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Outline 

• Intro/History 
• Perceptron: 1 layer Neural Network (NN) 
• Multilayer NN 

• also called  
• Multilayer Perceptron (MLP) 
• Artificial Neural Network (ANN) 
• Feedforward Neural Network 

• Training Neural Networks 
• Backpropagation algorithm 
• Practical tips for training 

 
 



Artificial Neural Networks 

x1 

x2 • Neural Networks correspond to some 
classifier function fNN(x) 

• Can carve out arbitrarily complex decision 
boundaries without requiring as many 
terms as polynomial functions 

• Originally inspired by research in how 
human brain works 

• but cannot claim that this is how the brain 
actually works 

• Now very successful in practice, but took a 
while to get there 
 



ANN History: First Successes 
• 1958, F. Rosenblatt, Cornell University 

• Perceptron, oldest neural network 
• studied in lecture on linear classifiers 

• Algorithm to train the Perceptron  
• Built in hardware to recognize digits images 
• Proved convergence in linearly separable case 
• Early success lead to a lot of claims which were not fulfilled 
•  New York Times reports that  perceptron  is "the embryo of 

an electronic computer that [the Navy] expects will be able 
to walk, talk, see, write, reproduce itself and be conscious of 
its existence." 



ANN History: Stagnation 
• 1969, M. Minsky and S. Pappert 

• Book “Perceptrons” 
• Proved that perceptrons can learn only linearly separable 

classes 
• In particular cannot learn very simple XOR function 
• Conjectured that multilayer neural networks also limited by 

linearly separable functions 

• No funding and almost no research (at least in North 
America)  in 1970’s as the result of 2 things above   



ANN History: Revival & Stagnation (Again)  
• Revival of ANN in early 1980 
• 1986, (re)discovery of backpropagation algorithm 

by  Werbos, Rumelhart, Hinton and Ronald Williams  
• Allows training  a MLP 

• Many examples of mulitlayer Neural Networks appear 
• 1998, Convolutional network (convnet)  by Y. Lecun for 

digit recognition, very  successful 
• 1990’s: research in NN move slowly again 

• Networks with multiple layers are hard to train well  (except 
convnet for digit recognition) 

• SVM becomes popular, works better 

 
 



ANN History: Deep Learning Age  
• Deep networks are inspired by brain architecture 
• Until now, no success at training them, except convnet 
• 2006-now: deep networks are trained successfully 

• massive training data becomes available 
• better hardware:  fast training on GPU 
• better training  algorithms for  network training when there are 

many hidden layers 
• unsupervised learning of features,  helps when training data is limited 

• Break through papers 
• Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep 

belief nets. Neural Computation, 18:1527-1554. 
• Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007). Greedy Layer-Wise Training 

of Deep Networks, Advances in Neural Information Processing Systems 19 

• Industry: Facebook, Google, Microsoft, etc. 



Biology: Neuron, Basic Brain Processor 
• Neurons (or nerve cells) are special cells that 

process and transmit information by 
electrical signaling 
•  in brain and also spinal cord 

• Human brain has around 1011 neurons   
• A neuron connects to other neurons to form 

a network 
• Each neuron cell communicates to anywhere 

from 1000 to 10,000 other neurons 



Biology: Main Components of Neuron 

9 

dendrites 

nucleus 

cell 
body 

axon 

axon 
terminals 

• cell body 
• computational unit 

• dendrites  
• “input wires”, receive inputs from other neurons 
• a neuron may have thousands of dendrites, usually short 

• axon  
• “output wire”, sends signal to other neurons 
• single long structure (up to 1 meter) 
• splits in possibly thousands branches at the end, “axon terminals” 



Perceptron: 1 Layer Neural Network 

• Linear classifier f(x) = sign(wtx+w0) is a single neuron “net”  

x1 

x2 

sign(wtx+w0) 

1 

w1 

w2 

w0 

layer 2 
output layer 

 

layer 1 
input layer 

 
bias unit 

• Input layer units  emits features, except bias emits “1” 
• Output layer unit applies h(t) = sign(t) 
• h(t) is also called an activation function 

 



Multilayer Neural Network 

x1 

x2 

1 

layer 3 
output layer 

 

layer 1 
Input layer 

 

layer 2 
hidden layer 

 

• First hidden unit outputs          h(w0+w1x1 +w2x2)                

w 
w 

 h( wh(·)+wh(∙) ) 

• Network implements classifier  f(x) = h(wh(∙)+wh(∙))  
• More complex boundaries than Perceptron 

