Lecture 11

Convolutional Neural Networks

Many slides are from A. Ng, Y. LeCun, G. Hinton, A. Ranzato
• Deep Networks (DNN)
 • convolutional Network
• Training Deep Network
• 1 hidden layer NN can be interpreted as first mapping input features to new features
• Then applying (linear classifier) to the new features
NN as Non-Linear Feature Mapping

this part implements Perceptron (linear classifier)
NN as Non-Linear Feature Mapping

this part implements mapping to new features y
Consider 3 layer NN example we saw previously:

- Nonlinear Feature Mapping

- Nonlinearly separable in the original feature space
- Linearly separable in the new feature space
NN as Nonlinear Feature Mapping

- Features are key to recent success in object recognition
- Multitude of hand-crafted features, time consuming

With NN, change in paradigm: instead of hand-crafting, learn features automatically from data
• How many layers should we choose?

Shallow network

Deep network

• Deep network lead to many successful applications recently
Why Deep Networks

- Evidence from biology
Why Deep Networks

• 2 layer networks can represent any function
• But deep architectures are more efficient for representing some functions
 • problems that can be represented with a polynomial number of nodes with \(k \) layers, may require an exponential number of nodes with \(k-1 \) layers
 • thus with deep architecture, less units might be needed overall
 • less weights, less parameter updates, more efficient
Why Deep Networks

- Sub-features created in deep architecture can potentially be shared between multiple tasks
Why Deep Networks: Hierarchical Feature Extraction

- Deep architecture works well for hierarchical feature extraction
 - hierarchies features are especially natural in vision
- Each stage is a trainable feature transform
- Level of abstraction increases up the hierarchy

Input layer
pixels

First layer
edges

Second layer
object parts

Third layer
objects
Another example (from M. Zeiler’2013)

Why Deep Networks: Hierarchical Feature Extraction

- Visualization of learned features
- Patches that result in high response

Layer 1

Layer 2
Why Deep Networks: Hierarchical Feature Extraction

Layer 3

Visualization of learned features

Patches that result in high response

Layer 4
Early Work on Deep Networks

- Fukushima (1980) – Neo-Cognitron
- LeCun (1998) – Convolutional Networks (convnets)
 - Similarities to Neo-Cognitron
 - Success on character recognition
- Other attempts at deeply layered Networks trained with backpropagation
 - not much success
 - very slow
 - diffusion of gradient
 - recent work has shown significant training improvements with various tricks (drop-out, unsupervised learning of early layers, etc.)
ConvNets: Prior Knowledge for Network Architecture

• Convnets use prior knowledge about recognition task into network architecture design
 • connectivity structure
 • weight constraints
 • neuron activation functions
• This is less intrusive than hand-designing the features
 • but it still prejudices the network towards the particular way of solving the problem that we had in mind
Convolutional Network: Motivation

- Consider a fully connected network
- Example: 200 by 200 image, 4x10^4 connections to one hidden unit
- For 10^5 hidden units → 4x10^9 connections
- But spatial correlations are mostly local
- Do not waste resources by connecting unrelated pixels
Convolutional Network: Motivation

- Connect only pixels in a local patch, say 10x10
- For 200 by 200 image, 10^2 connections to one hidden unit
- For 10^5 hidden units $\rightarrow 10^7$ connections
 - contrast with 4×10^9 for fully connected layer
 - factor of 400 decrease
Convolutional Network: Motivation

• If a feature is useful in one image location, it should be useful in all other locations
 • *stationarity*: statistics is similar at different locations

• All neurons detect the same feature at different positions in the input image
 • i.e. share parameters (network weights) across different locations
 • bias is usually not shared
 • also greatly reduces the number of tunable parameters

all red connections have the same weight
all green connections have the same weight
all blue connections have the same weight
ConvNets: Weight Sharing

- Much fewer parameters to learn
- For 10^5 hidden units and 10x10 patch
 - 10^7 parameters to learn without sharing
 - 10^2 parameters to learn with sharing
Filtering via Convolution Recap

- Recall filtering with convolution for feature extraction
Convolutional Layer

- Note similarity to convolution with some fixed filter
- But here the filter is learned
Convolutional Layer

- Each filter is responsible for one feature type
- Learn multiple filters
- Example:
 - 10x10 patch
 - 100 filters
 - only 10^4 parameters to learn
 - because parameters are shared between different locations
Convolutional Layer

- Output is usually slightly smaller because the borders of the image are left out.

