€59840

Learning and Computer Vision
Prof. Olga Veksler

Lecture 10

Neural Networks

Many slides are from A. Ng, Y. LeCun, G. Hinton, A. Ranzato, Fei-Fei Li, R. Fergus

Outline

e |ntro/History
e Perceptron: 1 layer Neural Network (NN)
e Multilayer NN

e also called

e Multilayer Perceptron (MLP)
e Artificial Neural Network (ANN)
e Feedforward Neural Network

e Training Neural Networks
e Backpropagation algorithm
e Practical tips for training

Artificial Neural Networks

Neural Networks correspond to some
classifier function fy(x)

Can carve out arbitrarily complex decision
boundaries without requiring as many
terms as polynomial functions

Originally inspired by research in how
human brain works

o but cannot claim that this is how the brain
actually works

Now very successful in practice, but took a
while to get there

e 1958, F. Rosenblatt, Cornell University

ANN History: First Successes

Perceptron, oldest neural network

e studied in lecture on linear classifiers

Algorithm to train the Perceptron

Built in hardware to recognize digits images
Proved convergence in linearly separable case

Early success lead to a lot of claims which were not fulfilled

New York Times reports that perceptron is "the embryo of
an electronic computer that [the Navy] expects will be able
to walk, talk, see, write, reproduce itself and be conscious of
its existence."

ANN History: Staghation

e 1969, M. Minsky and S. Pappert

Book “Perceptrons”

Proved that perceptrons can learn only linearly separable
classes

In particular cannot learn very simple XOR function

Conjectured that multilayer neural networks also limited by
linearly separable functions

e No funding and almost no research (at least in North
America) in 1970’s as the result of 2 things above

ANN History: Revival & Stagnation (Again)

e Revival of ANN in early 1980

e 1986, (re)discovery of backpropagation algorithm
by Werbos, Rumelhart, Hinton and Ronald Williams

e Allows training a MLP
e Many examples of mulitlayer Neural Networks appear

e 1998, Convolutional network (convnet) by Y. Lecun for
digit recognition, very successful

e 1990’s: research in NN move slowly again

e Networks with multiple layers are hard to train well (except
convnet for digit recognition)

e SVM becomes popular, works better

ANN History: Deep Learning Age
Deep networks are inspired by brain architecture

Until now, no success at training them, except convnet

2006-now: deep networks are trained successfully
e massive training data becomes available
e better hardware: fast training on GPU

e better training algorithms for network training when there are
many hidden layers
e unsupervised learning of features, helps when training data is limited

Break through papers

e Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep
belief nets. Neural Computation, 18:1527-1554.

e Bengio, Y., Lamblin, P., Popovici, P.,, Larochelle, H. (2007). Greedy Layer-Wise Training
of Deep Networks, Advances in Neural Information Processing Systems 19

Industry: Facebook, Google, Microsoft, etc.

Biology: Neuron, Basic Brain Processor

e Neurons (or nerve cells) are special cells that
process and transmit information by
electrical signaling
e in brain and also spinal cord

e Human brain has around 10! neurons

e A neuron connects to other neurons to form
a hetwork

e Each neuron cell communicates to anywhere
from 1000 to 10,000 other neurons

Biology: Main Components of Neuron

axon

dendrites terminals

e cell body

. computational unit

_ nucleus
e dendrites

. “input wires”, receive inputs from other neurons

. a neuron may have thousands of dendrites, usually short
e axon

. “output wire”, sends signal to other neurons

e single long structure (up to 1 meter)

e splitsin possibly thousands branches at the end, “axon terminals”

Perceptron: 1 Layer Neural Network

layer 1 layer 2
input layer output layer

bias unit

sign(wx+w,)

(%)

>

Linear classifier f(x) = sign(w'x+wy,) is a single neuron “net”
Input layer units emits features, except bias emits “1”
Output layer unit applies h(t) = sign(t)

h(t) is also called an activation function

Multilayer Neural Network

layer 1 layer 2 layer 3
Input layer hidden layer output layer

h(wh(-)+wh('))

First hidden unit outputs h(wy+w,x; +w,X,)
Second hidden unit outputs h(w,+w x, +w,Xx,)

Network implements classifier f(x) = h(wh(-)+wh(+))
More complex boundaries than Perceptron