• Second hidden unit outputs     h(w0+w1x1 +w2x2) 



Multilayer Neural Network: Small Example 

x1 

x2 

1 

 
• Implements classifier  

 

  f(x) = sign(  4h(⋅)+2h(⋅) + 7 )  
                     = sign(4 sign(3x1+5x2)+2 sign(6+3x2) + 7)  

 

• Computing  f(x) is called feed forward operation 
• graphically, function is computed from left to right 

• Edge weights are learned through training  
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Multilayer NN: General Structure 
layer 3 

output layer 
 

x1 

x2 

1 

layer 1 
Input layer 

 

layer 2 
hidden layer 

 h(·) 

h(·) 

h(·) 

 =  f1(x) 

 =  f2(x) 

 =  f3(x) 
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• Classification 
• If f1(x) is largest, decide class 1 
• If f2(x) is largest, decide class 2 
• If f3(x) is largest, decide class 3 
  

• f (x)  is multi-dimensional    



Multilayer NN : Multiple Classes 

x1 

x2 

1 

layer 1 
Input layer 

 

layer 2 
hidden layer 

 

• 3 classes, 2 features, 1 hidden layer 
• 3 input units, one for each feature 
• 3 output units, one for each class 
• 2 hidden units 
• 1 bias unit, can draw in layer 1, or each layer has one 

layer 3 
output layer 

 



Multilayer NN : General Structure 

x1 

x2 

1 

layer 1 
Input layer 

 

layer 2 
hidden layer 

 

• Input layer: d features, d input units 
• Output layer: m classes, m output units 
• Hidden layer: how many units? 

• more units correspond to more complex classifiers 

layer 3 
output layer 

 



Multilayer NN : General Structure 

x1 

x2 

1 

layer 1 
Input layer 

 

layer 2 
hidden layer 

 

• Can have many hidden layers 
• Feed forward structure 

• ith layer connects to (i+1)th  layer 
• except bias unit can connect to any layer 
• or, alternatively  each layer can have its own bias unit 

layer 4 
output layer 

 

layer 3 
hidden layer 

 



Multilayer NN : Overview 
• NN corresponds to rather complex classifier f(x,w)  

• complexity depends on the number of hidden layers/units 
• f(x,w) is a composition of many functions 

• easier to visualize as a network 
• notation gets ugly 

• To train NN, just as before 
•  formulate an objective or loss function L(w)   
• optimize it with gradient descent 

• lots of heuristics to get gradient descent work well enough 

 



Multilayer NN : Expressive Power 
• Every continuous function from input to output can be 

implemented with enough hidden units, 1 hidden layer, 
and proper nonlinear activation functions 
• easy to show that with linear activation function, multilayer 

neural network is equivalent to perceptron  

 • More of theoretical than practical interest 
• do not know the desired function in the first place, our goal is 

to learn it through the samples 
• but this result gives confidence that we are on the right track  

• multilayer NN is general (expressive) enough to construct any required 
decision boundaries, unlike the Perceptron 

 



Multilayer NN: Decision Boundaries 

• Perceptron (single 
layer neural net) 

• Multilayer NN 
• Arbitrarily complex 

decision regions 
• Even not contiguous 



Multilayer NN : Nonlinear Boundary Example 
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Multilayer NN : Nonlinear Boundary Example 

x1 

x2 

1 -1 
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• Combine two Perceptrons into a 3 layer NN 
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Multilayer NN as Non-Linear Feature Mapping 

x1 

x2 

1 

• Interpretation 
• 1 hidden layer maps input features to new features 
• next layer then applies  linear classifier to the new features 



Multilayer NN as Non-Linear Feature Mapping 

x1 

x2 

1 

 this part implements 
Perceptron (liner classifier) 

y1 

y2 

y3 



Multilayer NN as Non-Linear Feature Mapping 

x1 

x2 

1 

 this part implements 
mapping to new features y 

y1 

y2 

y3 



Multilayer NN as Non-Linear Feature Mapping 

x1 

x2 

1 -1 
-1 
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 1 
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1.5 
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• Consider 3 layer NN example we saw previously: 

x1 

x2 

non linearly separable in 
the original feature space 

+ 

y1 

y2 

linearly separable in the 
new feature space 



Multi Layer NN: Activation Function 

• h() = sign() does not work for gradient 
descent 

• Can use tanh or sigmoid function 

• Rectified Linear (ReLu)  popular recently 
• gradients do not saturate for positive half-

interval 
• but have to be careful with learning rate, 

otherwise many units can become “dead”, i.e. 
always output 0 



• Due to historical reasons, training and testing stages 
have special names 
• Backpropagation (or training)  
 Minimize objective function with gradient descent 

