Lecture 9

Boosting

Some slides are due to Robin Dhamankar
Vandi Verma & Sebastian Thrun
Today

• New Machine Learning Topics:
 • Ensemble Learning
 • Bagging
 • Boosting
So far we have talked about design of a single classifier that generalizes well (want to “learn” \(f(x) \))

From statistics, we know that it is good to average your predictions (reduces variance)

Bagging is based on ensemble learning ideas

Boosting was inspired by bagging
Bagging

- Generate a random sample from training set by selecting I elements (out of N elements available) with replacement
- If $I = N$, the new sampled dataset has, on average, 63.2% of training examples
 - each example has a probability of $1 - (1-1/N)^N$ of being selected at least once. For $N \to \infty$, this converges to $(1 - 1/e)$ or 0.632 [Bauer and Kohavi, 1999]
- Repeat the sampling procedure, getting a sequence of k independent training sets
- Train classifiers $f_1(x), f_2(x), \ldots, f_k(x)$ for each of these training sets, using the same classification algorithm
- To classify an unknown sample x, let each classifier predict
- The bagged classifier $f_{\text{FINAL}}(x)$ combines predictions of individual classifiers, frequently by simple voting
 $$f_{\text{FINAL}}(x) = \text{sign} \left[\frac{1}{k} \sum f_i(x) \right]$$
Boosting: Motivation

• Hard to design accurate classifier which generalizes well
• Easy to find many rule of thumb or weak classifiers
 • a classifier is weak if it is slightly better than random guessing
 • example: if an email has word “money” classify it as spam, otherwise classify it as not spam
 • likely to be better than random guessing
• How combine weak classifiers to produce an accurate classifier?
 • Question people have been working on since 1980’s
 • Ada-Boost (1996) was the first practical boosting algorithm
• Boosting
 • Assign different weights to training samples in a “smart” way so that different classifiers pay more attention to different samples
 • Weighted majority voting, the weight of individual classifier is proportional to its accuracy
 • Ada-boost was influenced by bagging, and it is superior to bagging
Ada Boost

• Assume 2-class problem, with labels +1 and -1
 • \(y_i \) in \{-1,1\}

• Ada boost produces a discriminant function:
 \[
g(x) = \sum_{t=1}^{T} \alpha_t h_t(x) = \alpha_1 h_1(x) + \alpha_2 h_2(x) + \ldots + \alpha_T h_T(x)
 \]

• Where \(h_t(x) \) is a weak classifier, for example:
 \[
h_t(x) = \begin{cases}
-1 & \text{if email has word “money”} \\
1 & \text{if email does not have word “money”}
\end{cases}
 \]

• The final classifier is the sign of the discriminant function
 \[
f_{\text{final}}(x) = \text{sign}[g(x)]
 \]
Idea Behind Ada Boost

- Algorithm is iterative
- Maintains distribution of weights over the training examples
- Initially weights are equal
- Main Idea: at successive iterations, the weight of misclassified examples is increased
- This forces the algorithm to concentrate on examples that have not been classified correctly so far
Idea Behind Ada Boost

- Examples of high weight are shown more often at later rounds
- Face/nonface classification problem:

Round 1

<table>
<thead>
<tr>
<th>Example</th>
<th>Round 1</th>
<th>Round 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face</td>
<td>1/7</td>
<td>1/8</td>
</tr>
<tr>
<td>Face</td>
<td>1/7</td>
<td>1/32</td>
</tr>
<tr>
<td>Face</td>
<td>1/7</td>
<td>1/32</td>
</tr>
<tr>
<td>Face</td>
<td>1/7</td>
<td>1/2</td>
</tr>
<tr>
<td>Face</td>
<td>1/7</td>
<td>1/8</td>
</tr>
<tr>
<td>Face</td>
<td>1/7</td>
<td>1/32</td>
</tr>
<tr>
<td>Face</td>
<td>1/7</td>
<td>1/32</td>
</tr>
</tbody>
</table>

best weak classifier:

- Round 1: [✓, ✗, ✓, ✓, ✗, ✓, ✗]
- Round 2: [✓, ✓, ✓, ✗, ✗, ✗, ✓, ✓, ✓]

change weights:

- Round 1: [1/16, 1/4, 1/16, 1/16, 1/4, 1/16, 1/4]
- Round 2: [1/8, 1/32, 11/32, 1/2, 1/8, 1/32, 1/32]
Idea Behind Ada Boost

Round 3

- Out of all available weak classifiers, we choose the one that works best on the data we have at round 3.
- We assume there is always a weak classifier better than random (better than 50% error).
- Image is half of the data given to the classifier.
- Chosen weak classifier **has to** classify this image correctly.
More Comments on Ada Boost

- Ada boost is simple to implement, provided you have an implementation of a “weak learner”

- Will work as long as the “basic” classifier $h_t(x)$ is at least slightly better than random
 - will work if the error rate of $h_t(x)$ is less than 0.5
 - 0.5 is the error rate of a random guessing for a 2-class problem

- Can be applied to boost any classifier, not necessarily weak
 - but there may be no benefits in boosting a “strong” classifier
Ada Boost for 2 Classes

Initialization step: for each example \(x \), set

\[
D(x) = \frac{1}{N},
\]
where \(N \) is the number of examples

Iteration step (for \(t = 1...T \)):

1. Find best weak classifier \(h_t(x) \) using weights \(D(x) \)
2. Compute the error rate \(\varepsilon_t \) as

\[
\varepsilon_t = \sum_{i=1}^{N} D(x^i) \cdot I[y^i \neq h_t(x^i)]
\]

3. Compute weight \(\alpha_t \) of classifier \(h_t \)

\[
\alpha_t = \log \left(\frac{(1-\varepsilon_t)}{\varepsilon_t} \right)
\]

4. For each \(x^i \), \(D(x^i) = D(x^i) \cdot \exp(\alpha_t \cdot I[y^i \neq h_t(x^i)]) \)

5. Normalize \(D(x^i) \) so that

\[
\sum_{i=1}^{N} D(x^i) = 1
\]

\[
f_{\text{final}}(x) = \text{sign} \left[\sum \alpha_t h_t(x) \right]
\]
Ada Boost: Step 1

1. Find best weak classifier $h_t(x)$ using weights $D(x)$
 - some classifiers accept weighted samples, but most don’t
 - if classifier does not take weighted samples, sample from the training samples according to the distribution $D(x)$

 | 1/16 | 1/4 | 1/16 | 1/16 | 1/4 | 1/16 | 1/4 |

- Draw k samples, each x with probability equal to $D(x)$:

 re-sampled examples
1. Find best weak classifier $h_t(x)$ using weights $D(x)$

- Give to the classifier the re-sampled examples:

- To find the best weak classifier, go through all weak classifiers, and find the one that gives the smallest error on the re-sampled examples

<table>
<thead>
<tr>
<th>weak classifiers</th>
<th>$h_1(x)$</th>
<th>$h_2(x)$</th>
<th>$h_3(x)$</th>
<th>$h_m(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>errors</td>
<td>0.46</td>
<td>0.36</td>
<td>0.16</td>
<td>0.43</td>
</tr>
</tbody>
</table>

the best classifier $h_t(x)$ to choose at iteration t
2. Compute ε_t the error rate as

$$
\varepsilon_t = \sum_{i=1}^{N} D(x^i) \cdot I[y^i \neq h_t(x^i)]
$$

$$
= \begin{cases}
1 & \text{if } y^i \neq h_t(x^i) \\
0 & \text{otherwise}
\end{cases}
$$

- ε_t is the weight of all misclassified examples added
- the error rate is computed over original examples, not the re-sampled examples
- If a weak classifier is better than random, then $\varepsilon_t < \frac{1}{2}$
Ada Boost: Step 3

3. compute weight α_t of classifier h_t

$$\alpha_t = \log \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)$$

In example from previous slide:

$$\varepsilon_t = \frac{5}{16} \quad \Rightarrow \quad \alpha_t = \log \left(\frac{1 - \frac{5}{16}}{\frac{5}{16}} \right) = \log \frac{11}{5} \approx 0.8$$