Multilayer Neural Network: Small Example

e |Implements classifier

f(x) = sign(4h(:)+2h(:)+7)
= sign(4 sign(3x,+5x,)+2 sign(6+3x,) + 7)

e Computing f(x) is called feed forward operation
e graphically, function is computed from left to right

e Edge weights are learned through training

Multilayer NN: General Structure

layer 3

| 1 I 2
ayer ayer output layer

Input layer hidden layer

o & h(-) =|f,(x)
ﬁ /;® h(-) =[f,(x) | = f(x)
g -l . h(-) =|f,(x)

e f(x) is multi-dimensional
e (Classification
e |ff (x)islargest, decide class 1

e |ff,(x)is largest, decide class 2
e If f5(x) is largest, decide class 3

Multilayer NN : Multiple Classes

layer 1 layer 2 layer 3
Input layer hidden layer output layer

D
=

e 3 classes, 2 features, 1 hidden layer

e 3 input units, one for each feature

e 3 output units, one for each class

e 2 hidden units

e 1 bias unit, can draw in layer 1, or each layer has one

Multilayer NN : General Structure

layer 1 layer 2 layer 3
Input layer hidden layer output layer

1 Sy

—
3‘4&’»‘3

e |nput layer: d features, d input units

e Qutput layer: m classes, m output units
e Hidden layer: how many units?

e more units correspond to more complex classifiers

Multilayer NN : General Structure

layer 1 layer 2 layer 3 layer 4
Input layer hidden layer hidden layer output layer

e Can have many hidden layers
e Feed forward structure

e ith layer connects to (i+1)th layer
e except bias unit can connect to any layer
e or, alternatively each layer can have its own bias unit

Multilayer NN : Overview

e NN corresponds to rather complex classifier f(x,w)
e complexity depends on the number of hidden layers/units
e f(x,w) is a composition of many functions

e easier to visualize as a network
e notation gets ugly

e To train NN, just as before
e formulate an objective or loss function L(w)

e optimize it with gradient descent
e |ots of heuristics to get gradient descent work well enough

Multilayer NN : Expressive Power

e Every continuous function from input to output can be
implemented with enough hidden units, 1 hidden layer,
and proper nonlinear activation functions

e easy to show that with linear activation function, multilayer
neural network is equivalent to perceptron

e More of theoretical than practical interest

e do not know the desired function in the first place, our goal is
to learn it through the samples

e but this result gives confidence that we are on the right track

e multilayer NN is general (expressive) enough to construct any required
decision boundaries, unlike the Perceptron

e Perceptron (single e Multilayer NN

layer neural net) e Arbitrarily complex
decision regions

e Even not contiguous

Multilayer NN : Nonlinear Boundary Example

—X;+X,—1>0=class 1 X, -X,—3 >0=xclass 1

Multilayer NN : Nonlinear Boundary Example

e Combine two Perceptrons into a 3 layer NN

Multilayer NN as Non-Linear Feature Mapping

e |nterpretation
e 1 hidden layer maps input features to new features
e next layer then applies linear classifier to the new features

¥y
D

this part implements
Perceptron (liner classifier)

Multilayer NN as Non-Linear Feature Mapping

this part implements
mapping to new featuresy

Multilayer NN as Non-Linear Feature Mapping

e Consider 3 layer NN example we saw previously:

non linearly separable in linearly separable in the
the original feature space new feature space

Multi Layer NN: Activation Function

e h() =sign() does not work for gradient

descent =
e Can use tanh or sigmoid function 1
e Rectified Linear (ReLu) popular recently }/
e gradients do not saturate for positive half-
interval

e but have to be careful with learning rate,
otherwise many units can become “dead’, i.e.
always output O

Multilayer NN: Modes of Operation

e Due to historical reasons, training and testing stages
have special names

e Backpropagation (or training)
Minimize objective function with gradient descent

e Feedforward (or testing)

Multilayer NN: Vector Notation

e Convenient compact notation

e For Perceptron

Multilayer NN: Vector Notation

e Change notation a bit

sign(w-x+b)

Multilayer NN: Vector Notation

e Do not draw bias unit

sign(w-x+b)

e Compact picture — h(wx +b) —
e h(t) =sign(t)

