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Segmentation of Brain MR Images Through a
Hidden Markov Random Field Model and the
Expectation-Maximization Algorithm

Yongyue Zhang*, Michael Brady, and Stephen Smith

Abstract—The finite mixture (FM) model is the most commonly tissues. However, the amount of data is far too much for manual
used model for statistical segmentation of brain magnetic reso- analysis/interpretation, and this has been one of the biggest ob-
nance (MR) images because of its simple mathematical form and gi4|es in the effective use of MRI. For this reason, automatic or
the piecewise constant nature of ideal brain MR images. However, . . . . L .
being a histogram-based model, the FM has an intrinsic limita- semi-automatic technlque§ of Comp.uter-ald.ed 'mage anegSIS
tion—no spatial information is taken into account. This causes the are necessary. Segmentation of MR images into different tissue
FM model to work only on well-defined images with low levels of classes, especially gray matter (GM), white matter (WM) and
noise; unfortunately, this is often not the the case due to artifacts cerebrospinal fluid (CSF), is an important task.
such as partial volume effect and bias field distortion. Under these Brain MR images have a number of features, especially

conditions, FM model-based methods produce unreliable results. the following: Eirst. th tatistically simole: MR |
In this paper, we propose a novel hidden Markov random field € tollowing: FIrst, they are statistically simple: mages

(HMRF) model, which is a stochastic process generated by a MRF are theoretically piecewise constant with a small number
whose state sequence cannot be observed directly but which can beof classes. Second, they can have relatively high contrast
indirectly estimated through observations. Mathematically, it can  petween different tissues. Unlike many other medical imaging
be shown that the FM model is a degenerate version of the HMRF modalities, the contrast in an MR image depends strongly upon

model. The advantage of the HMRF model derives from the way th the i . ired. By alteri dio-f
in which the spatial information is encoded through the mutual in- '€ Way the Image IS acquired. By allering radio-frequency

fluences of neighboring sites. Although MRF modeling has been (RF) and gradient pulses, and by carefully choosing relaxation
employed in MR image segmentation by other researchers, most timings, it is possible to highlight different components in the
reported methods are limited to using MRF as a general prior in - gpject being imaged and produce high-contrast images. These
an FM model-based approach. To fit the HMRF model, anEM al- 5 features facilitate segmentation. On the other hand, ideal

gorithm is used. We show that by incorporating both the HMRF . . o . . . .
model and the EM algorithm into a HMRF-EM framework, an ~ 'Magding conditions are never realized in practice. The piece-

accurate and robust segmentation can be achieved. More impor- Wis€-constant property is degraded considerably by electronic
tantly, the HMRF-EM framework can easily be combined with  noise, the bias field (intensity inhomogeneities in the RF field)

other techniques. As an example, we show how the bias field cor- and the partial-volume effect (multiple tissue class occupation
rection algorithm of Guillemaud and Brady (1997) can be incor- \\iihin 4 voxel), all of which cause classes to overlap in the
porated into this framework to achieve a three-dimensional fully . int 't’ hist M MR i t
automated approach for brain MR image segmentation. Image |n.enS| y histogram. orgover, Images are_ no
o ) ] o always high-contrast. Man{:-weighted and proton density
Index Terms—Bias field correction, expectation-maximization, images have low contrast between GM and WM. Therefore, it
hidden Markov random field, MRI, segmentation. L N ’
is important to take advantage of useful data while at the same
time overcoming potential difficulties.
I. INTRODUCTION A wide variety of approaches have been proposed for brain

agnetic resonance imagine (MRI) is an advancMR image segmentatiqn. Statistical approaches,. especially
M medical imaging technique providing rich informatiorParametric ones, are widely employed [7], [8]. This type of

about the human soft tissue anatomy. It has several adv 2thod labels pixels according to probability values, which are

tages over other imaging techniques enabling it to provi gtermmed based on the intensity distribution of the image.

three-dimensional (3-D) data with high contrast between s ith a suitable assumption about the distribution, statistical
approaches attempt to solve the problem of estimating the

associated class label, given only the intensity for each pixel.
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being a histogram-based model, the FM has an intrinsic liraealp, we have removed these parts of the image from all data,
itation—spatial information is not taken into account becaugefore applying segmentation. The resulting output from the al-
all the data points are considered to be independent sammgesthm is segmented tissues, estimated bias field and the re-
drawn from a population. Such a limitation causes the FBtored image (without bias field). The rest of this paper is orga-
model to work only on well-defined images with low levels ohized as follows: Section Il presents the mathematical details of
noise; unfortunately, this is often not the case with MR imag#ise HMRF model. Section Il gives simulation examples from
due to artifacts such as the partial volume effect and bias fidddth the HMRF model and the FM model. Section IV introduces
distortion. Under these conditions, FM model-based methotitee concept of MRF-MAP classification for estimating the class
produce unreliable results. labels. The complete HMRF-EM framework for classification,

