
Lecture 10

Neural Networks

Many slides are from A. Ng, Y. LeCun, G. Hinton, A. Ranzato, Fei-Fei Li, R. Fergus

CS9840
Learning and Computer Vision

Prof. Olga Veksler

Outline

• Intro/History
• Perceptron: 1 layer Neural Network (NN)
• Multilayer NN

• also called
• Multilayer Perceptron (MLP)
• Artificial Neural Network (ANN)
• Feedforward Neural Network

• Training Neural Networks
• Backpropagation algorithm
• Practical tips for training

Artificial Neural Networks

x1

x2 • Neural Networks correspond to some
classifier function fNN(x)

• Can carve out arbitrarily complex decision
boundaries without requiring as many
terms as polynomial functions

• Originally inspired by research in how
human brain works

• but cannot claim that this is how the brain
actually works

• Now very successful in practice, but took a
while to get there

ANN History: First Successes
• 1958, F. Rosenblatt, Cornell University

• Perceptron, oldest neural network
• studied in lecture on linear classifiers

• Algorithm to train the Perceptron
• Built in hardware to recognize digits images
• Proved convergence in linearly separable case
• Early success lead to a lot of claims which were not fulfilled
• New York Times reports that perceptron is "the embryo of

an electronic computer that [the Navy] expects will be able
to walk, talk, see, write, reproduce itself and be conscious of
its existence."

ANN History: Stagnation
• 1969, M. Minsky and S. Pappert

• Book “Perceptrons”
• Proved that perceptrons can learn only linearly separable

classes
• In particular cannot learn very simple XOR function
• Conjectured that multilayer neural networks also limited by

linearly separable functions

• No funding and almost no research (at least in North
America) in 1970’s as the result of 2 things above

ANN History: Revival & Stagnation (Again)
• Revival of ANN in early 1980
• 1986, (re)discovery of backpropagation algorithm

by Werbos, Rumelhart, Hinton and Ronald Williams
• Allows training a MLP

• Many examples of mulitlayer Neural Networks appear
• 1998, Convolutional network (convnet) by Y. Lecun for

digit recognition, very successful
• 1990’s: research in NN move slowly again

• Networks with multiple layers are hard to train well (except
convnet for digit recognition)

• SVM becomes popular, works better

ANN History: Deep Learning Age
• Deep networks are inspired by brain architecture
• Until now, no success at training them, except convnet
• 2006-now: deep networks are trained successfully

• massive training data becomes available
• better hardware: fast training on GPU
• better training algorithms for network training when there are

many hidden layers
• unsupervised learning of features, helps when training data is limited

• Break through papers
• Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep

belief nets. Neural Computation, 18:1527-1554.
• Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007). Greedy Layer-Wise Training

of Deep Networks, Advances in Neural Information Processing Systems 19

• Industry: Facebook, Google, Microsoft, etc.

Biology: Neuron, Basic Brain Processor
• Neurons (or nerve cells) are special cells that

process and transmit information by
electrical signaling
• in brain and also spinal cord

• Human brain has around 1011 neurons
• A neuron connects to other neurons to form

a network
• Each neuron cell communicates to anywhere

from 1000 to 10,000 other neurons

Biology: Main Components of Neuron

9

dendrites

nucleus

cell
body

axon

axon
terminals

• cell body
• computational unit

• dendrites
• “input wires”, receive inputs from other neurons
• a neuron may have thousands of dendrites, usually short

• axon
• “output wire”, sends signal to other neurons
• single long structure (up to 1 meter)
• splits in possibly thousands branches at the end, “axon terminals”

Perceptron: 1 Layer Neural Network

• Linear classifier f(x) = sign(wtx+w0) is a single neuron “net”

x1

x2

sign(wtx+w0)

1

w1

w2

w0

layer 2
output layer

layer 1
input layer

bias unit

• Input layer units emits features, except bias emits “1”
• Output layer unit applies h(t) = sign(t)
• h(t) is also called an activation function

Multilayer Neural Network

x1

x2

1

layer 3
output layer

layer 1
Input layer

layer 2
hidden layer

• First hidden unit outputs h(w0+w1x1 +w2x2)

w
w

 h(wh(·)+wh(∙))