• Feedforward (or testing) 
  
 

Multilayer NN: Modes of Operation 



Multilayer NN: Vector Notation 
• Convenient compact notation 
• For Perceptron 

 

x1 

x2 

sign(w·x+w0) 

1 

w1 

w2 

w0 

x = 
x2 

x1 w = 
w2 

w1 



Multilayer NN: Vector Notation 
• Change notation a bit 

 
 

x1 

x2 

sign(w·x+b) 

1 

w1 

w2 

b 



Multilayer NN: Vector Notation 
• Do not draw bias unit 

 
 x1 

x2 

sign(w·x+b) 
w1 

w2 

• Compact picture 
• h(t) = sign(t) 

 

 

x 
h(w·x +b) h 



Multilayer NN: Vector Notation 
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• Consider the first layer (2 perceptrons) 
 



Multilayer NN: Vector Notation for First Layer 

x 
h(w1·x +b1) h1=h(w1·x +b1) 

 

x 
h(w2·x +b2) h2=h(w2·x +b2) 
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• Red perceptron has weights w1 and bias b1 

• Green perceptron has weights w2 and bias b2 



Multilayer NN: Vector Notation for First Layer 
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x 
h(w1·x +b1) h1=h(w1·x +b1) 

 

x 
h(w2·x +b2) h2=h(w2·x +b2) 
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x1 
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Multilayer NN: Vector Notation for First Layer 
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Multilayer NN: Vector Notation for First Layer 
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• h(v) for vector v means applying h to each component of v 



Multilayer NN: Vector Notation for First Layer 

x 
h(w1·x +b1) h1=h(w1·x +b1) 

 

x 
h(w2·x +b2) h2=h(w2·x +b2) 

 

more compact 
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h(W1x +b1 ) h1 

W1 = 1 5 
3 2 
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h1 

b1 = 
b2 
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• h(v) for vector v means applying h to each component of v 



Multilayer NN: Vector Notation for Next Layer 

x2 
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• W2 is a matrix of weights between hidden layer 1 and 2 
• W2(r,c) is weight from unit  c  to unit r 

• b2 is a vector of bias weights for second hidden layer 
• b2

r is bias weight of unit r in second layer 
• h2 is a vector of second layer outputs 

• h2
r is output of unit r in second layer 

 



Multilayer NN: Vector Notation, all Layers 

• Complete  depiction 
 x 

h(W1x +b1 ) 
h1 

h(W2h1 +b2 ) 
h2 

h(W3h2 +b3 ) 

 

h3=o 

• h3 = o is vector from the output layer 
• o  = h(W3h2 +b3) 

  = h(W3h(W2h1 +b2 )+b3 ) 
  = h(W3h(W2h(W1x +b1)+b2)+b3 ) 
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Multilayer NN: Output Representation 
• Output of NN is a vector 
• As before, if  xi be sample of class k, its label is 

 
 
 
 

           yi=  row k 
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• Ideal output 
• unit ok = 1 
• other output units zero 
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row k f(xi) = o =  



• Wish to minimize difference between yi and f(xi) 
• Let W be all edge weights 
• With squared difference loss  
• Squared loss on one example xi :  

 

Training NN: Squared Difference Loss  

( ) ( ) ( )( )∑
=

−=−=
m

j

i
j

i
j

iiii yxfyxfWyxL
1

22
;,

















0
1
0

















−2
1
3

f(x) = o =  yi =  

• For this example, squared loss is 32+22=13  

 

• f depends on W, but too cumbersome to write f(x,W) everywhere 



Training NN: Squared Difference Loss  

( ) ( )∑
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ii yxfWYXL
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2
;,• Loss on all examples:  

• Gradient descent 

initialize w to random 
choose  ε, α 
while α||∇L(X,Y;W)|| > ε 
 w = w - α∇L(X,Y;W) 
  

• Let             X = x1 ,…, xn 
   Y = y1 ,…, yn 
 



• First put the output o through soft-max 

Training NN: Cross Entropy Loss 

( ) ( )
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• Squared error loss is usually not recommended for classification 
• Better Loss function for classification: Cross Entropy 

