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Digital Grayscale Image 

Slide Credit: D. Hoeim 
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Digital Grayscale Image 

• Image is array f(x,y)    

• approximates continuous 
function f(x,y) from R2 to R: 

• f(x,y) is the intensity or 
grayscale at position (x,y) 

• proportional to brightness  of 
the real world point it images 

• standard range: 0, 1, 2,…., 255 
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Digital Color Image 

• Color image is three 
functions pasted together 

• Write this as a vector-
valued function:  
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R G B 

Digital Color Image 

• Can consider color image as 3 separate images: R, G, B  



Image filtering 

• Given f(x,y) filtering computes a new image 
g(x,y) 
• As  function of local neighborhood at each 

position (x,y), example: 

  g(x,y) = f(x,y)+f(x-1,y) f(x,y-1)  
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g(1,3) = 3 + 4  8 = 35 

g(4,5) = 4 + 5  1 = 9 

g(3,1) = 7 + 24 - 39 = -12 

• Linear filtering: function is a weighted sum 
(or difference) of pixel values 

 g(x,y) = f(x,y) + 2f(x-1,y-1) - 3f(x+1,y+1)  

 • Applications: 
• Enhance images 

• denoise, resize, increase contrast, … 

• Extract information from images 
• Texture, edges, distinctive points … 

• Detect patterns 
• Template matching 

 



Image Filtering: Moving Average 
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Image Filtering: Moving Average 
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Image Filtering: Moving Average 
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Image Filtering: Moving Average 
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Image Filtering: Moving Average 
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Image Filtering: Moving Average 



0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 10 20 30 30 30 20 10 

0 20 40 60 60 60 40 20 

0 30 60 90 90 90 60 30 

0 30 50 80 80 90 60 30 

0 30 50 80 80 90 60 30 

0 20 30 50 50 60 40 20 

10 20 30 30 30 30 20 10 

10 10 10 0 0 0 0 0 

f(x,y) g(x,y) 

sticking out not sticking out 

sharp border border washed out 

Image Filtering: Moving Average 



  Correlation Filtering 

• Write as equation, averaging window  (2k+1)x(2k+1) 
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loop over all pixels in 
neighborhood around  pixel f (i,j) 

uniform weight for 
each pixel 

• Generalize by allowing different weights for different pixels in the 
neighborhood 
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Correlation filtering 
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• This is called cross-correlation, denoted  g = H  f 

• Filtering an image: replace each pixel with a linear 
combination of its neighbors 

• The filter kernel or mask H is gives the weights in linear 
combination 

 



Averaging Filter 

• What is kernel H for the moving average example? 
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Smoothing by Averaging 

original filtered 

• What if the mask is larger than 3x3 ?  

• Pictorial representation of box filter: 

• white means large value, black means low value 



Effect of Average Filter 
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Gaussian Filter 
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• Want nearest pixels to have the most influence 

This kernel H is an 
approximation of a 2d 

Gaussian function: 

H[u,v]  f(x,y) 
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Gaussian Filters: Mask Size 
• Gaussian has infinite domain, discrete filters use finite mask 

• larger mask contributes to more smoothing 

 
 

 
σ = 5 with 10 x 10 mask σ = 5 with 30 x 30 mask 

blue weights 
are so small 
they are 
effectively 0 



Gaussian filters: Variance 
• Variance (σ) also contributes to the extent of smoothing 

• larger σ gives less rapidly decreasing weights → can construct a larger mask 
with non-negligible weights 

σ = 2 with 30 x 30 kernel σ = 5 with 30 x 30 kernel σ = 8 with 30 x 30 kernel 



Average vs. Gaussian Filter 

mean filter Gaussian filter 



More Average vs. Gaussian Filter 

mean filter Gaussian filter 
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15  15 

31  31 



Properties of Smoothing Filters 

• Values positive  

• Sum to 1  

• constant regions same as input 

• overall image brightness stays unchanged 

• Amount of smoothing proportional to mask size 

• larger mask means more extensive smoothing 

 



Convolution 
• Convolution:  

• Flip the mask in both dimensions  
• bottom to top, right to left 

• Then apply cross-correlation 
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• Notation for convolution: g = H*f 



Convolution vs. Correlation 

• Convolution: g = H*f  
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• Correlation: g = H  f 
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• For  Gaussian or box filter, how the outputs differ?  

