Lecture 6
Curse of Dimensionality
PCA
Outline

- Curse of Dimensionality
- Dimensionality reduction with PCA
Curse of Dimensionality

- Problems of high dimensional data, “the curse of dimensionality”
 - running time
 - overfitting
 - number of samples required
- Dimensionality Reduction Methods
 - Principle Component Analysis
Curse of Dimensionality: Complexity

- Complexity (running time) increases with dimension d

- A lot of methods have at least $O(nd^2)$ complexity, where n is the number of samples

- For example if we need to estimate covariance matrix

- So as d becomes large, $O(nd^2)$ complexity may be too costly
Curse of Dimensionality: Number of Samples

- Suppose we want to use the nearest neighbor approach with $k = 1$ (1NN)
 - Suppose we start with only one feature

 ![Diagram showing 0 and 1 features]

 - This feature is not discriminative, i.e. it does not separate the classes well
 - We decide to use 2 features. For the 1NN method to work well, need a lot of samples, i.e. samples have to be dense
 - To maintain the same density as in 1D (9 samples per unit length), how many samples do we need?
Curse of Dimensionality: Number of Samples

- We need 9^2 samples to maintain the same density as in 1D.
Of course, when we go from 1 feature to 2, no one gives us more samples, we still have 9

This is way too sparse for 1NN to work well
Things go from bad to worse if we decide to use 3 features:

If 9 was dense enough in 1D, in 3D we need $9^3=729$ samples!
Curse of Dimensionality: Number of Samples

- In general, if \(n \) samples is dense enough in 1D
- Then in \(d \) dimensions we need \(n^d \) samples!
- And \(n^d \) grows really really fast as a function of \(d \)
- Common pitfall:
 - If we can’t solve a problem with a few features, adding more features seems like a good idea
 - However the number of samples usually stays the same
 - The method with more features is likely to perform worse instead of expected better
We should try to avoid creating lot of features
- Often no choice, problem starts with many features
- Example: Face Detection
 - One sample point is k by m array of pixels
 - Feature extraction is not trivial
 - Say pixel intensities are taken as a feature
 - Typical dimension is 20 by 20 = 400
 - Suppose **10** samples are dense enough for 1 dimension. Need only 10^{400} samples
The Curse of Dimensionality

- Face Detection, dimension of one sample point is km

 $\begin{bmatrix}
 \vdots \\
 \vdots \\
 \vdots \\
 \vdots \\
\end{bmatrix}

- The fact that we set up the problem with km dimensions (features) does not mean it is really a km-dimensional problem.
- Space of all k by m images has km dimensions.
- Space of all k by m faces must be much smaller, since faces form a tiny fraction of all possible images.
- Most likely we are not setting the problem up with the right features.
- If we used better features, we are likely need much less than km-dimensions.
Dimensionality Reduction

- High dimensionality is challenging and redundant
- It is natural to try to reduce dimensionality
- Reduce dimensionality by feature combination: combine old features x to create new features y

$$
x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} \rightarrow f \left(\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} \right) = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_k \end{bmatrix} = y \quad \text{with } k < d
$$

- For example,

$$
x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_2 \\ x_3 + x_4 \end{bmatrix} = y
$$

- Ideally, the new vector y should retain from x all information important for classification
Dimensionality Reduction

- The best $f(x)$ is most likely a non-linear function
- Linear functions are easier to find though
- For now, assume that $f(x)$ is a linear mapping
- Thus it can be represented by a matrix W:

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_d
\end{bmatrix} \Rightarrow W \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_d
\end{bmatrix} = \begin{bmatrix}
 w_{11} & \cdots & w_{1d} \\
 \vdots & \ddots & \vdots \\
 w_{k1} & \cdots & w_{kd}
\end{bmatrix} \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_d
\end{bmatrix} = \begin{bmatrix}
 y_1 \\
 \vdots \\
 y_k
\end{bmatrix} \text{ with } k < d
\]
Principle Component Analysis (PCA)

- **Main idea:** seek most accurate data representation in a lower dimensional space

- **Example in 2-D**
 - Project data to 1-D subspace (a line) which minimize the projection error

- Notice that the the good line to use for projection lies in the direction of largest variance
PCA

- After the data is projected on the best line, need to transform the coordinate system to get 1D representation for vector y

- Note that new data y has the same variance as old data x in the direction of the green line

- PCA preserves largest variances in the data
PCA: Approximation of Elliptical Cloud in 3D

best 2D approximation

best 1D approximation
PCA

- What is the direction of largest variance in data?
- Recall that if x has multivariate distribution $N(\mu, \Sigma)$, direction of largest variance is given by eigenvector corresponding to the largest eigenvalue of Σ

- This is a hint that we should be looking at the covariance matrix of the data (note that PCA can be applied to distributions other than Gaussian)
PCA: Linear Algebra Review

- Let V be a d dimensional linear space, and W be a k dimensional linear subspace of V
- We can always find a set of d dimensional vectors \{e_1, e_2, \ldots, e_k\} which forms an orthonormal basis for W
 - $\langle e_i, e_j \rangle = 0$ if i is not equal to j and $\langle e_i, e_i \rangle = 1$
- Thus any vector in W can be written as
 \[
 \alpha_1 e_1 + \alpha_2 e_2 + \ldots + \alpha_k e_k = \sum_{i=1}^{k} \alpha_i e_i \quad \text{for scalars } \alpha_1, \ldots, \alpha_k
 \]

Let $V = \mathbb{R}^2$ and W be the line $x-2y=0$. Then the orthonormal basis for W is
\[
\begin{bmatrix}
 2 / \sqrt{5} \\
 1 / \sqrt{5}
\end{bmatrix}
\]
PCA: Linear Algebra

- Recall that subspace W contains the zero vector, i.e. it goes through the origin.