In order to address this problem, we have developed a hiddenwell as parameter estimation through the EM algorithm, is
Markov random field (HMRF) model, which is a stochastipresented in Section V. An additional step for estimating bias
process generated by a MRF whose state sequence canndie@ for brain MR images is discussed and incorporated into
observed directly but which can be observed through a field thfe framework in Section VII. Comparison with other methods
observations. The importance of the HMRF model derives froamd experimental results are also shown, followed by discus-
MRF theory, in which the spatial information in an image isions and future work in the final section.
encoded through contextual constraints of neighboring pixels.
By imposing such constraints, we expect neighboring pixels to IIl. HMRF MODEL
have the same cla_ss Iab.ells (in the case of pi.ecewi.se cons_tarll_tet £ andD be two alphabets:
images) or similar intensities (in the case of piecewise contin-
uous images). This is achieved through characterizing mutual £={1,2,...,1}, D={1,2,...,d}.
influences among pixels using conditional MRF distributions. . )

Any model requires descriptive parameters and a model58tS = {1,2,..., N} be the set of indexes anfd = {r;,i €
only complete when all its parameters are known; thereforea denote any family of random variables indexed 8yin
parameter estimation step is also essential to our HMRF mod¥lich each random variabléy; takes a value-; in its state
In this paper an expectation-maximization (EM) algorithm fopPace. Such a familyis called a random field. The joint event
solving ML estimation of the model parameters is derived. W% = 7i;---, By = rn) is simplified to R = r where
show that by incorporating both the HMRF model and the EXi = {71, - - -, } is aconfigurationof £, corresponding to a re-
algorithm into a mathematically sound HMRF-EM frameworkd!ization of this random field. LeX andY” be two such random

an accurate and robust segmentation approach can be achieﬁ'ﬁe’&',S whose state spaces dr@ndD, respectively, so that for
which is demonstrated through experiments on both simulatég€ S We haveX; € £ andY; € D. Letx denote a configura-
images and real data, and comparison made with the EM-gign of X and X’ be the set of all possible configurations so that
framework. Being a flexible approach, the HMRF-EM can be X={x=(z

. . . . . — — 1,
easily combined with other techniques to improve the segmen-
tation performance. As an example, we show how the bias fieBiimilarly, lety be a configuration ot” and) be the set of all
correction algorithm of Guillemaud and Brady [6] is incorpopossible configurations so that
rated into it.

Although MRF modeling and its application in image Y={y = yn)
segmentation have been investigated by many other researchers,, X,
[11]-[13], only in recently years has MRF theory become
popular in MR image segmentation. However, most reported p(yi | &) = flyi;6¢), Veel Q)
methods use MRF only as a general prior in an FM model-based ) ) _
parametric approach to build the MAP estimation. They eith¥fhered. is the set of parameters. For &lithe function family
lack a proper parameter estimation step to fit the FM modéf; #¢) has the same known analytic form. We also assume that
[1], [2] or the parameter estimation procedure they use, sullt:Y) is pairwise independent, meaning
as ML or EM [3]-[5], suffers from the limitation of the FM .
model mentioned above. In general, although an MRF prior Py, x) = HP(.%‘,%)- 2)
can improve the performance, the FM assumption is still a big res
limitation. In order to develop the HMRF model, we first take the stan-

As to the problem of brain MR image segmentation, we foc@ird FM model as a comparison.
on segmenting normal brains without apparent diseases into _ . _
three tissues: Gray Matter (GM), White Matter (WM) and CSF¥ Finite Mixture Model
The algorithm starts with an initial estimation step to obtain ini- For every? ¢ £ andi € S
tial tissue parameters and classification. It is then followed by .

a three-step EM process which updates the class labels, tissue PXi=1t)=w
parameters and bias field iteratively. During the iterations, independent of the individual sités S and called anixing

MRF-MAP approach is used to estimate class labels, MAP B8rameter We takes as the model parameter set with
applied to estimate the bias field, and the tissue parameters are

estimated by ML. Since we are not interested in the skull or p={wi 6|0 € L}

coxn) |z € L,ie ST

y, € D,i € S},

= £,Y; follows a conditional probability distribution
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Consider two configurationg € Y andx € X. From (1) and
(2), we can compute the joint probability distributionzofand

y dependent on the model parametefsq treated as a set of

random variables), namely

Hp Yi, L |¢

€S

=[[{we. - £

€S

p(X,y|¢) =

(i3 0z,)} - (3

We can compute the marginal distribution}§f= %, dependent
on the parameter set

plyl¢) =

> p(tyl¢)

el

=D we fly;60).