• Interpret  fk(x) as probability of class k 
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Training NN: Cross Entropy Loss 

• One sample cross entropy loss, dropping superscripts from xi, yi: 

( ) ( )∑−= j jj xfyWyxL log;,

• Loss on all samples 

( ) ( )∑= WyxLWYXL ;,;,

( ) ( )xfWyxL klog;, −=

• If sample x is of class k, then the above is  equivalent to 

• this loss function is also called –log loss 
• minimizing –log is equivalent to maximizing probability 



• Need to find derivative of L wrt every network weight wi  

Training NN: -Log Loss Function 

• Update weight: 

• After derivative found,  according to gradient descent, 
weight update is 

iii www ∆+=
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• where α  is the learning rate 



Training NN: -Log Loss Function 
• How many weights do we have in our network? 

x 
h(W1x +b1 ) 

h1 
h(W2h1 +b2 ) 

h2 
h(W3h2 +b3 ) 

 

o 

b1 [ ]
• Weights are in matrices W1,W2,…,WL 

• And are in matrices b1,b2,…,bL  
  

[ ]W2 W1 [ ] W3 [ ]
b3 [ ]b2 [ ]



Computing Derivatives: Small Example  

• Small network f(x,y,z) = (x+y)z 
• Rewrite using  

• q = x + y 
• f(x,y,z) = qz 
• each node does one 

operation 
 

x 

y 

z 

q=x+y 
f=qz 



Computing Derivatives: Small Example  

x 

y 

• Small network f(x,y,z) = (x+y)z 
• Rewrite using  

• q = x + y 
• f(x,y,z) = qz 

• Example of computing   f(-2,5,-4) 

z 

q=x+y 
f=qz 

-2 

5 

-4 

3 -12 



Computing Derivatives: Small Example  
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z 

q=x+y 
f=qz 
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• Small network f(x,y,z) = (x+y)z 

• Rewrite using   q = x + y        f(x,y,z) = qz ⇒

1=
∂
∂

f
f

4−==
∂
∂ z
q
f

4−=
∂
∂

∂
∂

=
∂
∂

x
q

q
f

x
f

4−=
∂
∂

∂
∂

=
∂
∂

y
q

q
f

y
f

3==
∂
∂ q

z
f

• Compute        from the end backwards 
• for each edge, with respect to the main variable at edge origin 
• using chain rule with respect to the variable at edge end, if needed 

∂
∂f

chain rule for f(y(x))  
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Computing Derivatives: Chain of Chain Rule 

a ( )ahb = ( )bhc = ( )chd =
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direction of computation • Compute        from the end backwards 
• for each edge, with respect to the main variable at edge origin 
• using chain rule with respect to the variable at edge end, if needed 
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Computing Derivatives Backwards 

x 
h(W1x +b1 ) 

h1 
h(W2h1 +b2 ) 

h2 
h(W3h2 +b3 ) 
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direction of computation 
• Have loss function L(o)  

 
 

 

• Need derivatives for all  
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• Will compute derivatives from end to front, backwards  

 
 

 

 
• On the way will also compute intermediate derivatives   

 
 

 

h
L
∂
∂

L(o) 



Computing Derivatives: Look at One Node  

• Simplified view at a network node 
• inputs x,y come in 
• node computes some function h(x,y) 

 
 

 
x
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Computing Derivatives: Look at One Node  
• At each network node 

• inputs x,y come in 
• nodes computes activation function h(x,y) 

• Have loss function L(·) 
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Computing Derivatives: Look at One Node  
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 • Easy to compute local  node derivatives  
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Computing Derivatives: Look at One Node  
• More complete view at a network node 

• inputs x,y come in, get multiplied by weight w and v 
• node computes  function h(wx,vy) 
• node output h gets multiplied by u 

 
 

 wx

vy ( )vywxh , uh



Computing Derivatives: Look at One Node  

wx

vy ( )vywxh , uh

• To be concrete, let h(i,j) = i + j 
 

 



Computing Derivatives: Look at One Node  

• Break into more computational nodes 
• all computation happens inside nodes, not on edges 
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• h(i,j) = i + j 
 

 



Computing Derivatives: Look at One Node  
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• Some of these partial derivatives are intermediate 
• their values will not be used for gradient descent 

 

direction of computation 



Computing Derivatives: Look at One Node  
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• Example when w = 1, x = 2, v = 3, y = 4, u = 2,    
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Computing Derivatives: Staging Computation  