Multilayer NN: Vector Notation

e Consider the first layer (2 perceptrons)

Multilayer NN: Vector Notation for First Layer

()5
3 £ —>
()5 O =

e Red perceptron has weights w'and bias b,

e Green perceptron has weights w?and bias b,

X = 1. 1
—— h(w-x +b,) y=hwx +by) Wl:[}

o1

X =h(w?- 3
X hwex +b,) h,=h(w*x +b,) WZ:[ZJ

J/x

h(w!-x +b,)

h,=h(w'-x +b,)

J/x

h,=h(w?x +b,)

h(w?2-x +b,)
1

wl= w
5

J/x

J/x

h(w!-x +b,)

h,=h(w'-x +b,)

h,=h(w?x +b,)

h(w?2-x +b,)
1

1-— WZ
5

X, | | by
X | by
X +bl

wlx +b,

W2 x+b, |

Multilayer NN: Vector Notation for First Layer

= 1. — s _
L-h(wl-x +b,) n,=hiw X by /1 5| % b1\ h,
h + =
L.h(wz,x +b2) h2=h(W2-X +b2) _3 2_— _Xz_ _b%—/ _h2_
h(W!. x +b?)

S

e h(v) for vector v means applying h to each component of v

Multilayer NN: Vector Notation for First Layer

h,=h(w!-x +b,)

— h(w!-x +b,)

h,=h(w?x +b,)

— h(w?x +b,)

X

—
| more compa}

Wl_

hl
h(Wix +b! }—

9

hl
ht =h(Wix +b!)=|
2

e h(v) for vector v means applying h to each component of v

Multilayer NN: Vector Notation for Next Layer

h(Wx +b?)| h(W2h! +b2 | —

e W2 is a matrix of weights between hidden layer 1 and 2
e W2(r,c) is weight from unit ¢ to unitr

e b?is a vector of bias weights for second hidden layer
e b2 is bias weight of unit r in second layer

e h?is avector of second layer outputs
e hZ is output of unit rin second layer

Multilayer NN: Vector Notation, all Layers

e Complete depiction

—

X

h(Wx +b?)

hl

h(W2h! +b?)

h(W3h2 +b3)

e h3=o0is vector from the output layer
h(W3h? +b3)
h(W3h(W?h! +b?)+b3)
h(W3h(W?h(Wx +b1)+b?)+b3)

®* 0

Multilayer NN: Output Representation

e QOutput of NN is a vector
e As before, if x' be sample of class k, its label is

0 0
yiz 1| «— rowk f(xi) —0= |1| — rowk
0 0

e |deal output
* unito, =1
e other output units zero

Training NN: Squared Difference Loss

Wish to minimize difference between y' and f(x')
Let W be all edge weights
With squared difference loss
Squared loss on one example x':
i ioar) i i~ i i |2
L(X Y ’W)_Hf(")_V H —Z(fj(x)—V,-)
j=1
For this example, squared loss is 32+2%=13

3 0
fx)=o= 1 Y =1

f depends on W, but too cumbersome to write f(x,W) everywhere

Training NN: Squared Difference Loss

e Let X=x1, . x

Y=yi,.,y"
e Loss on all examples: L(X,Y;W): Zn:Hf(xi)_yiHZ
i=1

e Gradient descent

initialize w to random

choose g, o

while a||VL(X,Y;W)|| > €
w =w - aVL(X,Y;W)

Training NN: Cross Entropy Loss

e Squared error loss is usually not recommended for classification

e Better Loss function for classification: Cross Entropy
e First put the output o through soft-max

£ (x)= exp(o,)

Z;il exp(oj)

0.6 - 0.006 |
-1 0.0001
o= | ° > | 0.047 | = f(x) = sofmax(o)
38 0.94
4 = 0.17 =

e Interpret f (x) as probability of class k

Training NN: Cross Entropy Loss

e One sample cross entropy loss, dropping superscripts from x', y':
x v, W ——Zy Iogf

e |f sample x is of class k, then the above is equivalent to

L(x’ Y W) =—logf, (x)
e this loss function is also called —log loss
e minimizing —log is equivalent to maximizing probability

e Loss on all samples

L(X, Y; W)= L(x,y; W)

Training NN: -Log Loss Function

* Need to find derivative of L wrt every network weight w,
oL
OW,

e After derivative found, according to gradient descent,
weight update is oL

AW, = —0l——
OW,

e where a is the learning rate

e Update weight:
W, =w. +Aw,

Training NN: -Log Loss Function

e How many weights do we have in our network?