£CL

4)

This is the so-calledinite mixture(FM) model.
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whereZ is a normalizing constant called tpartition function
andU(x) is anenergy functiorof the form

x) = Ve(x)

ceC

(6)

which is a sum ofclique potentialsV,.(x) over all possible
cliquesC. A cliquec is defined as a subset of sitesSnn which
every pair of distinct sites are neighbors, except for single-site
cliques. The value oV, (x) depends on the local configuration
of clique c. For more detail on MRF and Gibbs distribution see
[11].

C. HMRF Model

The concept of didden Markov random fieldhodel is de-
rived fromhidden Markov model@iMM), which are defined as
stochastic processes generated by a Markov chain whose state
sequence cannot be observed directly, only through a sequence
of observations. Each observation is assumed to be a stochastic
function of the state sequence. The underlying Markov chain

Although this mathematically simple model is widely usedhanges its state according té & [ transition probability ma-
[14], it is not considered to be a complete model in practice biix, wherel is the number of states. HMMs have been applied
cause it only describes the data statistically—no spatial inf@uccessfully to speech recognition [16], [17] and handwritten
mation about the data is utilized. In other words, the FM modstript recognition [18].
is spatially independent and can, therefore, be specified fully bySince original HMMs were designed as one-dimensional
the histogram of the data. However, images with the same int€h-D) Markov chains with first-order neighborhood systems, it
sity distribution may have totally different structural propertiexannot directly be used in two-dimensional (2-D)/3-D problems
To overcome this drawback, certain spatial considerations neeath as image segmentation. Here, we consider a special case
to be incorporated into the model. Under certain intensity disf an HMM in which the underlying stochastic process is
tributions, we want the model to be “adaptive” to structural ilm MRF instead of a Markov chain, therefore, not restricted
formation or spatially dependent in order to fit the actual image one dimension. We refer to this special case dsdaen
better. This leads to the consideration of MRF theory and olMtarkov random fielthodel. Mathematically, an HMRF model

HMRF model.

B. MRF Theory

The spatial property can be modeled through different as-
pects, amongst which tlentextual constraint a general and
powerful one. MRF theory provides a convenient and consistent
way to model context-dependent entities such as image pixels
and correlated features. This is achieved by characterizing mu-
tual influences among such entities using conditional MRF dis-

tributions.

In an MRF, the sites IS are related to one another via a

neighborhood systemwhich is defined agV" = {V,i € S},
where); is the set of sites neighboririgi ¢ A; andi € N; &
j € N;. A random field X is said to be an MRF o with
respect to a neighborhood systémif and only if

P(x)>0, Vxed&
P (2 |ws—qgiy) = P(xi |an).

Note, the neighborhood system can be multidimensional.

cording to the Hammersley—Clifford theorem [15], an MRF cal

equivalently be characterized by a Gibbs distribution. Thus

P(x) = Z7  exp(—U(x)) (5)

is characterized by the following:

« Hidden Random Field (MRF)
The random field¥ = {X;,7 € S} is an underlying MRF
assuming values in a finite state spatwith probability
distribution (5). The state oK is unobservable.
* Observable Random Field
Y = {Y,,i € S} is a random field with a finite state
spaceD. Given any particular configuratian € X', every
Y; follows a known conditional probability distribution
p(y; | z;) of the same functional fornf(y;;8.,), where
6.., are the involved parameters. This dlstrlbutlon is called
theemission probability functioandY” is also referred to
as theemitted random field
« Conditional Independence
For anyx € X, the random variables; are conditional
independent

HPyz|-Tz

€S

Py |x) = (7)

Based on the above, we can write the joint probability of
X,Y) as

P(y,x) = P(y|x)P(x)

X) H Py; | zi).

€S
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@ (b) © (d)

(e) ® @) (h)

Fig. 1. Image simulation by the FGM model and the GHMRF model. The first row shows the 3-class case. (a) FGM model; (b)-(d) GHMRF model with standard
deviation 0.23, 0.4, 0.5, respectively. The second row shows the five-class case. () FGM model; (f)-(h) GHMRF model with standard deviafio® 3, 0.4
respectively.

According to the local characteristics of MRFs, the joint probwhereas the HMRF model may be spatially dependent. There-
ability of any pa|r of(X;, Y;), givenX;’s neighborhood config- fore, the HMRF model is more flexible for image modeling in

uration X/, the sense that it has the ability to encode both the statistical and
spatial properties of an image.
Pyi,zi |zn, ) = Py | 2i) P (% |zn,) (8)  With a Gaussian emission distribution, the FM model is

usually known as théinite Gaussian MixturdFGM) or finite
Thus, we can compute the marginal probability distributioformal mixture(FNM) model. More specifically, the observ-
of ¥; dependent on the parameter &¢in this case, we tredt  able random variables have the following density function:
as a random variable) ant,

Wy - ,9( 10
P 1ann8) = S p it 2, 6) Pl =2 wcoly o
teL
— Zf i 0)p (£ | zar) (9) Wheref, = (pe, 00)* and
£CL 2
L 9y 0¢) = —— exp<—M> RN
wherefl = {6,,¢ € L}. We call this thehidden Markov random ' J2ro? 207

fieldmodel. Note, the concept of an HMREF is different from that

of an MRF in the sense that the former is defined with respectsimilarly, an HMRF model with a Gaussian emission distri-
to a pair of random variable familigs\, Y") while the latter is pution can be specified as

only defined with respect td&(.