• If the input is an impulse signal, how the outputs differ? 



Edge Detection 

• Convert intensity image into 
binary (0 or 1) image that 
marks prominent curves 

• What is a prominent curve? 
• no exact definition 

• intuitively, it is a place where 
abrupt changes occur 

• Why perform edge detection? 
• edges are stable to lighting and other changes, makes them good 

features  for object recognition, etc. 

• more compact representation than intensity  



Derivatives and Edges 

image 
intensity function 

(along horizontal scanline) first derivative 

edges correspond to 
extrema of derivative 

• An edge is a place of rapid change in intensity 



Derivatives with Convolution 
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• For 2D function f(x,y), partial derivative in horizontal 
direction 

• For discrete data, approximate 

• Similarly, approximate vertical partial derivative (wrt y) 

• How to implement as  correlation? 



Image Partial Derivatives 

Which is with respect to x? 
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Finite Difference Filters 

• Other filters for derivative approximation 
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Image Gradient 

• Combine both partial derivatives into vector 

• Gradient points in the direction of most rapid increase in intensity 
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• Direction perpendicular to edge: 

gradient orientation 

• Edge strength 
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Application: Gradient-domain Image Editing 

• Goal: solve for pixel values in the target region to match gradients 
of the source region while keeping background pixels the same  

P. Perez, M. Gangnet, A. Blake, Poisson Image Editing, SIGGRAPH 2003 

http://bybjhso.xeds.eu/clone/poisson.pdf


Sobel Filter for Vertical Gradient Component 
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Slide Credit: D. Hoeim 



Sobel Filter for Horizontal Gradient Component 
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Slide Credit: D. Hoeim 



Edge Detection 

• Smooth image 

• gets rid of noise and small detail 

• Compute Image gradient (with Sobel filter, etc) 

• Pixels with large gradient magnitude are marked as edges 

• Can also apply non-maximum suppression to “thin” the 
edges and other post-processing 

 

canny edge detector 



 What does this Mask Detect? 

2 2 -4 -4 2 2 

2 2 -4 -4 2 2 

2 2 -4 -4 2 2 

2 2 -4 -4 2 2 

2 2 -4 -4 2 2 strong negative response strong positive response 

• Masks “looks like” the feature it’s trying to detect 

 

 

 

 

 



 What Does this Mask Detect? 
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Image Features 

• Edge features capture places where something interesting 
is happening 

• large change in image intensity 

• Edges is just one type of image features or “interest 
points” 

• Various type of corner features, etc. are popular in vision 

• Other features: 

 

 

 

 

 
corners stable regions SIFT 



Template matching 

• Goal: find       in image 

• Main challenge: What 
is a good similarity or 
distance measure 
between two patches? 
• Correlation 

• Zero-mean correlation 

• Sum Square Difference 

• Normalized Cross 
Correlation 

 
Slide Credit: D. Hoeim 



Method 0: Correlation 
• Goal: find       in image 

• Filter the image with H = “eye patch” 

 

Input Filtered Image 
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Slide Credit: D. Hoeim 



Method 1: zero-mean Correlation 

• Goal: find       in image 

• Filter the image with zero-mean eye 

 

Input Filtered Image (scaled) Thresholded Image 
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Slide Credit: D. Hoeim 



Method 3: Sum of Squared Differences 
• Goal: find       in image 

 

Input 1- sqrt(SSD) Thresholded Image 
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Slide Credit: D. Hoeim 



Problem with SSD 

• SSD is sensitive to changes in brightness 

 

Input 1- sqrt(SSD) 

Slide Credit: D. Hoeim 

(      -       )2 = large 

(      -       )2 = medium 



Method 3: Normalized Cross-Correlation 

• Goal: find       in image 
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Slide Credit: D. Hoeim 



Input 

Normalized X-Correlation 

Thresholded Image 

True detections 

Slide Credit: D. Hoeim 

Method 3: Normalized Cross-Correlation 



Comparison 

• Zero-mean filter: fastest but not a great 
matcher 

• SSD: next fastest, sensitive to overall 
intensity 

• Normalized cross-correlation: slowest, 
but invariant to local average intensity 
and contrast 

Slide Credit: D. Hoeim 


