Lecture 1
Introduction
Outline

• Course overview
• Introduction to Machine Learning
Course Outline

• Prerequisites
 • Calculus, Statistics, Linear Algebra
 • Some Computer Vision/Image Processing

• Grading
 • Class participation: 10%
 • Four assignments (Matlab): 20%
 • Each assignment is worth 5% of the course mark
 • Assignment grades are 0%, 20%, 40%, 60%, 80%, 100%
 • In class paper presentation 20%
 • Final project: 50%
 • Final Project Presentation 20%
 • Written project report + code, 30 %
 • Matlab, C/C++, anything else as long as I can run it
Course Outline: Content

• Course Structure
 • Lecture (2/3 of the time)
 • Paper discussion (1/3 of the time)

• Machine Learning Topics (tentatively)
 • Nearest neighbor
 • Linear and generalized linear classifiers
 • SVM
 • Boosting
 • Neural Networks

• Computer Vision Topics
 • Image features
 • Mostly classification/detection/recogniton
 • object, action, etc
Course Outline: Textbook

• No required textbook, but recommended
 • “Pattern Classification” by R.O. Duda, P.E. Hart and D.G. Stork, second edition
 • “Machine Learning” by Tom M. Mitchell
 • “Pattern Recognition and Machine Learning, by C. Bishop
 • “Machine Learning: a Probabilistic Perspective” by Kevin Patrick Murphy
• Journal/Conference papers
Intro: What is Machine Learning?

• Difficult to come up with explicit program for some tasks
• Classic Example: digit recognition

However, easy to collect images of digits with their correct labels

Machine Learning Algorithm will take the collected data and produce a program for recognizing digits

• done right, program will recognize correctly new images it has never seen
Intro: What is Machine Learning?

Traditional Programming

Data → Computer → Output
Program → Computer

Machine Learning

Data → Computer → Program
Output → Computer
Intro: What is Machine Learning?

• More general definition (Tom Mitchell):
 • Based on experience E, improve performance on task T as measured by performance measure P

• In computer vision
 • T is usually classification, E is data (images), and P is classification error
 • Digit recognition Example
 • $T = \text{recognize character in the image}$
 • $P = \text{percentage of correctly classified images}$
 • $E = \text{dataset of human-labeled images of characters}$
Different Types of Machine Learning

- **Supervised Learning**: given training examples of inputs and corresponding outputs, produce the “correct” outputs for new inputs.
- **Unsupervised Learning**: given only inputs as training, find structure in the data.
 - e.g. discover “natural” clusters.
- **Reinforcement Learning**: not covered in this course.
Supervised Machine Learning

- Training samples (also called examples, feature vectors, etc.)

\[
\begin{bmatrix}
3.3 \\
5.7
\end{bmatrix} \quad \begin{bmatrix}
6.3 \\
8.7
\end{bmatrix} \quad \begin{bmatrix}
2.3 \\
1.7
\end{bmatrix} \quad \ldots \quad \begin{bmatrix}
6.4 \\
7.0
\end{bmatrix}
\]

- Target output (label) for each sample \(y^1, y^2, ..., y^n \)
 - “teacher” gives target outputs

- Training phase: estimate prediction function \(y = f(x) \) from labeled data
 - \(f \) is also called classifier, learning machine, etc.

- Testing phase: predict label \(f(x) \) for a new (unseen) sample \(x \)
Training/Testing Phases Illustrated

Training
- Training Images
- Training Labels
- Image Features
- Learned model

Testing
- Test Image
- Image Features
- Learned model
- Prediction

Slide credit: D. Hoiem and L. Lazebnik
Two Types of Supervised Machine Learning

- Classification
 - y^i is finite, typically called a label or a class
 - Example: $y^i \in \{\text{baby, child, adult, elder}\}$

- Regression
 - y^i is continuous, typically called an output value
 - Example: $y^i = \text{age} \in [0,130]$
More on Training Stage

- **Training stage:** estimate prediction function $y = f(x)$ from labeled data

- **Start with a set of predictor functions or hypothesis space**
 - hypothesis space $f(x,w)$ is parameterized by parameters or *weights* w
 - each setting of w corresponds to a different hypothesis
 - find (or *tune*) weights w s.t. $f(x^i,w) = y^i$ “as much as possible” for training samples (x^i, y^i)
 - “as much as possible” needs to be defined
 - usually done by optimization, can be time consuming
Training Stage: Linear Classifier

- Linear classifier $f(x, w)$ has a simple functional form.
- For 2 class problem
 \[f(x, w) = \text{sign}(w^t x + w_0) \]
- If samples are 2 dimensional
 \[f(x, w) = \text{sign}(w_0 + w_1 x_1 + w_2 x_2) \]
Training Stage: Linear Classifier

bad setting of w

best setting of w

classification error 38%
classification error 4%
Training Stage: More Complex Classifier

- for example if $f(x)$ is a polynomial of high degree
- 0% classification error
Test Classifier on New Data