If we assume the random variablég§ are independent of ) 0)p (¢ | X
: p(yi |z, 0 9(yi; 00)p N (12)
each other, which means that f&¢ € £ and: € S, we have (v | Z; (£ )
P |an,)=P)=we whereg and 6, are defined as in (11). We refer to this type
of HMRF model as th&aussian hidden Markov random field
then (9) reduces to (GHMRF) model.
p(y|0) = Zwé fy; 0c) Ill. M ODEL SIMULATION AND IMAGE SYNTHESIS
el

Simulation is often used to verify statistical models. In this
which is the definition of the finite mixture model. Thereforecase, simulation is used to generate synthetic images by drawing
an FM model is a degenerate special case of an HMRF modeindom samples from the model distribution using stochastic

It is obvious from the above that the fundamental differencgampling methods. Here, the Gibbs sampler proposed by Geman
between the FM model and the HMRF model lies in their diand Geman [11] is employed. Many different experiments have
ferent spatial properties. The FM model is spatially independdrgen carried out to compare the FGM model and the GHMRF
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model. Fig. 1 shows two examples, in which the number of invhich can be written as

tensity levels was set equal to the number of classes and the 1

Gaussian emission distributions have the same standard devi- P(y|x) = Zi exp(—U(y | x)) (16)
ation for all classes. For the GHMRF model, a homogeneous

and isotropic MRF model is employed to generate the prior digith thelikelihood energy

tribution with clique potential,.(x) = —6(z; — z;). The two

rows in Fig. 1 correspond, respectively, to simulations with three Uly|x) = Z Uly; | @)

and five classes. The first column is the sample drawn from i€S

the FGM model while the other three columns show samples (y; — uxz-)Q

drawn from the GHMRF model with different standard devia- => gz Tlogloz) (7)
tions. Apparently, the FGM model generates meaningless noise €S i

images whereas the GHMRF model generates images with Ci, . . stant normalization teg = (2m)N/2) It is easy
trollable spatial structures—the smaller the standard dewatu%n,
. 0'show that
the clearer the spatial structures.
log P(x|y) < —U(x|y), (18)
IV. MRF-MAP CLASSIFICATION
here

The image classification problem we consider involves a\év-
signing to each pixel a class label taking a value from the set Ux|y)=U(y|x)+ U(x) + const (29)
L. The pixels are indexed by a 2-D or 3-D rectangular lattice
S and each pixel is characterized by an intensity vajugom is_the _p(_)sterior energyThe MAP estir_nation is equivalent to
the setD. A labeling of S is denoted by, wherez;,i € S Minimizing the posterior energy function
is the corresponding class label of pixeMWe writex* for the ) )
true but unknown labeling configuration agdfor an estimate X =alg Eél‘%{U(y %) + U(x)}- (20)
of x*, both of which are interpreted as particular realizations of ) ) ) )
arandom field¥, which is an MRF with a specified distribution Although mathematically simple, this type of MAP esti-
P(x). The observable image itself is denotedyhywhich is a mation clearly_presents_a computationally infeasible problem.
realization of a GHMREF as described in Section II. The problefherefore, optimal solutions are usually computed using some
of classification is the problem of recovering, given the ob- iterative optimization (minimization) techniques. In this paper,

served imagey . we adopt theiterated conditional modegICM) algorithm
proposed by Besag [12], which uses the “greedy” strategy in
A. MRF-MAP Estimation the iterative local minimization and convergence is guaranteed

We seek a labeling of an image, which is an estimate of theafter only a few iterations. Given the dagaand the other

%) - - )
true labelingx*, according to the MAP criterion |abe|s‘f$;[i}’ the algorithm sequentially updates eacff
into a:E +1) by minimizing U(z; |y, zs_(;}), the conditional

X =arg I)Zlerli({ Py |x)P(x)}. (13) posterior probability, with respect te.
From (13), we need to compute the prior probability of the class V- MODEL FITTING USING THEEM ALGORITHM
and the likelihood probability of the observation. Simcs con- A statistical model is complete only if both its functional
sidered as a realization of an MRF, its prior probability can kigrm and its parameters are determined. The procedure for esti-
derived from mating the unknown parameters is knowmasdel fitting For
1 an HMRF model, the parameter get {6,,¢ € L} is what to
P(x) = 7 exp(—U(x)). (14)  pe solved. If the Gaussian emission function is assumed for the

observable random variable the mean and standard deviation
of each Gaussian class are the parameters, s@ithat ., o¢).
Since both the class label and the parameters are unknown and
they are strongly interdependent, the data set is said to be “in-
2 complete” and the problem of parameter estimation is regarded
exp <— (i = pe) ) (15)

