
CS9840
Machine Learning in Computer Vision

Olga Veksler

Lecture 3
A Few Computer Vision Concepts

Some Slides are from Cornelia, Fermüller, Mubarak Shah,

Gary Bradski, Sebastian Thrun, Derek Hoiem

Outline

• Computer Vision Concepts

• Filtering

• Edge Detection

• Image Features

• Template Matching

Digital Grayscale Image

Slide Credit: D. Hoeim

10 9 54 7 54 72

13 52 26 42 6 57

8 2 50 23 54 9

22 76 57 86 24 86

9 54 57 26 65 59

35 68 98 65 45 78

5 0 34 7 86 7

Digital Grayscale Image

• Image is array f(x,y)

• approximates continuous
function f(x,y) from R2 to R:

• f(x,y) is the intensity or
grayscale at position (x,y)

• proportional to brightness of
the real world point it images

• standard range: 0, 1, 2,…., 255

x

y

(0,0)

Digital Color Image

• Color image is three
functions pasted together

• Write this as a vector-
valued function:

 

 

 

 

















x,yb

x,yg

x,yr

y,xf















50
50

200















120
10
0

R G B

Digital Color Image

• Can consider color image as 3 separate images: R, G, B

Image filtering

• Given f(x,y) filtering computes a new image
g(x,y)
• As function of local neighborhood at each

position (x,y), example:

 g(x,y) = f(x,y)+f(x-1,y) f(x,y-1)

1 2 4 2 8

9 2 2 7 5

2 8 1 3 9

4 3 2 7 2

2 2 2 6 1

8 3 2 5 4

g(1,3) = 3 + 4  8 = 35

g(4,5) = 4 + 5  1 = 9

g(3,1) = 7 + 24 - 39 = -12

• Linear filtering: function is a weighted sum
(or difference) of pixel values

 g(x,y) = f(x,y) + 2f(x-1,y-1) - 3f(x+1,y+1)

 • Applications:
• Enhance images

• denoise, resize, increase contrast, …

• Extract information from images
• Texture, edges, distinctive points …

• Detect patterns
• Template matching

Image Filtering: Moving Average

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

f(x,y) g(x,y)

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

f(x,y) g(x,y)

Image Filtering: Moving Average

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

f(x,y) g(x,y)

Image Filtering: Moving Average

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

f(x,y) g(x,y)

Image Filtering: Moving Average

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

f(x,y) g(x,y)

Image Filtering: Moving Average

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

f(x,y) g(x,y)

Image Filtering: Moving Average

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

f(x,y) g(x,y)

sticking out not sticking out

sharp border border washed out

Image Filtering: Moving Average

 Correlation Filtering

• Write as equation, averaging window (2k+1)x(2k+1)

 

 
  

 





k

ku

k

kv

vj,uif
k

j,ig
212

1

loop over all pixels in
neighborhood around pixel f (i,j)

uniform weight for
each pixel

• Generalize by allowing different weights for different pixels in the
neighborhood

      

 


k

ku

k

kv

vj,uifv,uHj,ig

non-uniform weight
for each pixel

2
k+1

-k,-k

k,k

Correlation filtering

      
 


k

ku

k

kv

vj,uifv,uHj,ig

• This is called cross-correlation, denoted g = H  f

• Filtering an image: replace each pixel with a linear
combination of its neighbors

• The filter kernel or mask H is gives the weights in linear
combination

Averaging Filter

• What is kernel H for the moving average example?

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

box filter

H[u,v] = ? g(x,y) f(x,y)

g = H  f

Smoothing by Averaging

original filtered

• What if the mask is larger than 3x3 ?

• Pictorial representation of box filter:

• white means large value, black means low value

Effect of Average Filter

7  7

9  9

11  11

Gaussian noise Salt and Pepper noise

Gaussian Filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

• Want nearest pixels to have the most influence

This kernel H is an
approximation of a 2d

Gaussian function:

H[u,v] f(x,y)

16

1

Gaussian Filters: Mask Size
• Gaussian has infinite domain, discrete filters use finite mask

• larger mask contributes to more smoothing

σ = 5 with 10 x 10 mask σ = 5 with 30 x 30 mask

blue weights
are so small
they are
effectively 0

Gaussian filters: Variance
• Variance (σ) also contributes to the extent of smoothing

• larger σ gives less rapidly decreasing weights → can construct a larger mask
with non-negligible weights

σ = 2 with 30 x 30 kernel σ = 5 with 30 x 30 kernel σ = 8 with 30 x 30 kernel

Average vs. Gaussian Filter

mean filter Gaussian filter

More Average vs. Gaussian Filter

mean filter Gaussian filter

5  5

15  15

31  31

Properties of Smoothing Filters

• Values positive

• Sum to 1

• constant regions same as input

• overall image brightness stays unchanged

• Amount of smoothing proportional to mask size

• larger mask means more extensive smoothing

Convolution
• Convolution:

• Flip the mask in both dimensions
• bottom to top, right to left

• Then apply cross-correlation

      
 


k

ku

k

kv

vj,uifv,uHj,ig

2
k+1

-k,-k

k,k

f
H H

flipped

• Notation for convolution: g = H*f

Convolution vs. Correlation

• Convolution: g = H*f

      
 


k

ku

k

kv

vj,uifv,uHj,ig

• Correlation: g = H  f

      
 


k

ku

k

kv

vj,uifv,uHj,ig

• For Gaussian or box filter, how the outputs differ?