—|h(Wx +b)

hl

]
v

hZ

| —>

h(W3h? +b3)

e Weights are in matrices W1, W?2,...,W!
e And are in matrices bl b?,...,.bt

Computing Derivatives: Small Example

Small network f(x,y,z) = (x+y)z
Rewrite using

* q=X+y 0 @
f(x,y,z) = qz 0 @

each node does one
operation

Computing Derivatives: Small Example

e Small network f(x,y,z) = (x+y)z
e Rewrite using
* =Xty
e f(x,y,z)=qz
e Example of computing f(-2,5,-4)

Small network f(x,y,z) = (x+y)z

Rewrite using q=x+y = f(x,y,z) = qz
want Oof of of

Computing Derivatives: Small Example

chain rule for f(y(x))
of _ of oy
OX 0Oy OX

ox oy oz

Compute % from the end backwards

e for each edge, with respect to the main variable at edge origin

using chain rule with respect to the variable at edge end, if needed

_of 8q

8x aqéx
of 8f8q4@ q — L
oy oqoy = of

5 Q @

=q=3

or
4 \ 2

Computing Derivatives: Chain of Chain Rule

e Compute % from the end backwards irection of computatior

e for each edge, with respect to the main variable at edge origin
e using chain rule with respect to the variable at edge end, if needed

b)) — 4

@ ~od ob @ ~ad oc @
0a Ob oa cb 0Oc ob ocC

prev local prev local local
v
example: if h(c)=c’, then ci= =2c
oc Oc¢

Computing Derivatives Backwards

X hi
—— {h(Wix +b?)

Have loss function L(o)

Need derivatives for all

h(W2h! +b?) ——

OL oL
ow’ &b

hZ

(0
h(W3h2 +b3 ——| L(0)

éection of computation

Will compute derivatives from end to front, backwards

OL

On the way will also compute intermediate derivatives =—

ch

Computing Derivatives: L ook at One Node

e Simplified view at a network node
e inputs X,y comein
e node computes some function h(x,y)

Computing Derivatives: L ook at One Node

e At each network node

® inputs X,y come in

e nodes computes activation function h(x,y)
e Have loss function L(-)

L,
OX

oL
adidle already computed a

Computing Derivatives: Look at One Node

oL oL
e Need —,—

ox’ oy
—— ch ¢©h
e Easy to compute local node derivatives ~ 5
X
oL AL oh
ox oh oOx

oL

oL _ oL oh already computed ©Oh
oy ¢hoy

Computing Derivatives: Look at One Node

e More complete view at a network node
e inputs x,y come in, get multiplied by weight w and v
e node computes function h(wx,vy)
e node output h gets multiplied by u

Computing Derivatives: Look at One Node

WX

vy

e To be concrete, let h(i,j) =i + j

Computing Derivatives: Look at One Node

o hiij)=i+]

e Break into more computational nodes
e all computation happens inside nodes, not on edges

@@@b
=

QO®E

Computing Derivatives: Look at One Node

oL 0L oa 6L
ow Oadw aa irection of computation

oL oL oh 8L

W da ohoa
a = WX oL _dLoe oL A EeaLY
oL 0L oa 8L / h = 5 oh 6c computed
Ox 0Oa Ox 8a \ aL
h= w c =uh
a_ldb_a
v v dbov ab \
/ L dLoh oL

ob ohob oh

6L oLdb_oL
dy oboy ob

e Some of these partial derivatives are intermediate
e their values will not be used for gradient descent

Computing Derivatives: Look at One Node

oL_oLoa _oL = .
ow odaow oOa irection of computation
oL oL oh
W) <
h
_\aa oh o2 already
d = WX oL AL Oc
L_dLoa_oL = / = =2u=4 computed
P = \ah oc ch AL
X d OX a
h=ath)—Ce=ub)-
oL _oLob_oL
v v dbov db \
/L aLoh
ob ohob
6L oLdb_o _
oy obdy b
e Examplewhenw=1,x=2,v=3,y=4,u=2, ZL 2
C

