
- **Validation Data**
 - \(d = 2 \) is chosen
- **Test Data**
 - 1.3 test error computed for \(d = 2 \)
Training/Validation

<table>
<thead>
<tr>
<th>labeled data</th>
<th>Training</th>
<th>Validation</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≈60%</td>
<td>≈20%</td>
<td>≈20%</td>
</tr>
</tbody>
</table>

- After non-tunable parameters are chosen (using validation data), retrain on combined *Training*+*Validation* data before computing *Test* error.

- The more data to train on, the better is the trained classifier (the more reliable test error).
Choosing Parameters: Example

- Need to choose power p for polynomial classifier
 - The higher degree, the better can fit training data
 - But at some point we overfit the data
Diagnosing Underfitting/Overfitting

- **Underfitting**
 - large training error
 - large validation error

- **Just Right**
 - small training error
 - small validation error

- **Overfitting**
 - small training error
 - large validation error
Fixing Underfitting/Overfitting

- **Fixing Underfitting**
 - getting more training examples will not help
 - get more features
 - try more complex classifier
 - if using MNN, try more hidden units

- **Fixing Overfitting**
 - getting more training examples might help
 - try smaller set of features
 - Try less complex classifier
 - if using MNN, try less hidden units
Train/Test/Validation Method

- **Good news**
 - Very simple

- **Bad news:**
 - Wastes data
 - in general, the more data we have, the better are the estimated parameters
 - we estimate parameters on 40% less data, since 20% removed for test and 20% for validation data
 - If we have a small dataset our test (validation) set might just be lucky or unlucky

- Cross Validation is a method for performance evaluation that wastes less data
Small Dataset

Linear Model: Mean Squared Error = 2.4

Quadratic Model: Mean Squared Error = 0.9

Join the dots Model: Mean Squared Error = 2.2
LOOCV (Leave-one-out Cross Validation)

For k=1 to R

1. Let \((x^k, y^k)\) be the \(k\) example
LOOCV (Leave-one-out Cross Validation)

For \(k = 1 \) to \(n \)

1. Let \((x^k, y^k)\) be the \(k \)th example

2. Temporarily remove \((x^k, y^k)\) from the dataset
LOOCV (Leave-one-out Cross Validation)

For \(k = 1 \) to \(n \)

1. Let \((x^k, y^k)\) be the \(k \)th example

2. Temporarily remove \((x^k, y^k)\) from the dataset

3. Train on the remaining \(n-1 \) examples
LOOCV (Leave-one-out Cross Validation)

For $k=1$ to n

1. Let (x^k, y^k) be the kth example

2. Temporarily remove (x^k, y^k) from the dataset

3. Train on the remaining $n-1$ examples

4. Note your error on (x^k, y^k)
LOOCV (Leave-one-out Cross Validation)

For \(k=1 \) to \(n \)

1. Let \((x^k, y^k)\) be the \(k \)th example

2. Temporarily remove \((x^k, y^k)\) from the dataset

3. Train on the remaining \(n-1 \) examples

4. Note your error on \((x^k, y^k)\)

When you’ve done all points, report the mean error
LOOCV (Leave-one-out Cross Validation)

\[\text{MSE}_{\text{LOOCV}} = 2.12 \]
LOOCV for Quadratic Regression

\[
\text{MSE}_{\text{LOOCV}} = 0.962
\]
LOOCV for Join The Dots

$MSE_{LOOCV} = 3.33$
Which kind of Cross Validation?