• Network implements classifier f(x) = h(wh(∙)+wh(∙))
• More complex boundaries than Perceptron

• Second hidden unit outputs h(w0+w1x1 +w2x2)

Multilayer Neural Network: Small Example

x1

x2

1

• Implements classifier

 f(x) = sign(4h(⋅)+2h(⋅) + 7)
 = sign(4 sign(3x1+5x2)+2 sign(6+3x2) + 7)

• Computing f(x) is called feed forward operation
• graphically, function is computed from left to right

• Edge weights are learned through training

7
6

3
5

3

4

2

Multilayer NN: General Structure
layer 3

output layer

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

 h(·)

h(·)

h(·)

 = f1(x)

 = f2(x)

 = f3(x) 














= f(x)

• Classification
• If f1(x) is largest, decide class 1
• If f2(x) is largest, decide class 2
• If f3(x) is largest, decide class 3

• f (x) is multi-dimensional

Multilayer NN : Multiple Classes

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• 3 classes, 2 features, 1 hidden layer
• 3 input units, one for each feature
• 3 output units, one for each class
• 2 hidden units
• 1 bias unit, can draw in layer 1, or each layer has one

layer 3
output layer

Multilayer NN : General Structure

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• Input layer: d features, d input units
• Output layer: m classes, m output units
• Hidden layer: how many units?

• more units correspond to more complex classifiers

layer 3
output layer

Multilayer NN : General Structure

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• Can have many hidden layers
• Feed forward structure

• ith layer connects to (i+1)th layer
• except bias unit can connect to any layer
• or, alternatively each layer can have its own bias unit

layer 4
output layer

layer 3
hidden layer

Multilayer NN : Overview
• NN corresponds to rather complex classifier f(x,w)

• complexity depends on the number of hidden layers/units
• f(x,w) is a composition of many functions

• easier to visualize as a network
• notation gets ugly

• To train NN, just as before
• formulate an objective or loss function L(w)
• optimize it with gradient descent

• lots of heuristics to get gradient descent work well enough

Multilayer NN : Expressive Power
• Every continuous function from input to output can be

implemented with enough hidden units, 1 hidden layer,
and proper nonlinear activation functions
• easy to show that with linear activation function, multilayer

neural network is equivalent to perceptron

 • More of theoretical than practical interest
• do not know the desired function in the first place, our goal is

to learn it through the samples
• but this result gives confidence that we are on the right track

• multilayer NN is general (expressive) enough to construct any required
decision boundaries, unlike the Perceptron

Multilayer NN: Decision Boundaries

• Perceptron (single
layer neural net)

• Multilayer NN
• Arbitrarily complex

decision regions
• Even not contiguous

Multilayer NN : Nonlinear Boundary Example

x1

x2

1 -1

-1

1

 – x1 + x2 – 1 > 0 ⇒ class 1

x1

x2

1 -3

1

-1

 x1 - x2 – 3 > 0 ⇒class 1

x1

x2

-1

1
x1

x2

-3

3

Multilayer NN : Nonlinear Boundary Example

x1

x2

1 -1
-1
1

-3
 1
-1

• Combine two Perceptrons into a 3 layer NN

1.5

1

1

x1

x2

-1

1 x1

x2

-3

3 + x1

x2

-3

3

1

-1

Multilayer NN as Non-Linear Feature Mapping

x1

x2

1

• Interpretation
• 1 hidden layer maps input features to new features
• next layer then applies linear classifier to the new features

Multilayer NN as Non-Linear Feature Mapping

x1

x2

1

 this part implements
Perceptron (liner classifier)

y1

y2

y3

Multilayer NN as Non-Linear Feature Mapping

x1

x2

1

 this part implements
mapping to new features y

y1

y2

y3

Multilayer NN as Non-Linear Feature Mapping

x1

x2

1 -1
-1
1

-3
 1

-1

1.5

1
1

• Consider 3 layer NN example we saw previously:

x1

x2

non linearly separable in
the original feature space

+

y1

y2

linearly separable in the
new feature space

Multi Layer NN: Activation Function

• h() = sign() does not work for gradient
descent

• Can use tanh or sigmoid function

• Rectified Linear (ReLu) popular recently
• gradients do not saturate for positive half-

interval
• but have to be careful with learning rate,

otherwise many units can become “dead”, i.e.
always output 0

• Due to historical reasons, training and testing stages
have special names
• Backpropagation (or training)
 Minimize objective function with gradient descent