- The goal is for classifier to perform well on new data
- Test “wiggly” classifier on new data: 25% error
• Have only a limited amount of data for training
• Overfitting:
 • Complex model may have too many parameters to fit reliably with a limited amount of training data
 • Complex model may adapt too closely to the random “noise” of the training data
Overfitting: Extreme Example

• 2 class problem: face and non-face images
• Memorize (i.e. store) all the “face” images
• For a new image, see if it is one of the stored faces
 • if yes, output “face” as the classification result
 • If no, output “non-face”
 • also called “rote learning”
• problem: new “face” images are different from stored “face” examples
 • zero error on stored data, 50% error on test (new) data
 • decision boundary is very unsmooth
• Rote learning is memorization without generalization

slide is modified from Y. LeCun
The ability to produce correct outputs on previously unseen examples is called **generalization**.

Big question of learning theory: how to get good generalization with a limited number of examples.

Intuitive idea: favor simpler classifiers.

- William of Occam (1284-1347): “entities are not to be multiplied without necessity”

Simpler decision boundary may not fit ideally to the training data but tends to generalize better to new data.
Training and Testing

• How to diagnose overfitting?
• Divide all labeled samples $x^1, x^2, ... x^n$ into training set and test set

• There are 2 phases, training and testing
 • Training phase is for “teaching” machine
 • tuning weights w
 • classification error on the training data is called training error
 • Testing phase is for evaluating how well machine works on unseen examples
 • classification error on the test data is called test error
Underfitting

• Can also underfit data, i.e. too simple decision boundary
 • chosen model is not expressive enough
• No linear decision boundary can well separate the samples
• Training error is too high
 • test error is, of course, also high
Underfitting → Overfitting

underfitting

- high training error
- high test error

"just right"

- low training error
- low test error

overfitting

- low training error
- high test error
How Overfitting affects Prediction

- Error
- Model Complexity

- underfitting
- ideal range
- overfitting

- training data
- test data
Bias/Variance

• High bias, informally, is the tendency to consistently learn the same wrong thing on different sets of training data
• High variance, informally, is the tendency to learn the wrong thing irrespective of the training data
• Dart throwing illustration

slide credit Pedro Domingos
More on Overfitting/Underfitting

- **Underfitting**
 - fitted model has large deviation from true values
 - but different sets of training data give models that are similar

- **Overfitting**
 - fitted model has small deviation from true values
 - different sets of training data give models that are not similar
Learning Curve

• To diagnose overfitting/underfitting, useful to look at training/test error vs. number of samples called *learning curve*
Fixing Underfitting/Overfitting

• Underfitting
 • add more features (if underfitting)
 • use more complex $f(x, w)$

• Overfitting
 • remove features
 • collect more training data
 • use less complex $f(x, w)$
Sketch of Supervised Machine Learning

• Chose a hypothesis space \(f(x,w) \)
 • \(w \) are tunable weights
 • \(x \) is the input sample
 • tune \(w \) so that \(f(x,w) \) gives the correct label for training samples \(x \)

• Which hypothesis space \(f(x,w) \) to choose?
 • has to be expressive enough to model our problem well, i.e. to avoid underfitting
 • yet not too complicated to avoid overfitting
Classification System Design Overview

• Collect and label data by hand

 salmon | sea bass | salmon | salmon | sea bass | sea bass

• Preprocess data (i.e. segmenting fish from background)

• Extract possibly discriminating features
 • length, lightness, width, number of fins, etc.

• Classifier design
 • Choose model for classifier
 • Train classifier on training data

• Test classifier on test data

we mostly look at these steps in the course
Sliding Window Approach

- Objects of interest can appear at different scale and location in the image
- Example: Human Detection
Sliding Window Approach

• Train on examples of the same scale
Sliding Window Approach

- Apply the trained classifier to different locations
 - handles different locations
Sliding Window Approach

- Shrink image, apply the trained classifier to different locations
 - handles different scales
Sliding Window Approach

- Shrink more
 - also can enlarge image, if needed
Sliding Window Approach

- Can also apply to different window sizes
 - shrink/enlarge windows to be the same size as training data
Application: Face Detection

- Objects – image patches
- Classes – “face” and “not face”
Optical character recognition (OCR)

- Objects – images or image patches
- Classes – digits 0, 1, ..., 9

Digit recognition, AT&T labs
http://www.research.att.com/~yann/

License plate readers
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition
The Smile Shutter flow

Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.
Object recognition in mobile phones

Point & Find, Nokia
Interactive Games: Kinect

• Object Recognition: http://www.youtube.com/watch?feature=iv&v=fQ59dXOo63o
• Mario: http://www.youtube.com/watch?v=8CTJL5lUjHg
• 3D: http://www.youtube.com/watch?v=7QrnwoO1-8A
• Robot: http://www.youtube.com/watch?v=w8BmgtMKFbY
Application: Scene Classification

- Objects – images
- Classes – “mountain”, “lake”, “field”...
Application: Medical Image Processing

- Objects – pixels
- Classes – different tissue types, stroma, lumen, etc.