It is also assumed that the pixel intensify follows a
Gaussian distribution with parameteéks= {1, o, }, given the
class label; = ¢

as an “incomplete-data” problem. Many techniques have been
proposed to solve this problem, among which the EM algorithm
[19] is the one most widely used.
The strategy underlying the EM algorithm consists of the
following: estimate the missing part &sgiven the current
p _ e estimate and then use it to form the complete datg%ey };
(¥ %) Hp(y, | i) new ¢ can be estimated by maximizing the expectation of the
es ) complete-data log likelihood€[log P(x,y | #)]. Mathemati-
l 1 exp <_ (yi — pray) ~ log( )N cally, the EM algorithm can be described by the following.

1
pui | 2i) = g(ui; 0c) =
«/27ra[2

Based on the conditional independence assumptign(@f, we
have the joint likelihood probability

2
207y

StartAn initial estimated(©.
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The E-stepCalculate the conditional expectation

Q (9 ‘9@)) =& [10gP(x,y|9) ‘y’e(t)}
=>p (x ‘yﬁ(t)) logp(x,y |6).  (21)

xXEX

The M-stepmaximize Q(6 | 6?)) to obtain the next esti-
mate

6+ = arg max Q (9 ‘ H(t)) . (22)

9
Let 6(t+1) — 9*) and repeat from the E-step. .
Under certain reasonable conditions, EM estimates converge =
cally to the ML estimates [20]. '

For the GHMREF field model, the intensity distribution func-
tion, dependent on the parameter &g

oy U (=N o,
p(ml@—%m p< 207 )p(fl N )

wherep(£| z ;) is the locally dependent probability of = £ M M m

and the parameter sét= {y¢, o¢ | £ € L}. © 0 ©

The Q-function is then formulated as
Fig. 2. Testimages with three classes. Intensity means are 20, 125, 220, and

(b) © (d)

proportions are 0.372, 0.299, and 0.329, respectively. (a) The original image.
Q=>>" {P(t)(ﬁ |y )W + C} (24)  (b)~(d) Noisyimages with SNR 3(& = 28),2.0(c = 47),and 1.0 = 95).
€S el (e)—(g) Histogram of (b)—(d).
where A. Initial Parameter Estimation
W = logp® (¢ | % ) — log o — (yi — 1e)? Since both the EM model fitting algorithm and the ICM la-
! 207 beling algorithm converge locally, the choice of initial condi-
_ tions, including the initial parameter set and the classification,

Applying the EM algorithm, we obtain

u(t+1) _ Eies P(t)(“yi)yi

Without prior information, histogram analysis is widely used
to estimate statistics such as means and variances of a distribu-
(25) tion. From the standpoint of classification, we want the classes

4
Dies PO wi) to be widely separated from each other while at the same time
t+\2 | Dies POy (i — p1e)? 26 having relatively low intraclass variances. According to this,
(05 ) - Yies PO |y;) (26) we carry out initial estimation using a discriminant measure-

based thresholding method proposed by Otsu [21]. The basic
which are the same update equations for the FGM model [@]ea is to find thresholds maximizing the interclass variances,

except that thus, also minimizing the intraclass variances. According to the-
B ® qries of discriminant_ analysis, such thresholds are optimal solu-
PO ) = ¢ (i3 00) - PV (L |2 ) (27) tions. Once the optimal thresholds have been determined, the
p(yi) meanyu and the standard deviatian for each class type can

) N ) ) then be used as the initial parameters for further estimation. The
The calculation of the conditional probabilify** (£ |z ) in-jnitial classification can also be obtained either directly through

volves estimation of the class labels, which are obtained througfa thresholding, or through an ML estimation with those known
MRF-MAP estimation (20). We refer to this HMRF modelyarameters.

based EM algorithm as a HMRF-EM algorithm and the stan-
dard FM model-based EM algorithm as a FM-EM algorithm. B. Experiments

We illustrate the performance of HMRF-EM segmentation
with reference to a number of examples. First, we show a

The EM algorithm presented in Section V not only providesomparison between the standard FM-EM method and our
an effective method for parameter estimation, but also a coMMRF-EM method for segmenting and parameter estimating
plete framework for unsupervised classification using iteratiy@ecewise-constant images with small numbers of classes.
updating. Fig. 2(a) shows a simulated three-class image sampled from an

VI. SEGMENTATION USING THEHMRF-EM FRAMEWORK
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TABLE |
THREE-CLASS PARAMETER ESTIMATION USING THE FM-EM ALGORITHM. m -
] a w
Class 1 | 25.6 | 19.8 | 0.309 .
Class 2 | 122.6 | 41.5 | 0.409
Class 3 | 224.5 | 21.2 | 0.282 i,
K=47 G
_ k k B |
5 MCR:0.12% MO 1.04% MCR:8.73%

Fig. 4. Three-class segmentation for Fig. 2(b)—(d) using the HMRF-EM
algorithm. Top row: the reconstructed histograms; bottom row: the
segmentations.