• Feedforward (or testing)

Multilayer NN: Modes of Operation

Multilayer NN: Vector Notation
• Convenient compact notation
• For Perceptron

x1

x2

sign(w·x+w0)

1

w1

w2

w0

x =
x2

x1 w =
w2

w1

Multilayer NN: Vector Notation
• Change notation a bit

x1

x2

sign(w·x+b)

1

w1

w2

b

Multilayer NN: Vector Notation
• Do not draw bias unit

 x1

x2

sign(w·x+b)
w1

w2

• Compact picture
• h(t) = sign(t)

x
h(w·x +b) h

Multilayer NN: Vector Notation

x2

h1

h1

h

h

h

h

1
3
5
2

x1

• Consider the first layer (2 perceptrons)

Multilayer NN: Vector Notation for First Layer

x
h(w1·x +b1) h1=h(w1·x +b1)

x
h(w2·x +b2) h2=h(w2·x +b2)

w1 =
5

1

w2 =
2

3

x2

h

h

1
3
5
2

x1

• Red perceptron has weights w1 and bias b1

• Green perceptron has weights w2 and bias b2

Multilayer NN: Vector Notation for First Layer

1 5

3 2

w1 =
5

1 w2 =
2

3

x
h(w1·x +b1) h1=h(w1·x +b1)

x
h(w2·x +b2) h2=h(w2·x +b2)

w1·x

w2·x

W1

x2

x1

=

 · x

Multilayer NN: Vector Notation for First Layer

1 5

3 2

w1 =
5

1
w2 =

2

3

x
h(w1·x +b1) h1=h(w1·x +b1)

x
h(w2·x +b2) h2=h(w2·x +b2)

w1·x +b1

w2·x+b2

W1

x2

x1

=

 · x + b1

b2

b1

+

Multilayer NN: Vector Notation for First Layer

1 5

3 2

w1 =
5

1 w2 =
2

3

x
h(w1·x +b1) h1=h(w1·x +b1)

x
h(w2·x +b2) h2=h(w2·x +b2)

h1

h2

h(W1

x2

x1

=

 · x + b1)

b2

b1

+ h

• h(v) for vector v means applying h to each component of v

Multilayer NN: Vector Notation for First Layer

x
h(w1·x +b1) h1=h(w1·x +b1)

x
h(w2·x +b2) h2=h(w2·x +b2)

more compact

x
h(W1x +b1) h1

W1 = 1 5
3 2

h1 =h(W1x +b1)=

h2

h1

b1 =
b2

b1

• h(v) for vector v means applying h to each component of v

Multilayer NN: Vector Notation for Next Layer

x2

x
h(W1x +b1)

h

h
h

h

h

h

h1
h(W2h1 +b2)

h2

1
3
5
2

x1

• W2 is a matrix of weights between hidden layer 1 and 2
• W2(r,c) is weight from unit c to unit r

• b2 is a vector of bias weights for second hidden layer
• b2

r is bias weight of unit r in second layer
• h2 is a vector of second layer outputs

• h2
r is output of unit r in second layer

Multilayer NN: Vector Notation, all Layers

• Complete depiction
 x

h(W1x +b1)
h1

h(W2h1 +b2)
h2

h(W3h2 +b3)

h3=o

• h3 = o is vector from the output layer
• o = h(W3h2 +b3)

 = h(W3h(W2h1 +b2)+b3)
 = h(W3h(W2h(W1x +b1)+b2)+b3)

x2

h

h
h

h

h

h

1
3
5
2

x1

Multilayer NN: Output Representation
• Output of NN is a vector
• As before, if xi be sample of class k, its label is

 yi= row k























0

1

0





• Ideal output
• unit ok = 1
• other output units zero





















0

1

0




row k f(xi) = o =

• Wish to minimize difference between yi and f(xi)
• Let W be all edge weights
• With squared difference loss
• Squared loss on one example xi :