• If the input is an impulse signal, how the outputs differ?

Edge Detection

• Convert intensity image into
binary (0 or 1) image that
marks prominent curves

• What is a prominent curve?
• no exact definition

• intuitively, it is a place where
abrupt changes occur

• Why perform edge detection?
• edges are stable to lighting and other changes, makes them good

features for object recognition, etc.

• more compact representation than intensity

Derivatives and Edges

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

• An edge is a place of rapid change in intensity

Derivatives with Convolution







),(),(
lim

),(

0

yxfyxf

x

yxf 








1

),(),1(),(yxfyxf

x

yxf 






• For 2D function f(x,y), partial derivative in horizontal
direction

• For discrete data, approximate

• Similarly, approximate vertical partial derivative (wrt y)

• How to implement as correlation?

Image Partial Derivatives

Which is with respect to x?

-1
1

1
-1

or
 -1 1

x

yxf



),(

y

yxf



),(

 1 -1

or

Finite Difference Filters

• Other filters for derivative approximation

1 0 -1

1 0 -1

1 0 -1

-1 -1 -1

0 0 0

1 1 1

Prewitt: Hx = Hy =

1 0 -1

2 0 -2

1 0 -1

-1 -2 -1

0 0 0

1 2 1

Sobel: Hx = Hy =

6

1

6

1

8

1

8

1

Image Gradient

• Combine both partial derivatives into vector

• Gradient points in the direction of most rapid increase in intensity



















y

f
,

x

f
f













 0,

x

f
f 














y

f
,f 0 


















y

f
,

x

f
f

















 

x

f

y

f1tan

• Direction perpendicular to edge:

gradient orientation

• Edge strength

 22




























y

f

x

f
f

gradient magnitude

image gradient

Application: Gradient-domain Image Editing

• Goal: solve for pixel values in the target region to match gradients
of the source region while keeping background pixels the same

P. Perez, M. Gangnet, A. Blake, Poisson Image Editing, SIGGRAPH 2003

http://bybjhso.xeds.eu/clone/poisson.pdf

Sobel Filter for Vertical Gradient Component

-1 0 1

-2 0 2

-1 0 1

Vertical Edge

(absolute value)

Sobel

Slide Credit: D. Hoeim

Sobel Filter for Horizontal Gradient Component

-1 -2 -1

0 0 0

1 2 1

Horizontal Edge

(absolute value)

Sobel

Slide Credit: D. Hoeim

Edge Detection

• Smooth image

• gets rid of noise and small detail

• Compute Image gradient (with Sobel filter, etc)

• Pixels with large gradient magnitude are marked as edges

• Can also apply non-maximum suppression to “thin” the
edges and other post-processing

canny edge detector

 What does this Mask Detect?

2 2 -4 -4 2 2

2 2 -4 -4 2 2

2 2 -4 -4 2 2

2 2 -4 -4 2 2

2 2 -4 -4 2 2 strong negative response strong positive response

• Masks “looks like” the feature it’s trying to detect

 What Does this Mask Detect?

2 2 -2 -2

2 2 -2 -2

-2 -2 2 2

-2 -2 2 2

strong negative response strong positive response

Image Features

• Edge features capture places where something interesting
is happening

• large change in image intensity

• Edges is just one type of image features or “interest
points”

• Various type of corner features, etc. are popular in vision

• Other features:

corners stable regions SIFT

Template matching

• Goal: find in image

• Main challenge: What
is a good similarity or
distance measure
between two patches?
• Correlation

• Zero-mean correlation

• Sum Square Difference

• Normalized Cross
Correlation

Slide Credit: D. Hoeim

Method 0: Correlation
• Goal: find in image

• Filter the image with H = “eye patch”

Input Filtered Image

],[],[],[
,

lnkmflkHnmg
lk



What went wrong?

f = image

H = filter

Slide Credit: D. Hoeim

Method 1: zero-mean Correlation

• Goal: find in image

• Filter the image with zero-mean eye

Input Filtered Image (scaled) Thresholded Image

)],[()],[(],[
,

lnkmfHlkHnmg
lk



True detections

False

detections

mean of template H

Slide Credit: D. Hoeim

Method 3: Sum of Squared Differences
• Goal: find in image

Input 1- sqrt(SSD) Thresholded Image

2

,

)],[],[(],[lnkmflkHnmg
lk



True detections

Slide Credit: D. Hoeim

Problem with SSD

• SSD is sensitive to changes in brightness

Input 1- sqrt(SSD)

Slide Credit: D. Hoeim

(-)2 = large

(-)2 = medium

Method 3: Normalized Cross-Correlation

• Goal: find in image

mean image patch mean template

5.0

,

2
,

,

2

,
,

)],[()],[(

)],[)(],[(

],[

















 



lk
nm

lk

nm
lk

flnkmfHlkH

flnkmfHlkH

nmg

Slide Credit: D. Hoeim

Input

Normalized X-Correlation

Thresholded Image

True detections

Slide Credit: D. Hoeim

Method 3: Normalized Cross-Correlation

Comparison

• Zero-mean filter: fastest but not a great
matcher

• SSD: next fastest, sensitive to overall
intensity

• Normalized cross-correlation: slowest,
but invariant to local average intensity
and contrast

Slide Credit: D. Hoeim