@) (b)

TABLE 1l
Fig. 3. Three-class segmentation for Fig. 2(b) using the standard FM-EMHREE-CLASS PARAMETER ESTIMATION USING THE HMRF-EM ALGORITHM
algorithm. (a) The reconstructed histogram and (b) the segmentation with

MCR 5.82%. class Class 1 Class 2 Class 3
parameter | o1 wi L2 oo wo 13 a3 w3 K
; ; ; " SNE=3.4320 2460378 | 124.0 | 27.8 | 0.300 | 219.2 | 24.8 | 0.332 | 7
MRF model using the Gibbs sampler. The |'ntenS|t|.es for th o 90 |36 356 | 0.377 | 1246 | 46.1 | 0.304 | 213.5 | 381 | 0.320 | 9
three classes are 30, 125 and 220 respectively. Fig. 2(b)- snvr=1.0]521]61.7]0.355 | 127.7 | 80.5 | 0.363 | 203.6 | 62.1 | 0.281 | 31

shows the same images with added Gaussian noise with

standard deviation of 28, 47, and 95. Because image contra
; : . e - rom the above examples we can conclude that the FM-EM
is what we are most interested in for examining qualities of an ; i : .

ethod is sensitive to noise and not robust in terms of conver-

image, a measurement of the noise is more meaningful w%

. . . ) ence. It normally only performs well with limited numbers
image contrast being taken into account. Thus, we define :

. . . o of classes and takes long to converge. In contrast to this, the
signal-to-noise ratio (SNR) as the following:

HMRF-EM method can reasonably overcome all the drawbacks
mean interclass contrast of the FM-EM method and, therefore, be considered as a supe-

SNR rior approach.

~ standard deviation of the noise

Thus, the SNRs of the four testimages are 3.4, 2.0, and 1.0, §8, SEGMENTATION OF BRAIN MR IMAGES WITH BIAS FIELD
spectively. Fig. 2(e)—(g) shows their intensity histograms. With CORRECTION
high levels of noise, different classes in the histogram exhibit

severe overlap. To measure the segmentation accuracy, we al nce itis a complete approach to segmenting pIecewise-con-
define the misclassification ratio (MCR), which is stantimages, the HMRF-EM framework can be applied to brain

MR images. However, MR images are often corrupted by a low
number of mis-classified pixels (spatial) frequency artifact known as thias fieldarising from
total number of pixels inhomogeneities in the RF field. Although such an artifact has
little impact on visual diagnosis, the performance of most auto-
The standard FM-EM algorithm and the HMRF-EM algomatic image analysis techniques, especially intensity-based seg-
rithm are then applied to the three test images. Without afyentation, can degrade dramatically. Therefore, a robust, auto-

limitation to the maximum number of iterations, the standar@atic, and inexpensive way of correcting for this artifact is re-
FM-EM algorithm only converges for the first image with theyuired.

lowest level of noise (SNR= 3.4). In that case, the estimation
results and the number of iteratioRisare shown in Table I. With A. Bias Field Correction Through Modified EM Algorithm

the estimated parameters, we reconstruct the histogram and olyyhe of the most successful methods for dealing with the bias

tain the segmentation, as shown in Fig. 3. Note that, the paragaiq problem was developed by Weks al. [10], in which the
eter estimation is not accurate compared to the truth. bias field B = (b1, ...,by) is modeled as a multiplicative

The HMRF-EM algorithm rapidly converges for all the thregy_gimensional random vector with zero mean Gaussian prior

test images. Fig. 4 and Table Il show the results. Clearly, tB?obability densityp(B) = G, (B), wherey is the N x N
results of the HMRF-EM algorithm are much better than thog&yariance matrix. Let = (I1,.. ., Iy)andl* = (I},...,I%)

MCR =

of the standard FM-EM algorithm. be the observed and the ideal intensities of a given image respec-