Training NN: Squared Difference Loss

() () ()()∑
=

−=−=
m

j

i
j

i
j

iiii yxfyxfWyxL
1

22
;,

















0
1
0

















−2
1
3

f(x) = o = yi =

• For this example, squared loss is 32+22=13

• f depends on W, but too cumbersome to write f(x,W) everywhere

Training NN: Squared Difference Loss

() ()∑
=

−=
n

i

ii yxfWYXL
1

2
;,• Loss on all examples:

• Gradient descent

initialize w to random
choose ε, α
while α||∇L(X,Y;W)|| > ε
 w = w - α∇L(X,Y;W)

• Let X = x1 ,…, xn
 Y = y1 ,…, yn

• First put the output o through soft-max

Training NN: Cross Entropy Loss

() ()
()∑ =

= m

j j

k
k

o
oxf

1
exp

exp

• Squared error loss is usually not recommended for classification
• Better Loss function for classification: Cross Entropy

• Interpret fk(x) as probability of class k






















−

4
8
5
1
6.0

o = = f(x) = sofmax(o)























17.0
94.0

047.0
0001.0
006.0

Training NN: Cross Entropy Loss

• One sample cross entropy loss, dropping superscripts from xi, yi:

() ()∑−= j jj xfyWyxL log;,

• Loss on all samples

() ()∑= WyxLWYXL ;,;,

() ()xfWyxL klog;, −=

• If sample x is of class k, then the above is equivalent to

• this loss function is also called –log loss
• minimizing –log is equivalent to maximizing probability

• Need to find derivative of L wrt every network weight wi

Training NN: -Log Loss Function

• Update weight:

• After derivative found, according to gradient descent,
weight update is

iii www ∆+=

i
i w

Lw
∂
∂

α−=∆

iw
L

∂
∂

• where α is the learning rate

Training NN: -Log Loss Function
• How many weights do we have in our network?

x
h(W1x +b1)

h1
h(W2h1 +b2)

h2
h(W3h2 +b3)

o

b1 []
• Weights are in matrices W1,W2,…,WL

• And are in matrices b1,b2,…,bL

[]W2 W1 [] W3 []
b3 []b2 []

Computing Derivatives: Small Example

• Small network f(x,y,z) = (x+y)z
• Rewrite using

• q = x + y
• f(x,y,z) = qz
• each node does one

operation

x

y

z

q=x+y
f=qz

Computing Derivatives: Small Example

x

y

• Small network f(x,y,z) = (x+y)z
• Rewrite using

• q = x + y
• f(x,y,z) = qz

• Example of computing f(-2,5,-4)

z

q=x+y
f=qz

-2

5

-4

3 -12

Computing Derivatives: Small Example

x

y

z

q=x+y
f=qz

-2

5

-4

3

-12

z
f

y
f

x
f

∂
∂

∂
∂

∂
∂ ,,• Want

• Small network f(x,y,z) = (x+y)z

• Rewrite using q = x + y f(x,y,z) = qz ⇒

1=
∂
∂

f
f

4−==
∂
∂ z
q
f

4−=
∂
∂

∂
∂

=
∂
∂

x
q

q
f

x
f

4−=
∂
∂

∂
∂

=
∂
∂

y
q

q
f

y
f

3==
∂
∂ q

z
f

• Compute from the end backwards
• for each edge, with respect to the main variable at edge origin
• using chain rule with respect to the variable at edge end, if needed

∂
∂f

chain rule for f(y(x))

x
y

y
f

x
f

∂
∂

∂
∂

=
∂
∂

Computing Derivatives: Chain of Chain Rule

a ()ahb = ()bhc = ()chd =

c
d
∂
∂

b
c

c
d

b
d

∂
∂

∂
∂

=
∂
∂

a
b

b
d

a
d

∂
∂

∂
∂

=
∂
∂

d

local local prev local prev

direction of computation • Compute from the end backwards
• for each edge, with respect to the main variable at edge origin
• using chain rule with respect to the variable at edge end, if needed

∂
∂d

c
c
h

c
dthencchifexample 2,)(: 2 =

∂
∂

=
∂
∂

=

Computing Derivatives Backwards

x
h(W1x +b1)

h1
h(W2h1 +b2)

h2
h(W3h2 +b3)

o

direction of computation
• Have loss function L(o)