<table>
<thead>
<tr>
<th></th>
<th>Downside</th>
<th>Upside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test-set</td>
<td>may give unreliable estimate of future performance</td>
<td>cheap</td>
</tr>
<tr>
<td>Leave-one-out</td>
<td>expensive</td>
<td>doesn’t waste data</td>
</tr>
</tbody>
</table>

- Can we get the best of both worlds?
Randomly break the dataset into k partitions in this example we’ll have $k=3$ partitions colored Red Green and Blue)
- Randomly break the dataset into k partitions
- In example have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
• Randomly break the dataset into k partitions
• in example have $k=3$ partitions colored red green and blue
• For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
• For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
• Randomly break the dataset into k partitions

• in example have k=3 partitions colored red green and blue

• For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points

• For the green partition: train on all points not in green partition. Find test-set sum of errors on green points

• For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points
K-Fold Cross Validation

- Randomly break the dataset into k partitions
- In example have k=3 partitions colored red, green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points
- Report the mean error

Linear Regression
\[\text{MSE}_{3\text{FOLD}} = 2.05 \]
K-Fold Cross Validation

- Randomly break the dataset into \(k \) partitions
- in example have \(k=3 \) partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points
- Report the mean error

Quadratic Regression

\[\text{MSE}^{3\text{FOLD}} = 1.11 \]
Randomly break the dataset into k partitions

In example have $k=3$ partitions colored red green and blue

For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points

For the green partition: train on all points not in green partition. Find test-set sum of errors on green points

For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points

Report the mean error

Joint-the-dots

$\text{MSE}_{3\text{FOLD}} = 2.93$
Which kind of Cross Validation?

<table>
<thead>
<tr>
<th>Method</th>
<th>Downside</th>
<th>Upside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test-set</td>
<td>may give unreliable estimate of future performance</td>
<td>cheap</td>
</tr>
<tr>
<td>Leave-one-out</td>
<td>expensive</td>
<td>doesn’t waste data</td>
</tr>
<tr>
<td>10-fold</td>
<td>wastes 10% of the data, 10 times more expensive than test set</td>
<td>only wastes 10%, only 10 times more expensive instead of n times</td>
</tr>
<tr>
<td>3-fold</td>
<td>wastes more data than 10-fold, more expensive than test set</td>
<td>slightly better than test-set</td>
</tr>
<tr>
<td>N-fold</td>
<td></td>
<td>Identical to Leave-one-out</td>
</tr>
</tbody>
</table>
Cross-validation for classification

- Instead of computing the sum squared errors on a test set, you should compute...
Cross-validation for classification

• Instead of computing the sum squared errors on a test set, you should compute...

 The total number of misclassifications on a testset

from Andrew Moore (CMU)
Cross-validation for classification

• Instead of computing the sum squared errors on a test set, you should compute...

The total number of misclassifications on a testset

• What’s LOOCV of 1-NN?
• What’s LOOCV of 3-NN?
• What’s LOOCV of 22-NN?
Cross-Validation for classification

- Choosing k for k-nearest neighbors
- Choosing Kernel parameters for SVM
- Any other “free” parameter of a classifier
- Choosing Features to use
 - 10 by 10 patches or 15 by 15 patches?
- Choosing which classifier to use
CV-based Model Selection

- We’re trying to decide which algorithm to use.
- We train each machine and make a table...

<table>
<thead>
<tr>
<th>f_i</th>
<th>Training Error</th>
<th>10-FOLD-CV Error</th>
<th>Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CV-based Model Selection

- Example: Choosing “k” for a k-nearest-neighbor regression.
- Step 1: Compute LOOCV error for six different model classes:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Training Error</th>
<th>10-fold-CV Error</th>
<th>Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>k=1</td>
<td>10.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>k=2</td>
<td>11.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>k=3</td>
<td>12.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>k=4</td>
<td>13.0</td>
<td>5.0</td>
<td>![X]</td>
</tr>
<tr>
<td>k=5</td>
<td>14.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>k=6</td>
<td>15.0</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

- Step 2: Choose model that gave best CV score
- Train it with all the data, and that’s the final model you’ll use
CV-based Model Selection

- Why stop at $k=6$?
 - No good reason, except it looked like things were getting worse as K was increasing
- Are we guaranteed that a local optimum of K vs LOOCV will be the global optimum?
 - No, in fact the relationship can be very bumpy
- What should we do if we are depressed at the expense of doing LOOCV for $k = 1$ through 1000?
 - Try: $k=1, 2, 4, 8, 16, 32, 64, ... ,1024$
 - Then do hillclimbing from an initial guess at k