Computing Derivatives: Staging Computation

e Each node is responsible for one function
e To compute exp(1/x)

Computing Derivatives: Vector Notation

e [nputs outputs are often vectors

X

——1h(Wix +b?)

hl

h(W2h! +b?)

hZ

| —>

h(W3h? +b3)

L(o)

e h(a) is a function from R" to R™

e Chain rule generalizes to vector functions

Computing Derivatives: Vector Notation

e Let f(x): R"—> R™,

e Xxis n-dimensional vector and output f(x) is m-dimensional vector

e Jacobian matrix

e has mrows and n columns

— | of of o
e has —i inrowi, columnj

o, e

. _of

e Example f(x): R3 > R?, Jacobian matrix — =

OX
ofF of of
OX, OX, OX,

Computing Derivatives: Vector Notation
e f(x): R"™>R™ and g(x): Rk>R"

e f(g(x)): R>R™

e Chain rule for vector functions

of of og
OX 08 OX

1]

Jacobian matrices

\VVector Notation: L ook at One Node

h, x, y are vectors

already computed Jacobian %
Need Jacobians ©L oL
ox oy
Easy to compute local node Jacobians @, oh
oL oL oh e .
= < Jacobian matrices

ox oh ox
X
already
computed
: a
oL oL oh ch

oy oh oy

Vector Notation: Look at One Node

Can apply to matrices (and tensors) as well

But first vectorize matrix (or tensor)
Say Wis 10 x 5, stretch into 50x1 vector

Still denote Jacobian by oh
oW
oL oL oh
ox oh ox
X already
h computed
W h = Wx aL
ch
O 4L oh

W 5h oW

Vector Notation: Look at One Node

e Easy to compute local node Jacobians ah, ch
ox OW
e But they can get very large (although sparse)
e Say his 1000 x 1, W is 1000 x 500, then 5—\:\" is 1000 x 500,000
oL 6L oh
ox oh ox
X already
h computed
ch
0L 4L oh

W~ 5h oW

Compact Vector Notation

Assume loss L is a scalar

e if not, can do derivation for each component independently

Consider matrix W=

W

Wdl e o o de

11 e o 0 Wlk

Organize derivatives in matrix the same shape as W, denoted with

oL

OW°

Contrast with Jacobian =—

[oL oL
OW o OW

S |
OW T ow i

oL | oL
oW 8w11

oL

oW,

oL

OW o

oL

.

OW g

Compact Vector Notation

e Assume loss L is a scalar
e if not, can do derivation for each component independently

e Assume W, X, and h are matrices

e subsumes the case when they are vectors as well

oL W' oL
oX° oh°®
X already
h computed
W h — WX oL
oh°®
oL oL X'

OW° oh°

Training Protocols

e Batch Protocol
e full gradient descent
e weights are updated only after all examples are processed
e might be very slow to train

e Single Sample Protocol
e examples are chosen randomly from the training set
e weights are updated after every example
e weighs get changed faster than batch, less stable
e One iteration over all samples (in random order) is called an epoch

e Mini Batch
e Divide data in batches, and update weights after processing each batch
e Middle ground between single sample and batch protocols
e Helps to prevent over-fitting in practice, think of it as “noisy” gradient

allows CPU/GPU memory hierarchy to be exploited so that it trains much
faster than single-sample in terms of wall-clock time

One iteration over all mini-batches is called an epoch

e Larger networks are more prone to overfitting

3 hidden neurons 6 hidde neurons | 20 hidden neurons

e Can control overfitting by using network with less units

e Better if control overfitting by adding weight regularization —||w||
to the loss function

A =0.001 A =0.01

e During gradient descent, subtract Aw from each weight w
e intuitively, implements weight decay

¥

Small model

Big model

Big model
+Regularize

Ensembles of Neural Networks

 Train multiple independent models, average their predictions
e |mprovements are more dramatic with higher model variety
e Few approaches to forming an ensemble

e Same model, different initializations

¢ train multiple models with the best set of hyperparameters (found through cross
validation) but with different random initialization.