- Recall that $\varepsilon_t < \frac{1}{2}$
- Thus $(1 - \varepsilon_t)/\varepsilon_t > 1 \Rightarrow \alpha_t > 0$
- The smaller is ε_t, the larger is α_t, and thus the more importance (weight) classifier $h_t(x)$

$$\text{final}(x) = \text{sign} \left[\sum \alpha_t h_t(x) \right]$$
Ada Boost: Step 4

4. For each x^i, $D(x^i) = D(x^i) \cdot \exp(\alpha_t \cdot I[y^i \neq h_t(x^i)])$

from previous slide $\alpha_t = 0.8$

• weight of misclassified examples is increased
5. Normalize $D(x_i)$ so that $\sum D(x_i) = 1$

from previous slide:

<table>
<thead>
<tr>
<th></th>
<th>1/16</th>
<th>1/4</th>
<th>1/16</th>
<th>0.14</th>
<th>0.56</th>
<th>1/16</th>
<th>1/4</th>
</tr>
</thead>
</table>

• after normalization

| | 0.05 | 0.18 | 0.05 | 0.10 | 0.40 | 0.05 | 0.18 |
AdaBoost Example

- Initialization: all examples have equal weights

From “A Tutorial on Boosting” by Yoav Freund and Rob Schapire
AdaBoost Example

ROUND 1

\[h_1(x) = \text{sign} \left(3 - x_1 \right) \]

- \(\varepsilon_1 = 0.30 \)
- \(\alpha_1 = 0.42 \)
AdaBoost Example

ROUND 2

$h_2(x) = \text{sign} \left(7 - x_1 \right)$

$\varepsilon_2 = 0.21$

$\alpha_2 = 0.65$
AdaBoost Example

ROUND 3

$$h_3(x) = \text{sign} \left(x_2 - 4 \right)$$

$$\varepsilon_3 = 0.14$$

$$\alpha_3 = 0.92$$
$f_{\text{final}}(x) = \text{sign} (0.42 \text{ sign } (3 - x_1) + 0.65 \text{ sign } (7 - x_1) + 0.92 \text{ sign } (x_2 - 4))$

- note non-linear decision boundary
AdaBoost Comments

• Can show that training error drops exponentially fast

\[\text{Err}_{\text{train}} \leq \exp \left(-2 \sum_t \gamma_t^2 \right) \]

• Here \(\gamma_t = \varepsilon_t - 1/2 \), where \(\varepsilon_t \) is classification error at round \(t \)

• Example: let errors for the first four rounds be, 0.3, 0.14, 0.06, 0.03, 0.01 respectively. Then

\[\text{Err}_{\text{train}} \leq \exp \left[-2 \left(0.2^2 + 0.36^2 + 0.44^2 + 0.47^2 + 0.49^2 \right) \right] \]

\[\approx 0.19 \]
AdaBoost Comments

- We are really interested in the generalization properties of $f_{\text{FINAL}}(x)$, not the training error.
- AdaBoost was shown to have excellent generalization properties in practice:
 - the more rounds, the more complex is the final classifier, so overfitting is expected as the training proceeds.
 - but in the beginning researchers observed no overfitting of the data.
 - It turns out it does overfit data eventually, if you run it really long.
- It can be shown that boosting increases the margins of training examples, as iterations proceed:
 - larger margins help better generalization.
 - margins continue to increase even when training error reaches zero.
 - helps to explain empirically observed phenomena: test error continues to drop even after training error reaches zero.
AdaBoost Example

- zero training error
- larger margins helps better generalization

new (test) example

keep training

- zero training error
Margin Distribution

<table>
<thead>
<tr>
<th>Iteration number</th>
<th>5</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>training error</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>test error</td>
<td>8.4</td>
<td>3.3</td>
<td>3.1</td>
</tr>
<tr>
<td>%margins ≤ 0.5</td>
<td>7.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Minimum margin</td>
<td>0.14</td>
<td>0.52</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Boosting As Additive Model