• Need derivatives for all

b
L

w
L

∂
∂

∂
∂ ,

• Will compute derivatives from end to front, backwards

• On the way will also compute intermediate derivatives

h
L
∂
∂

L(o)

Computing Derivatives: Look at One Node

• Simplified view at a network node
• inputs x,y come in
• node computes some function h(x,y)

x

y ()yxh , h

Computing Derivatives: Look at One Node
• At each network node

• inputs x,y come in
• nodes computes activation function h(x,y)

• Have loss function L(·)

 x

y ()yxh , h

already computed h
L
∂
∂

?
x
L
∂
∂

?
y
L
∂
∂

Computing Derivatives: Look at One Node

y
L

x
L

∂
∂

∂
∂ ,• Need

 • Easy to compute local node derivatives

y
h

x
h

∂
∂

∂
∂ ,

x

y ()yxh , h

already computed

x
L
∂
∂

y
L
∂
∂

x
h

h
L
∂
∂

∂
∂

=

y
h

h
L
∂
∂

∂
∂

= h
L
∂
∂

Computing Derivatives: Look at One Node
• More complete view at a network node

• inputs x,y come in, get multiplied by weight w and v
• node computes function h(wx,vy)
• node output h gets multiplied by u

 wx

vy ()vywxh , uh

Computing Derivatives: Look at One Node

wx

vy ()vywxh , uh

• To be concrete, let h(i,j) = i + j

Computing Derivatives: Look at One Node

• Break into more computational nodes
• all computation happens inside nodes, not on edges

wx

vy ()vywxh , uh

wxa=
w
x
v
y

vyb =
bah += uhc =

• h(i,j) = i + j

Computing Derivatives: Look at One Node

wxa=
w
x

v
y

vyb =

bah += uhc =

already
computed

c
L
∂
∂

h
c

c
L

h
L

∂
∂

∂
∂

=
∂
∂

a
h

h
L

a
L

∂
∂

∂
∂

=
∂
∂

b
h

h
L

b
L

∂
∂

∂
∂

=
∂
∂

h
L
∂
∂

=

h
L
∂
∂

=

w
a

a
L

w
L

∂
∂

∂
∂

=
∂
∂ x

a
L
∂
∂

=

x
a

a
L

x
L

∂
∂

∂
∂

=
∂
∂ w

a
L
∂
∂

=

v
b

b
L

v
L

∂
∂

∂
∂

=
∂
∂ y

b
L
∂
∂

=

y
b

b
L

y
L

∂
∂

∂
∂

=
∂
∂

v
b
L
∂
∂

=

u
c
L
∂
∂

=

• Some of these partial derivatives are intermediate
• their values will not be used for gradient descent

direction of computation

Computing Derivatives: Look at One Node

wxa=
w
x

v
y

vyb =

bah += uhc =

already
computed

2=
∂
∂

c
L

h
c

c
L

h
L

∂
∂

∂
∂

=
∂
∂

a
h

h
L

a
L

∂
∂

∂
∂

=
∂
∂

b
h

h
L

b
L

∂
∂

∂
∂

=
∂
∂

4=

2=

w
a

a
L

w
L

∂
∂

∂
∂

=
∂
∂ 8=

∂
∂

= x
a
L

x
a

a
L

x
L

∂
∂

∂
∂

=
∂
∂ 4=

∂
∂

= w
a
L

v
b

b
L

v
L

∂
∂

∂
∂

=
∂
∂ 8=

∂
∂

= y
b
L

y
b

b
L

y
L

∂
∂

∂
∂

=
∂
∂

6=
∂
∂

= v
b
L

42 == u

• Example when w = 1, x = 2, v = 3, y = 4, u = 2,

direction of computation

2=
∂
∂

c
L

Computing Derivatives: Staging Computation

• Each node is responsible for one function
• To compute exp(1/x)

x
xh /1= ()hg exp=

Computing Derivatives: Vector Notation
• Inputs outputs are often vectors

x
h(W1x +b1)

h1
h(W2h1 +b2)

h2
h(W3h2 +b3)

o
L(o)

• h(a) is a function from Rn to Rm

• Chain rule generalizes to vector functions

Computing Derivatives: Vector Notation

• Let f(x): Rn → Rm,
• x is n-dimensional vector and output f(x) is m-dimensional vector



