e drawback is that the variety is only due to initialization

e Top models discovered during cross-validation
e Use cross-validation to determine the best hyperparameters, then pick the top few
e Improves ensemble variety but has the danger of including suboptimal models
e practical, does not require additional retraining of models after cross-validation

e Different checkpoints of a single model
e Take different “checkpoints” of a single network over time
e Lacks variety, but very cheap

* Running average of parameters during training

e Maintain a second copy of the network’s weights in memory that maintains an
exponentially decaying sum of previous weights during training

e This way you’re averaging the state of the network over last several iterations

Dropout

e During training, keep each unit active with probability p
e otherwise setto 0
e p=0.5iscommon

standard net net with dropout, net with dropout,
first iteration second iteration
e During training, sampling a subset of 2" networks possible

e Extreme ensemble training
e training each member of ensemble only on a small batch of examples

Dropout

standard net net with dropout, net with dropout,
used at test time first iteration second iteration

At test time, no dropout is applied, the whole “ensemble” is active
Scale units by p at test time, since all units are active now

Or, better, scale units by 1/p at training time

Dropout is usually applied to fully connected layers

Practical Training Tips: Initialization

e |nitialization parameters for W

e do not set all the parameters W equal
e all units compute the same output, gradient descent updates are the
same

e can initialize W to small random numbers

2
where n is

e if using RELU, better initialize with randn(n) n
number of inputs to the unit n

e Biases b usually initialized to O

e with RelLU often intialize to small positive number, like 0.1

Practical Training Tips: Learning Rate

e Set the learning rate carefully

W Z y
e Toy example X + —@—
; b y=1

1

e Optimal weights: w=1,b=0
e Gradient descent

wi=w""— OLVL(Wt_l)

e Training Data (20 examples)

x=1[0.0,0.5,1.0,1.5, 2.0, 2.5, 3.0, 3.5,4.0,4.5,5.0,5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5]
y=[0.1,0.4,09,1.6,2.2,25,28,3.5,3.9,4.7,5.1,5.3,6.3,6.5,6.7,7.5, 8.1, 8.5, 8.9, 9.5]

e Surface of the loss function L(w,b)

Practical Training Tips: Learning Rate

e Loss L(w) should decrease during gradient descent
e If L(w) oscillates, o is too large, decrease it

e |f L(w) goes down but very slowly, o is too small, increase it

e Typically cross-validate learning rates from 102 to 10~

e Helps to adjust a at the training time, especially for many layered
(deep) networks
e Step decay
e reduce learning rate by some factor every few epochs
e j.e. by afactor 0.5 every 5 epochs, or by 0.1 every 20 epochs
e Exponential decay
e a=0,e "a, where a,k are hyperparameters and t is epoch number
e 1/t decay
e a=0,/(1+kt) where ay,k are hyperparameters and t is epoch number
e Err on the side of slower decay, if time budget allows

see only one

see all example

examples

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0’ -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
b b
Gradient descent Stochastic gradient descent,

1 epoch

Practical Training Tips: Batch Size

e Track number of epoch vs. Loss
e |f the line is too wiggly, batch size might be too small

25

20

|]| |:| i Il Il i
H 20 40 &0 80 104
Epoch

Practical Training Tips: Validation/Training Accuracy

e Track number of epoch vs. validation/training accuracy

accuracy accuracy training
training
validation
validation
epoch epoch
e Not much overfitting, e Strong overfitting,

increase network capacity? increase regularization?

Practical Training Tips: Momentum

Add temporal average direction in which weights have been
moving recently

Parameter vector will build up velocity in direction that has
consistent gradient

Helps avoid local minima and speed up descent in flat (plateau)
regions

Previous direction: Aw'=w!-wt'1
Weight update rule with momentum

e common to set B € (0.6,0.9), also can cross-validate
w=w'+(1- B)VL(wt) + BAW'
H_J H_J

steepest descent previous
direction direction

Practical Training Tips: Normalization

e Features should be normalized for faster convergence

e Suppose fish length is in meters and weight in grams
e typical sample [length = 0.5, weight = 3000]
e feature length will be almost ignored

e If length is in fact important, learning will be very slow

e Any normalization we looked at before will do

e test samples should be normalized exactly as training samples

e |[mages are already roughly normalized
e intensity/color are in the range [0,255]

e usually subtract mean image from training data, zero-centers
data

e mean computed on training data only
e subtracted from test data as well

Training NN: How Many Epochs?