- The final prediction in boosting $g(x)$ can be expressed as an additive expansion of individual classifiers

$$ g(x) = \sum_{k=1}^{M} \alpha_k f_k(x; \gamma_k) $$

- Typically we would try to minimize a loss function on the N training examples

$$ \min_{\alpha_1, \gamma_1, \ldots, \gamma_M, \alpha_M} \sum_{i=1}^{N} L \left(y_i, \sum_{k=1}^{M} \alpha_k f_k(x_i; \gamma_k) \right) $$

- For example, under squared-error loss:

$$ \min_{\alpha_1, \gamma_1, \ldots, \gamma_M, \alpha_M} \sum_{i=1}^{N} \left(y_i - \sum_{k=1}^{M} \alpha_k f_k(x_i; \gamma_k) \right)^2 $$
Boosting As Additive Model

- Forward stage-wise modeling is iterative and fits the $f_k(x, \gamma_k)$ sequentially, fixing the results of previous iterations.

$$g_t(x) = g_{t-1}(x) + \alpha_t f_t(x; \gamma_t)$$

- Under the squared difference loss function:

$$L(y_i, g_{t-1}(x_i) + \alpha_t f_t(x_i; \gamma_t)) =$$

$$= (y_i - g_{t-1}(x_i) - \alpha_t f_t(x_i; \gamma_t))^2$$

- Forward stage-wise optimization seems to produce classifier with better generalization, doing the process stagewise seems to overfit less quickly.
Boosting As Additive Model

\[g(x) = \sum_{k=1}^{M} \alpha_k f_k(x ; \gamma_k) \]

• It can be shown that AdaBoost uses forward stage-wise modeling under the following loss function:

 • \(L(y, g(x)) = \exp(-y \cdot g(x)) \)

 • the exponential loss function

 • At stage (or iteration) \(m \), we fit:

\[
\begin{align*}
\arg\min_{\alpha_m, f_m} \sum_{i=1}^{N} L(y_i, g(x_i)) &= \\
&= \arg\min_{\alpha_m, f_m} \sum_{i=1}^{N} \exp(-y_i \cdot [g_{m-1}(x_i) + \alpha_m \cdot f_m(x_i)]) \\
&= \arg\min_{\alpha_m, f_m} \sum_{i=1}^{N} \exp(-y_i \cdot g_{m-1}(x_i)) \cdot \exp(-y_i \cdot \alpha_m \cdot f_m(x_i))
\end{align*}
\]
Exponential Loss vs. Squared Error Loss

- $L(y, g(x)) = \exp(-y \cdot g(x))$
- $L(y, g(x)) = (y - g(x))^2$

Squared Error Loss penalizes classifications that are “too correct”, with $y \cdot g(x) > 1$, and thus it is inappropriate for classification.

Exponential loss encourages large margins, want $y \cdot g(x)$ large.
Logistic Regression Model

• It can be shown that Adaboost builds a logistic regression model:

\[
g(x) = \log \frac{Pr \left(Y = 1 \mid x \right)}{Pr \left(Y = -1 \mid x \right)} = \sum_{k=1}^{M} \alpha_m f_m(x)
\]

• It can also be shown that the training error on the samples is at most:

\[
\sum_{i=1}^{N} \exp \left(-y_i \cdot g(x_i) \right) = \sum_{i=1}^{N} \exp \left(-y_i \cdot \sum_{k=1}^{M} \alpha_m f_m(x_i) \right)
\]
Practical Advantages of AdaBoost

- Can construct arbitrarily complex decision regions
- Fast
- Simple
- Has only one parameter to tune, T
- Flexible: can be combined with any classifier
- Provably effective (assuming weak learner)
 - Shift in mind set: goal now is merely to find hypotheses that are better than random guessing
Caveats

• AdaBoost can fail if
 • weak hypothesis too complex (overfitting)
 • weak hypothesis too weak ($\gamma_t \rightarrow 0$ too quickly),
 • underfitting
• empirically, AdaBoost seems especially susceptible to noise
 • noise is the data with wrong labels