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

3

2

2

2

1

2

3

1

2

1

1

1

x
f

x
f

x
f

x
f

x
f

x
f

x
f• Example f(x): R3 → R2, Jacobian matrix

j

i

x
f

∂
∂

• has m rows and n columns
• has in row i, column j

• Jacobian matrix

Computing Derivatives: Vector Notation

• f(x): Rn→Rm and g(x): Rk→Rn

x
g

g
f

x
f

∂
∂

∂
∂

=
∂
∂

• f(g(x)): Rk→Rm

• Chain rule for vector functions

Jacobian matrices

Vector Notation: Look at One Node

y
L

x
L

∂
∂

∂
∂ ,• Need Jacobians

• Easy to compute local node Jacobians

y
h

x
h

∂
∂

∂
∂ ,

x

y ()yxh , h already
computed

x
L
∂
∂

y
L
∂
∂

x
h

h
L
∂
∂

∂
∂

=

y
h

h
L
∂
∂

∂
∂

=
h
L
∂
∂

Jacobian matrices

• h, x, y are vectors
• already computed Jacobian

h
L
∂
∂

Vector Notation: Look at One Node
• Can apply to matrices (and tensors) as well

x

W Wxh =
h

already
computed

x
L
∂
∂

W
L

∂
∂

x
h

h
L
∂
∂

∂
∂

=

W
h

h
L
∂
∂

∂
∂

=

h
L
∂
∂

• But first vectorize matrix (or tensor)
• Say W is 10 x 5, stretch into 50x1 vector
• Still denote Jacobian by

W
h

∂
∂

Vector Notation: Look at One Node
• Easy to compute local node Jacobians

W
h

x
h

∂
∂

∂
∂ ,

x

W Wxh =
h

already
computed

x
L
∂
∂

W
L

∂
∂

x
h

h
L
∂
∂

∂
∂

=

W
h

h
L
∂
∂

∂
∂

=

h
L
∂
∂

• Say h is 1000 x 1, W is 1000 x 500, then is 1000 x 500,000
W
h

∂
∂

• But they can get very large (although sparse)

• Assume loss L is a scalar
• if not, can do derivation for each component independently

Compact Vector Notation

• Organize derivatives in matrix the same shape as W, denoted with





















∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

dkd

k

o

w
L

w
L

w
L

w
L

W
L







1

111









∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂

dkdk w
L

w
L

w
L

w
L

W
L

1111

• Contrast with Jacobian

















=

dkd

k

ww

ww
W







1

111

• Consider matrix

Compact Vector Notation

X

W WXh =
h

already
computed

oX
L

∂
∂

oW
L

∂
∂

o
T

h
LW

∂
∂

=

T
o X

h
L

∂
∂

=

oh
L

∂
∂

• Assume loss L is a scalar
• if not, can do derivation for each component independently

• Assume W, X, and h are matrices
• subsumes the case when they are vectors as well

Training Protocols
• Batch Protocol

• full gradient descent
• weights are updated only after all examples are processed
• might be very slow to train

• Single Sample Protocol
• examples are chosen randomly from the training set
• weights are updated after every example
• weighs get changed faster than batch, less stable
• One iteration over all samples (in random order) is called an epoch

• Mini Batch
• Divide data in batches, and update weights after processing each batch
• Middle ground between single sample and batch protocols
• Helps to prevent over-fitting in practice, think of it as “noisy” gradient
• allows CPU/GPU memory hierarchy to be exploited so that it trains much

faster than single-sample in terms of wall-clock time
• One iteration over all mini-batches is called an epoch

Regularization

• Larger networks are more prone to overfitting

Regularization
• Can control overfitting by using network with less units

• During gradient descent, subtract λw from each weight w
• intuitively, implements weight decay

2

2
Wλ• Better if control overfitting by adding weight regularization

to the loss function

Small model vs. Big Model+Regularize

Small model Big model Big model
+ Regularize

Ensembles of Neural Networks
• Train multiple independent models, average their predictions
• Improvements are more dramatic with higher model variety
• Few approaches to forming an ensemble