In the second example, we compare both algorithms gQely. The degradation effect of the bias field at pikel < i <
a more difficult problem, using a relatively large number ofy can be expressed as follows:

classes and lower image quality. In Fig. 5, we show a simulated

5-class image with three different levels of noise and their I =1IF xb,. (28)
histograms. We then apply both methods; the FM-EM method

failed for all the three cases whilst the HMRF-EM method gawfter logarithmic transformation of the intensities, the bias field
reasonably good results, shown in Fig. 6 and Table 111 effect can be treated as an additive artifact.y.andy* denote,
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Thus, the intensity distribution is modeled as a Gaussian mix-
ture, given the bias field. It follows that

plyi | B) = > {glyi — bi; 6()P(5)}. (31)

jeLl

The MAP principle is then employed to obtain the optimal
estimate of the bias field, given the observed intensity values

B= argméxxp(y | B)p(B), (32)

A zero-gradient condition is then used to assess this maximum,
which leads to (see [10] for detail)

p(yi |z, B)p(a; = j)

Wi = (33)
Y p(yi | B)
(b) © (d) oo EH e 10T (3a
§= Ty (L1734
| whereR is themean residuafor pixel
|
Ry =) —et Wiilyi = 15) (35)
(e) ® @ jec
Fig.5. Testimages with five classes. Intensity means are 30, 77, 125, 172, and
220, and proportions are 0.28, 0.273, 0.113, 0.187, and 0.147, respectivelysfals themean inverse covariance
The original image; (b)—(d) noisy images with SNR 20 = 23), 1.4(¢c =
33),and 1.0(c = 47); (e)—(g) histogram of (b)—(d). B Z ) Wi/'U,'_Q, TN
Pt = 2ejec Vi, . (36)
ik 0 otherwise

and F" is a low-pass filterWW;; is the posterior probability that
pixel i belongs to clasg given the bias field estimate.

The EM algorithm is applied to (33) and (34). The E step
assumes that the bias field is known and calculates the posterior
tissue class probability?;;. In the M step, the bias field is
estimated given the estimatéd;; in the E step. Once the bias
field is obtained, the original intensit§f is restored by dividing
I by the inverse log oB. Initially, the bias field is assumed to
be zero everywhere.

I"-'[IC'FI'. (. 2% MCR:1.36% MCR:7.68% Wells et al’s algorithm is found to be problematic when
there are classes in an image that do not follow a Gaussian
Fig. 6. Five-class segmentation for Fig. 5(b)—(d) using the HMRF-EMlistribution. The variance of such a class tends to be very large
algorithm. Top row: the reconstructed histograms; bottom row: thgnd consequently the mean cannot be considered representative
segmentations. [6]. Such situations are commonly seen in the regions of CSF,
pathologies and other nonbrain classes. Bias field estimation
respectively, the observed and the ideal log-transformed int@an be significantly affected by this type of problem. To
sities: therny = y* + B. Given the class labels, it is further as- overcome this problem, Guillemaud and Brady [6] unify all
sumed that the ideal intensity value at pixfdllows a Gaussian such classes into an outlier class, which is called “other”,
distribution with parametef(z;) = (pts, 02, ) with uniform distribution. Let{g denote the set of labels for
Gaussian classes argl the class label for the “other” class.
The intensity distribution of the image is still a finite mixture

p(y; | @) = g(yi's 0(xs))- (29) except for an additional non-Gaussian class
With the bias fieldb; taken into account, the above distribution ~ P(wi |51) = > {g(ui — bi;6()P()} + AP(L,)  (37)
can be written in terms of the observed intengityas i€k

where ) is the density of the uniform distribution. Due to the
p(yi | zi, B) = g(y; — by; 6(x;)). (30) large variance of the uniform distribution, the bias field is only
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TABLE Il
FIVE-CLASS PARAMETER ESTIMATION USING THE HMRF-EM ALGORITHM.

class Class 1 Class 2 Class 3 Class 4 Class 5
parameter |y |01 | w1 | p2 | 02 w2 H3 a3 W He | 04 | W4 Hs 75 ws | K
SNR=20[31[22]028|76| 23 | 027 (124 |23.5{0.11|171|24(0.19(219| 22 (014 7
SNR=14|33|38,029|77|325]0.26|123|326{0.11|171(33|0.19|217|285)0.15]10
SNR=10|40|37,0.33 |81 | 44 1025|125 | 44 [0.08|174|45|0.21|216| 37 |0.12] 9

1. Perform the initial parameter estimation and segmentation.
2. Estimate the bias field

(8 — [_FRli_, with 1= (1,1,---,1)7
o [FyTh

3. Calculate the likelihood distribution

p®(yilei, B) = ¢ (yi — bi;6(2:))
; N @ (b) (©
4. Estimate the class labels by MRF-MAP estimation
x®) = arg max{P(y|x, 61} + P(x)}
xXEX

5. Calculate the posterior distribution

_ 9 (w33 8¢) - pO (Lanr,)

PO (ply.
() prom)
6. Update parameters by i i
Lty Dies POy @ @) 0
¢ Ties PO(ly:)
(J§t+1))2 Zies P(t)(£|yi)(yi - lll)2