• Each node is responsible for one function 
• To compute exp(1/x) 
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Computing Derivatives: Vector Notation 
• Inputs  outputs are often vectors  

 
 

 

x 
h(W1x +b1 ) 
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h(W2h1 +b2 ) 

h2 
h(W3h2 +b3 ) 

 

o 
L(o) 

• h(a) is a function from Rn  to Rm 

• Chain rule generalizes to vector functions 
 

 
 



Computing Derivatives: Vector Notation 

• Let  f(x): Rn → Rm,  
• x is n-dimensional vector and output f(x)  is m-dimensional vector 
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• has m rows and n columns 
• has            in row i, column j   

 
 

• Jacobian matrix 
 

 



Computing Derivatives: Vector Notation 

•  f(x): Rn→Rm and g(x): Rk→Rn  
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•  f(g(x)): Rk→Rm   
 

 
• Chain rule for vector functions  

Jacobian matrices 



Vector Notation: Look at One Node  

y
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∂ ,• Need Jacobians  

 

• Easy to compute local  node Jacobians  
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Jacobian matrices 

• h, x, y are vectors 
• already  computed Jacobian   
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Vector Notation: Look at One Node  
• Can apply to matrices (and tensors) as well 
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• But first vectorize matrix (or tensor)  
• Say  W is 10 x 5, stretch into 50x1 vector 
• Still denote Jacobian by  

W
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Vector Notation: Look at One Node  
• Easy to compute local  node Jacobians  
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• Say h is 1000 x 1, W is 1000 x 500, then          is 1000 x 500,000 
W
h

∂
∂

• But they can get very large (although sparse) 



• Assume loss L is a scalar 
• if not, can do derivation for each component independently 

Compact Vector Notation 

• Organize derivatives in matrix the same shape as W, denoted with  
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• Consider matrix  



Compact Vector Notation 
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• Assume loss L is a scalar 
• if not, can do derivation for each component independently 
 

 

• Assume  W, X, and h are matrices 
• subsumes the case when they are vectors as well  



Training Protocols 
• Batch Protocol 

• full gradient descent 
• weights are updated only after all examples are processed 
• might be very slow to train 

• Single Sample Protocol 
• examples are chosen randomly from the training set 
•  weights are updated after every example 
• weighs get changed faster than batch, less stable 
• One iteration over all samples  (in random order) is called an epoch 

• Mini Batch 
• Divide data in batches, and update weights after processing each batch 
• Middle ground between single sample and batch protocols 
• Helps to prevent over-fitting in practice, think of it as “noisy” gradient 
• allows CPU/GPU memory hierarchy to be   exploited so that it trains much 

faster than single-sample in terms of wall-clock time 
• One iteration over all mini-batches is called an epoch 

 



Regularization 

• Larger networks are more prone to overfitting 



Regularization 
• Can control overfitting by using network with less units 

• During gradient descent, subtract λw from each weight w 
• intuitively, implements weight decay  

2

2
Wλ• Better if control overfitting by adding weight regularization      

to the loss function  



Small model vs. Big Model+Regularize 

Small model Big model Big model  
+ Regularize 



Ensembles of Neural Networks 
• Train multiple independent models, average their predictions 
• Improvements are more dramatic with higher model variety  
• Few approaches to forming an ensemble 

• Same model, different initializations  
• train multiple models with the best set of hyperparameters  (found through cross 

validation) but with different random initialization.  
• drawback is that the variety is only due to initialization 

• Top models discovered during cross-validation 
•  Use cross-validation to determine the best hyperparameters, then pick the top few 
• Improves ensemble  variety  but has the danger of including suboptimal models  
• practical, does not require additional retraining of models after cross-validation 

• Different checkpoints of a single model 
• Take different “checkpoints” of a single network over time 
• Lacks variety, but very cheap 

• Running average of parameters during training 
• Maintain a second copy of the network’s weights in memory that maintains an 

exponentially decaying sum of previous weights during training 
• This way you’re averaging the state of the network over last several iterations 



 Dropout 
• During training, keep each unit active with probability p 

•  otherwise set to 0 
• p = 0.5 is common 

standard net net with dropout, 
first iteration 

net with dropout, 
second iteration 

• During training, sampling a subset of 2n networks possible 
• Extreme ensemble training 

• training  each member of ensemble only on a small batch of examples 



 Dropout 

    standard net 
used at test time 

net with dropout, 
first iteration 

net with dropout, 
second iteration 

• At test time, no dropout is applied, the whole “ensemble” is active 
• Scale units by p at test time, since all units are active now 
• Or, better, scale units by 1/p at training time 
• Dropout is usually applied to fully connected layers 