- If want output to be the same size, zero-pad the image appropriately.
Convolutional Layer

• Can apply convolution only to some pixels (say every second)
 • output layer is smaller
 • less parameters to learn

• Example
 • stride = 2
 • apply convolution every second pixel
 • makes image approximately twice smaller in each dimension
 • image not zero-padded in this example
Convolutional Layer

- Input image is usually color, has 3 channels or depth 3
Convolutional Layer

- Convolve 3D image with 3D filter
Convolutional Layer

- One convolution step is a 75 dimensional dot product between the 5x5x3 filter and a piece of image of size 5x5x3.
- Can be expressed as $w^T x$, 75 parameters to learn (w).
- Can add bias $w^T x + b$, 76 parameters to learn (w, b).
Convolutional Layer

- Convolve 3D image with 3D filter
 - result is a 28x28x1 activation map, no zero padding used
 - 76 parameters to learn
Convolutional Layer

- Consider a second, green filter
Convolutional Layer

• If have 6 filters (each of size 5x5x3) get 6 activation maps, 28x28 each

• Stack them to get a new 28x28x6 “image”

• 76x6 = 456 parameters to learn
Convolutional Layer

- Apply activation function (say ReLu) to the activation map
Several Convolution Layers

- Construct a sequence of convolution layers interspersed with activation functions

- Use zero-padding if don’t want output layers to shrink
Convolutional Layer

• 1x1 convolutions make perfect sense

• Example
 • Input image of size 56x56x64
 • Convolve with 32 filters, each of size 1x1x64
Weight Sharing Constraints

- Easy to modify backpropagation algorithm to incorporate weight sharing
- Compute the gradients as usual, and then modify the gradients so that they satisfy the constraints.
 - if the weights started off satisfying the constraints, they will continue to satisfy them
- To constrain \(w_1 = w_2 \), we need \(\Delta w_1 = \Delta w_2 \)
- Before we used \(\frac{\partial L}{\partial w_1} \) to update \(w_1 \) and \(\frac{\partial L}{\partial w_2} \) to update \(w_2 \)
- Now use \(\frac{\partial L}{\partial w_1} + \frac{\partial L}{\partial w_2} \) to update \(w_1 \) and \(w_2 \), use
Check Learned Convolutions

- Good training: learned filters exhibit structure and are uncorrelated

- GOOD
- BAD too noisy
- BAD too correlated
- BAD lack structure
Convolutional Layer Summary

- Local connectivity
- Weight sharing
- Handling multiple input/output channels
- Retains location associations

filters = #output (activation) maps

Local connectivity

Weight sharing

filter size, stride

input channels

filters = #output (activation) maps
Convolutional Layer Summary

- Takes as input volume $W \times H \times D$
- Requires four hyperparameters
 - number of filters K
 - usually try powers of 2 (32, 64, 128, etc)
 - their spatial extent F
 - smaller size is more popular, 3, 5, 7
 - stride S
 - 1 or 2
 - amount of zero padding P
 - as fits
- Produces volume of size $W' \times H' \times D'$ where
 - $W' = (W - F + 2P)/S + 1$
 - $H' = (H - F + 2P)/S + 1$
 - $D' = K$
- With parameter sharing, introduces $F \times F \times D$ weights per filter, for a total of $(F \times F \times D) \times K$ weights and K biases
• Say a filter is an eye detector
• Want to detection to be robust to precise eye location
Pooling Layer

- *Pool* responses at different locations
 - by taking max, average, etc.
 - robustness to exact spatial location
 - also larger receptive field (see more of the input)

- Usually pooling applied with stride > 1
- This reduces resolution of output map
- But we already lost resolution (precision) by pooling
Pooling Layer: Max Pooling Example

Single depth slice

max pool with 2x2 filters and stride 2

6 8

3 4
Pooling Layer

- Pooling usually applied to each activation map separately
Pooling Layer Summary

• Takes volume of size $W \times H \times D$
• Introduces no parameters to learn
• Hyperparameters
 • stride S
 • common settings: 2
 • spatial extent F
 • common settings: 2,3
 • padding is not common to use with pooling
• Produces a volume of size $W' \times H' \times D'$
 • $W' = (W - F)/S + 1$
 • $H' = (H - F)/S + 1$
 • $D' = D$
Issues with Pooling

• After several levels of pooling, we lost information about the precise positions of things
• This makes it impossible to use the precise spatial relationships between high-level parts for recognition
Local Contrast Normalization

want the same response
Local Contrast Normalization

\[h^{i+1}(x, y) = \frac{h^i(x, y) - \mu^i(N(x, y))}{\sigma^i(N(x, y))} \]