• Same model, different initializations
• train multiple models with the best set of hyperparameters (found through cross

validation) but with different random initialization.
• drawback is that the variety is only due to initialization

• Top models discovered during cross-validation
• Use cross-validation to determine the best hyperparameters, then pick the top few
• Improves ensemble variety but has the danger of including suboptimal models
• practical, does not require additional retraining of models after cross-validation

• Different checkpoints of a single model
• Take different “checkpoints” of a single network over time
• Lacks variety, but very cheap

• Running average of parameters during training
• Maintain a second copy of the network’s weights in memory that maintains an

exponentially decaying sum of previous weights during training
• This way you’re averaging the state of the network over last several iterations

 Dropout
• During training, keep each unit active with probability p

• otherwise set to 0
• p = 0.5 is common

standard net net with dropout,
first iteration

net with dropout,
second iteration

• During training, sampling a subset of 2n networks possible
• Extreme ensemble training

• training each member of ensemble only on a small batch of examples

 Dropout

 standard net
used at test time

net with dropout,
first iteration

net with dropout,
second iteration

• At test time, no dropout is applied, the whole “ensemble” is active
• Scale units by p at test time, since all units are active now
• Or, better, scale units by 1/p at training time
• Dropout is usually applied to fully connected layers

Practical Training Tips: Initialization
• Initialization parameters for W

• do not set all the parameters W equal
• all units compute the same output, gradient descent updates are the

same

• can initialize W to small random numbers

• Biases b usually initialized to 0
• with ReLU often intialize to small positive number, like 0.1

n
nrandn 2)(

• if using RELU, better initialize with , where n is

number of inputs to the unit

Practical Training Tips: Learning Rate

• Toy example

y
+ zw

b

x

1
zy =

x = [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5]
y = [0.1, 0.4, 0.9, 1.6, 2.2, 2.5, 2.8, 3.5, 3.9, 4.7, 5.1, 5.3, 6.3, 6.5, 6.7, 7.5, 8.1, 8.5, 8.9, 9.5]

()11 −− ∇α−= ttt wLww

• Training Data (20 examples)

• Set the learning rate carefully

• Optimal weights: w = 1, b = 0
• Gradient descent

Practical Training Tips: Learning Rate

target

start

• Surface of the loss function L(w,b)

updates 30.~ k

1.0=ηPractical Training Tips: Learning Rate

updates 3~ k
001.0=α

01.0=α

1.0=α

• Loss L(w) should decrease during gradient descent
• If L(w) oscillates, α is too large, decrease it
• If L(w) goes down but very slowly, α is too small, increase it

• Typically cross-validate learning rates from 10-2 to 10-5

• Helps to adjust α at the training time, especially for many layered
(deep) networks

• Step decay
• reduce learning rate by some factor every few epochs
• i.e. by a factor 0.5 every 5 epochs, or by 0.1 every 20 epochs

• Exponential decay
• α=α0e−ktα, where α0,k are hyperparameters and t is epoch number

• 1/t decay
• α=α0/(1+kt) where a0,k are hyperparameters and t is epoch number

• Err on the side of slower decay, if time budget allows

Practical Training Tips: Learning Rate

Practical Training Tips: Batch Size

Gradient descent Stochastic gradient descent,
1 epoch

see all
examples

see only one
example

Update 20 times
in an epoch

Practical Training Tips: Batch Size
• Track number of epoch vs. Loss
• If the line is too wiggly, batch size might be too small

• Track number of epoch vs. validation/training accuracy

Practical Training Tips: Validation/Training Accuracy

accuracy

epoch

validation

training

• Not much overfitting,

increase network capacity?

accuracy

epoch

validation

training

• Strong overfitting,

increase regularization?