“X X O X O “X X O
O O O
xc)z O O xc)z O O xc)z O O
O O O
X C>x0"0x c>xO"Ox X OXOXOX
X xy 00 X ¢y 0O X y 0O
training time =

Large training error:
random decision
regions in the
beginning - underfit

Small training error:
decision regions
improve with time

Zero training error:
decision regions fit
training data
perfectly - overfit

e Learn when to stop training through cross validation

Other Practical Training Tips

e Before training on full dataset, make sure can overfit on a small
portion of the data

e turn regularization off

e Search hyperparameters on coarse scale for a few epoch, and then
on finer scale for more epoch
e random search might be better than grid search

Grid Layout Random Layout

Unimportant parameter

Unimportant parameter

Important parameter Important parameter

	Slide Number 1
	Outline
	Artificial Neural Networks
	ANN History: First Successes
	ANN History: Stagnation
	ANN History: Revival & Stagnation (Again)
	ANN History: Deep Learning Age
	Biology: Neuron, Basic Brain Processor
	Biology: Main Components of Neuron
	Perceptron: 1 Layer Neural Network
	Multilayer Neural Network
	Multilayer Neural Network: Small Example
	Multilayer NN: General Structure
	Multilayer NN : Multiple Classes
	Multilayer NN : General Structure
	Multilayer NN : General Structure
	Multilayer NN : Overview
	Multilayer NN : Expressive Power
	Multilayer NN: Decision Boundaries
	Multilayer NN : Nonlinear Boundary Example
	Multilayer NN : Nonlinear Boundary Example
	Multilayer NN as Non-Linear Feature Mapping
	Multilayer NN as Non-Linear Feature Mapping
	Multilayer NN as Non-Linear Feature Mapping
	Multilayer NN as Non-Linear Feature Mapping
	Multi Layer NN: Activation Function
	Multilayer NN: Modes of Operation
	Multilayer NN: Vector Notation
	Multilayer NN: Vector Notation
	Multilayer NN: Vector Notation
	Multilayer NN: Vector Notation
	Multilayer NN: Vector Notation for First Layer
	Multilayer NN: Vector Notation for First Layer
	Multilayer NN: Vector Notation for First Layer
	Multilayer NN: Vector Notation for First Layer
	Multilayer NN: Vector Notation for First Layer
	Multilayer NN: Vector Notation for Next Layer
	Multilayer NN: Vector Notation, all Layers
	Multilayer NN: Output Representation
	Training NN: Squared Difference Loss
	Training NN: Squared Difference Loss
	Training NN: Cross Entropy Loss
	Training NN: Cross Entropy Loss
	Training NN: -Log Loss Function
	Training NN: -Log Loss Function
	Computing Derivatives: Small Example
	Computing Derivatives: Small Example
	Computing Derivatives: Small Example
	Computing Derivatives: Chain of Chain Rule
	Computing Derivatives Backwards
	Computing Derivatives: Look at One Node
	Computing Derivatives: Look at One Node
	Computing Derivatives: Look at One Node
	Computing Derivatives: Look at One Node
	Computing Derivatives: Look at One Node
	Computing Derivatives: Look at One Node
	Computing Derivatives: Look at One Node
	Computing Derivatives: Look at One Node
	Computing Derivatives: Staging Computation
	Computing Derivatives: Vector Notation
	Computing Derivatives: Vector Notation
	Computing Derivatives: Vector Notation
	Vector Notation: Look at One Node
	Vector Notation: Look at One Node
	Vector Notation: Look at One Node
	Compact Vector Notation
	Compact Vector Notation
	Training Protocols
	Regularization
	Regularization
	Small model vs. Big Model+Regularize
	Ensembles of Neural Networks
	 Dropout
	 Dropout
	Practical Training Tips: Initialization
	Practical Training Tips: Learning Rate
	Practical Training Tips: Learning Rate
	Practical Training Tips: Learning Rate
	Practical Training Tips: Learning Rate
	Practical Training Tips: Batch Size
	Practical Training Tips: Batch Size
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Other Practical Training Tips