- It is convenient to project to subspace W: thus we need to shift everything.
PCA Derivation: Shift by the Mean Vector

- Before PCA, subtract sample mean from the data
 \[x - \frac{1}{n} \sum_{i=1}^{n} x_i = x - \hat{\mu} \]

- The new data has zero mean: \(E(X - E(X)) = E(X) - E(X) = 0 \)

- All we did is change the coordinate system

- Another way to look at it:
 - first step of getting \(y \) is to subtract the mean of \(x \)
 \[x \rightarrow y = f(x) = g(x - \hat{\mu}) \]
PCA: Derivation

- We want to find the most accurate representation of data \(D = \{x_1, x_2, \ldots, x_n\}\) in some subspace \(W\) which has dimension \(k < d\).
- Let \(\{e_1, e_2, \ldots, e_k\}\) be the orthonormal basis for \(W\). Any vector in \(W\) can be written as \(\sum_{i=1}^{k} \alpha_i e_i\).
- Thus \(x_1\) will be represented by some vector in \(W\) \(\sum_{i=1}^{k} \alpha_1_i e_i\).
- Error this representation:

\[
\text{error} = \left\| x_1 - \sum_{i=1}^{k} \alpha_1_i e_i \right\|^2
\]
PCA: Derivation

- To find the total error, we need to sum over all x_j's.
- Any x_j can be written as $\sum_{i=1}^{k} \alpha_{ji}e_i$.
- Thus the total error for representation of all data D is:

$$J(e_1, ..., e_k, \alpha_{11}, ..., \alpha_{nk}) = \sum_{j=1}^{n} \left| x_j - \sum_{i=1}^{k} \alpha_{ji}e_i \right|^2$$

unknowns | error at one point
sum over all data points
PCA: Derivation

- A lot of math……to finally get:

- Let S be the scatter matrix, it is just $n-1$ times the sample covariance matrix

\[
\hat{\Sigma} = \frac{1}{n-1} \sum_{j=1}^{n} (x_j - \hat{\mu})(x_j - \hat{\mu})^t
\]

- To minimize J take for the basis of W the k eigenvectors of S corresponding to the k largest eigenvalues
PCA

- The larger the eigenvalue of S, the larger is the variance in the direction of corresponding eigenvector.

- This result is exactly what we expected: project \mathbf{x} into subspace of dimension k which has the largest variance.

- This is very intuitive: restrict attention to directions where the scatter is the greatest.

\[\lambda_1 = 30 \]
\[\lambda_2 = 0.8 \]
Thus PCA can be thought of as finding new orthogonal basis by rotating the old axis until the directions of maximum variance are found.
PCA as Data Approximation

- Let \(\{e_1, e_2, \ldots, e_d\} \) be all \(d \) eigenvectors of the scatter matrix \(S \), sorted in order of decreasing corresponding eigenvalue.

- Without any approximation, for any sample \(x_i \):

\[
x_i = \sum_{j=1}^{d} \alpha_j e_j = \alpha_1 e_1 + \ldots + \alpha_k e_k + \alpha_{k+1} e_{k+1} + \ldots + \alpha_d e_d
\]

- Coefficients \(\alpha_m = x_i^t e_m \) are called *principle components*.
 - The larger \(k \), the better is the approximation.
 - Components are arranged in order of importance, more important components come first.

- Thus PCA takes the first \(k \) most important components of \(x_i \) as an approximation to \(x_i \).
PCA: Last Step

- Now we know how to project the data
- Last step is to change the coordinates to get final k-dimensional vector y

Let matrix $E = [e_1 \cdots e_k]$

Then the coordinate transformation is $y = E^t x$

Under E^t, the eigenvectors become the standard basis:

$$E^t e_i = \begin{bmatrix} e_1 \\ \vdots \\ e_i \\ \vdots \\ e_k \end{bmatrix} e_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$
Recipe for Dimension Reduction with PCA

Data \(D = \{ x_1, x_2, \ldots, x_n \} \). Each \(x_i \) is a \(d \)-dimensional vector. Wish to use PCA to reduce dimension to \(k \)

1. Find the sample mean \(\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \)
2. Subtract sample mean from the data \(z_i = x_i - \hat{\mu} \)
3. Compute the scatter matrix \(S = \sum_{i=1}^{n} z_i z_i^t \)
4. Compute eigenvectors \(e_1, e_2, \ldots, e_k \) corresponding to the \(k \) largest eigenvalues of \(S \)
5. Let \(e_1, e_2, \ldots, e_k \) be the columns of matrix \(E = [e_1 \cdots e_k] \)
6. The desired \(y \) which is the closest approximation to \(x \) is \(y = E^t z \)
Drawbacks of PCA

- PCA was designed for accurate *data representation*, not for *data classification*
- Preserves as much variance in data as possible
- If directions of maximum variance is important for classification, will work

- However, the directions of maximum variance may be useless for classification

apply PCA to each class