• Add temporal average direction in which weights have been

moving recently
• Parameter vector will build up velocity in direction that has

consistent gradient
• Helps avoid local minima and speed up descent in flat (plateau)

regions
• Previous direction: ∆wt=wt-wt-1

• Weight update rule with momentum
• common to set β ∊ (0.6,0.9), also can cross-validate

Practical Training Tips: Momentum

previous
direction

steepest descent
direction

() () 11 1 −+ ∆β+∇β−+= tttt wwLww

• Features should be normalized for faster convergence
• Suppose fish length is in meters and weight in grams

• typical sample [length = 0.5, weight = 3000]
• feature length will be almost ignored
• If length is in fact important, learning will be very slow

• Any normalization we looked at before will do
• test samples should be normalized exactly as training samples

• Images are already roughly normalized
• intensity/color are in the range [0,255]
• usually subtract mean image from training data, zero-centers

data
• mean computed on training data only
• subtracted from test data as well

Practical Training Tips: Normalization

training time

Large training error:
random decision
regions in the
beginning - underfit

Small training error:
decision regions
improve with time

Zero training error:
decision regions fit
training data
perfectly - overfit

Training NN: How Many Epochs?

• Learn when to stop training through cross validation

Other Practical Training Tips
• Before training on full dataset, make sure can overfit on a small

portion of the data
• turn regularization off

• Search hyperparameters on coarse scale for a few epoch, and then
on finer scale for more epoch
• random search might be better than grid search

	Slide Number 1
	Outline
	Artificial Neural Networks
	ANN History: First Successes
	ANN History: Stagnation
	ANN History: Revival & Stagnation (Again)
	ANN History: Deep Learning Age
	Biology: Neuron, Basic Brain Processor
	Biology: Main Components of Neuron
	Perceptron: 1 Layer Neural Network
	Multilayer Neural Network
	Multilayer Neural Network: Small Example
	Multilayer NN: General Structure
	Multilayer NN : Multiple Classes
	Multilayer NN : General Structure
	Multilayer NN : General Structure
	Multilayer NN : Overview
	Multilayer NN : Expressive Power
	Multilayer NN: Decision Boundaries
	Multilayer NN : Nonlinear Boundary Example
	Multilayer NN : Nonlinear Boundary Example
	Multilayer NN as Non-Linear Feature Mapping
	Multilayer NN as Non-Linear Feature Mapping
	Multilayer NN as Non-Linear Feature Mapping
	Multilayer NN as Non-Linear Feature Mapping
	Multi Layer NN: Activation Function
	Multilayer NN: Modes of Operation
	Multilayer NN: Vector Notation
	Multilayer NN: Vector Notation
	Multilayer NN: Vector Notation
	Multilayer NN: Vector Notation
	Multilayer NN: Vector Notation for First Layer
	Multilayer NN: Vector Notation for First Layer
	Multilayer NN: Vector Notation for First Layer
	Multilayer NN: Vector Notation for First Layer
	Multilayer NN: Vector Notation for First Layer
	Multilayer NN: Vector Notation for Next Layer
	Multilayer NN: Vector Notation, all Layers
	Multilayer NN: Output Representation
	Training NN: Squared Difference Loss
	Training NN: Squared Difference Loss
	Training NN: Cross Entropy Loss
	Training NN: Cross Entropy Loss
	Training NN: -Log Loss Function
	Training NN: -Log Loss Function
	Computing Derivatives: Small Example
	Computing Derivatives: Small Example
	Computing Derivatives: Small Example
	Computing Derivatives: Chain of Chain Rule
	Computing Derivatives Backwards
	Computing Derivatives: Look at One Node
	Computing Derivatives: Look at One Node
	Computing Derivatives: Look at One Node
	Computing Derivatives: Look at One Node
	Computing Derivatives: Look at One Node
	Computing Derivatives: Look at One Node
	Computing Derivatives: Look at One Node
	Computing Derivatives: Look at One Node
	Computing Derivatives: Staging Computation
	Computing Derivatives: Vector Notation
	Computing Derivatives: Vector Notation
	Computing Derivatives: Vector Notation
	Vector Notation: Look at One Node
	Vector Notation: Look at One Node
	Vector Notation: Look at One Node
	Compact Vector Notation
	Compact Vector Notation
	Training Protocols
	Regularization
	Regularization
	Small model vs. Big Model+Regularize
	Ensembles of Neural Networks
	 Dropout
	 Dropout
	Practical Training Tips: Initialization
	Practical Training Tips: Learning Rate
	Practical Training Tips: Learning Rate
	Practical Training Tips: Learning Rate
	Practical Training Tips: Learning Rate
	Practical Training Tips: Batch Size
	Practical Training Tips: Batch Size
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Other Practical Training Tips