Practical Training Tips: Initialization 
• Initialization parameters for  W 

• do not set all the parameters W equal 
• all units compute the same output, gradient descent updates are the 

same  

• can initialize W to small random numbers 

• Biases b usually initialized to 0 
• with ReLU often intialize to small positive number, like 0.1 

n
nrandn 2)(

 
• if using RELU, better initialize with                         , where n is 

number of inputs to the unit 



Practical Training Tips: Learning Rate 

• Toy example 
 

y
+ zw

b

x

1
zy =

x = [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5] 
y = [0.1, 0.4, 0.9, 1.6, 2.2, 2.5, 2.8, 3.5, 3.9, 4.7, 5.1, 5.3, 6.3, 6.5, 6.7, 7.5, 8.1, 8.5, 8.9, 9.5] 

( )11 −− ∇α−= ttt wLww

• Training Data (20 examples) 
 

• Set the learning rate carefully 

• Optimal weights:   w = 1, b = 0 
• Gradient descent 

 



Practical Training Tips: Learning Rate 

target 

start 

• Surface of the loss function  L(w,b) 



updates 30.~ k

1.0=ηPractical Training Tips: Learning Rate 

updates 3~ k
001.0=α

01.0=α

1.0=α



• Loss  L(w) should decrease during gradient descent 
• If L(w) oscillates, α is too large, decrease it 
• If L(w) goes down but very slowly,  α is too small, increase it 

• Typically cross-validate learning rates from 10-2 to 10-5 

• Helps to  adjust α at the training time, especially for many layered 
(deep) networks 

• Step decay  
• reduce  learning rate by some factor every few epochs  
• i.e. by a factor 0.5 every 5 epochs, or by 0.1 every 20 epochs 

•  Exponential decay 
• α=α0e−ktα, where α0,k  are hyperparameters and t is epoch number 

• 1/t decay  
• α=α0/(1+kt) where a0,k are hyperparameters and t is epoch number 

• Err on the side of slower decay,  if  time budget allows 

 

Practical Training Tips: Learning Rate 



Practical Training Tips: Batch Size 

Gradient descent Stochastic gradient descent,  
1 epoch 

see all 
examples 

see only one 
example 

Update 20 times 
in an epoch 



Practical Training Tips: Batch Size 
• Track number of epoch vs. Loss 
• If the line is too wiggly, batch size might be too small 

 



 
• Track  number of epoch vs. validation/training accuracy 

Practical Training Tips: Validation/Training Accuracy 

accuracy 

epoch 

validation 

training 

 
• Not much overfitting, 

increase network capacity? 

accuracy 

epoch 

validation 

training 

 
• Strong overfitting, 

increase regularization? 



 
• Add temporal average direction in which weights have been 

moving recently 
• Parameter vector will build up velocity in direction that has 

consistent gradient 
• Helps  avoid local minima and speed up descent in flat (plateau) 

regions 
• Previous direction: ∆wt=wt-wt-1 

• Weight update rule with momentum 
• common to set β ∊ (0.6,0.9), also can cross-validate 

Practical Training Tips: Momentum 

previous  
direction 

steepest descent  
direction 

( ) ( ) 11 1 −+ ∆β+∇β−+= tttt wwLww



• Features should be normalized for faster convergence 
• Suppose  fish length is in meters and weight in grams 

• typical sample [length = 0.5, weight = 3000] 
• feature length will be almost ignored 
• If length is in fact important, learning will be very slow 

• Any normalization we looked at before  will do 
• test samples should be normalized exactly as training samples 

• Images are already roughly normalized 
• intensity/color are in the range [0,255] 
• usually subtract mean image from training data, zero-centers 

data 
• mean computed on training data only 
• subtracted from test data as well 

 

Practical Training Tips:  Normalization 



training time 

Large training error: 
random decision 
regions in the 
beginning - underfit 

Small training error: 
decision regions 
improve with time 

Zero training error:  
decision regions fit 
training data 
perfectly - overfit 

Training NN: How Many Epochs?  

•  Learn when to stop training through cross validation 



Other Practical Training Tips 
• Before training on full dataset, make sure can overfit  on a small 

portion of the data 
• turn regularization off 

• Search hyperparameters on coarse scale for a few epoch, and then 
on finer scale for more epoch 
• random search might be better than grid search 
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