- Normalize each patch (say 7x7) to be zero mean unit variance
- Effects
 - Improves invariance
 - Improves optimization by making activation layer on the same scale
 - Usually improves classification rate
ConvNets: Typical Stage

One Stage

Convolution → Nonlinearity → LCN → Pooling

Conceptually similar to: SIFT, HoG, etc.
Typical Architecture

One Stage

Input Image → Convolution → Nonlinearity → LCN → Pooling → Fully Connected Layers → Class Labels

Whole System

1st stage → 2nd stage → 3rd stage

Conceptually similar to: SIFT → K-Means → Pyramid Pooling → SVM
Fully Connected Layer

- Can have just one fully connected layer
- Example for 3-class classification problem

Example for 3-class classification problem

1. **Input Image**
 - **1st stage**
 - **2nd stage**
 - **3rd stage**

Can have more than one fully connected layer

1. **Input Image**
 - **1st stage**
 - **2nd stage**
 - **3rd stage**
Fully Connected Layer

- Can implement as a convolutional layer
 - input of size 56x56x64
 - say 3 class problem
 - convolve with 3 filters, each of size 56x56x64
Overview of CNN

- Made up of Layers
- Every Layer has a simple API
 - transforms an input 3D volume to an output 3D volume with some differentiable function
 - may or may not have parameters
 - may or may not have hyperparameters
ConvNets: Training

- All Layers are differentiable
- Use standard back-propagation (gradient descent)
- At test time, run only in forward mode
Conv Nets: Character Recognition

ConvNet for ImageNet

- Krizhevsky et.al. (NIPS 2012) developed deep convolutional neural net of the type pioneered by Yann LeCun

- Architecture
 - 7 hidden layers not counting some max pooling layers
 - the early layers were convolutional
 - the last two layers were globally connected

- Activation function
 - rectified linear units in every hidden layer
 - train much faster and are more expressive than logistic unit
Results: ILSVRC 2012

Task 1 - Classification

- CNN
- SIFT+FV
- SVM1
- SVM2
- NCM

Task 2 - Detection

- CNN
- DPM-SVM1
- DPM-SVM2
ConvNet on Image Classification
Krizhevsky et.al. Architecture

AlexNet, 8 layers (ILSVRC 2012)

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000
Tricks to Improve Generalization

• To get more data:
 • Use left-right reflections of the images
 • Train on random 224x224 patches from the 256x256 images

• At test time:
 • combine the opinions from ten different patches:
 • four 224x224 corner patches plus the central 224x224 patch
 • the reflections of those five patches

• Use *dropout* to regularize weights in the fully connected layers
 • half of the hidden units in a layer are randomly removed for each training example
ImageNet Experiments

ImageNet Classification top-5 error (%)

- ILSVRC'15 ResNet: 3.57%
- ILSVRC'14 GoogleNet: 6.7%
- ILSVRC'14 VGG: 7.3%
- ILSVRC'13: 11.7%
- ILSVRC'12 AlexNet: 16.4%
- ILSVRC'11: 25.8%
- ILSVRC'10: 28.2%

152 layers
Going Deeper with Convolutions
http://arxiv.org/abs/1409.4842
Transfer Learning with CNN

1. Train on ImageNet
 - conv-64
 - conv-64
 - maxpool
 - conv-128
 - conv-128
 - maxpool
 - conv-256
 - conv-256
 - maxpool
 - conv-512
 - conv-512
 - maxpool
 - FC-4096
 - FC-4096
 - FC-1000
 - softmax

2. If small dataset: fix all weights (treat CNN as fixed feature extractor), retrain only the classifier
 - conv-64
 - conv-64
 - maxpool
 - conv-128
 - conv-128
 - maxpool
 - conv-256
 - conv-256
 - maxpool
 - conv-512
 - conv-512
 - maxpool
 - FC-4096
 - FC-4096
 - FC-1000
 - softmax

 i.e. swap the Softmax layer at the end

3. If you have medium sized dataset, “finetune” instead: use the old weights as initialization, train the full network or only some of the higher layers
 - conv-64
 - conv-64
 - maxpool
 - conv-128
 - conv-128
 - maxpool
 - conv-256
 - conv-256
 - maxpool
 - conv-512
 - conv-512
 - maxpool
 - FC-4096
 - FC-4096
 - FC-1000
 - softmax

 retrain bigger portion of the network, or even all of it.