7. t + t+1 and repeat from 2 until enough iterations have been
performed.
1

Fig. 7.  HMRF-EM algorithm for brain MR image segmentation and bias fielc
correction. 1

. . . . (9) (h)
estimated with respect to the Gaussian classes. The same itera-

. . . ... Fig. 8. Comparison of the MEM and the HMRF-EM algorithm on simulated
tive EM method can be applied, except for a slight mOdIflcatloﬂD images. (a) The original image with 3% noise. (b) Bias field estimation

to the formulation of mean residu&l; (35) for (a) by both the algorithms. (c) Segmentation for (a) by both the algorithms.
(d) The original image with 15% noise. (e) Bias field estimation for (d) by the
W(U _ N*) MEM algorithm. (f) Segmentation for (d) by the MEM algorithm. (g) Bias field
R, = Z LQJ (38) estimation for (d) by HMRF-EM algorithm. (h) Segmentation for (d) by the
o HMRF-EM algorithm.

B Ties POEyi) r _.q
[ |
L]

JELg J

With such a modification, the performance of the EM algdhe model parameters. In the E step, we calculate the MAP esti-
rithm can be significantly improved in certain situations. Thig1ate of the bias field and the class labels to formcghteinction.
approach is referred to as the modified EM (MEM) algorithmIn the M step, we calculate the ML estimate of the parameters

using the estimated bias field and the class labels in the E step.
B. HMRF-EM Framework for Brain MR Image Segmentation « E step

As has been stated in the previous section, FM model-based
segmentation methods do not utilize any spatial information =~ MAP B = arg maxp (B ‘Y’X(t_l)ﬂ(t)) (39)
and, therefore, are not robust in many cases. The MEM algo-
rithm for brain MR image segmentation suffers from the same
problem. But as an effective way to remove bias field, the MEM
algorithm is worth improving by overcoming this drawback. * M step
We show in this section how the HMRF-EM framework can be
easily extended to incorporate an additional bias field correc- ML 0+ = arg max P (y ‘ 9,X(t)’B(t)) . (41)
tion step. More specifically, we seek an EM solution for three
dependent unknowns: the bias field, the image classification ahide complete algorithm is described in Fig. 7.

MAP x® = arg IniIX1U (X ‘y,B(t), Q(t)) . (40)
xeX
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(e) ® @ (h)

@ @ (k) o

Fig. 9. Comparison of the MEM and the HMRF-EM algorithm on real 2-D MR images with simulated bias field. (a) The original image; (b) the image with
simulated bias field; (c) histogram of (b); (d) best thresholding on (b); (€)—(h) the results from the MEM algorithm; (i)—(I) the results from HMiRfeifNm.

For the last two rows, from left to right: the estimated bias field (the checkerboard is used to represent the background which is assumed to fiald) rntbdias
segmentation, the restored image and the histogram of the restored image.

VIIl. EXPERIMENTS a uniform distribution (density 0.3) is used for the rest. The

Various experiments have been carried out on real and sifgcond row of Fig. 9 shows the result from the MEM algorithm

ulated data, in both two and three dimensions. For the MEﬁWd the last row shows that from the HMRF-EM algorithm.
algorithm, parameters are manually estimated since it does nof\lthough the above two experiments are only simulations
deal with parameter estimation itself. For the HMRF-EM algdhey can still give us some ideas about the two algorithms. Along
rithm, parameters are estimated automatically. with those experiments on general images presented in Sec-
The first experiment shown here tests the noise sensitiviign V, we can conclude in general that the HMRF-EM algo-
of the two algorithms. Two images consisting of two constafithm has the advantage over the FM-EM algorithm when the
regions with the same simulated bias field but with differeff?age noise is not negligible; this is always the case in brain
levels of Gaussian noise were generated [F|g 8(a), (d)] T\MRI More importantly, as the bias field estimation and the
Gaussian classes, corresponding to the two regions, are u§égmentation are mutually influenced by each other, the per-
For F|g 8(a), both a|gorithms give perfect estimates, as Shommance of the Segmentation algorithm will have direct influ-
in Fig. 8(b) and (c). However, for Fig. 8(d), the estimate frorfnce on the bias field estimation, as well as the overall perfor-
the MEM algorithm gives a poor result. mance. Thus, we can also conclude that the HMRF-EM segmen-
The second experiment tests the performance of the two @tion/bias field correction framework is Superior to the FM-EM
gorithms on real 2-D MR images but with a simulated bias fiel@amework.
Fig. 9(a) shows one slice of a proton density image and Fig. 9(b)In the following, we show several experiments applying our
shows the image with a simulated circular bias field. Fig. 9(6JMRF-EM algorithm on real 3-D images taken by different
is the histogram of Fig. 9(b), from which a substantial interscanners. The first one is on a T1 scan obtained from the Mon-
sity overlap between WM and GM can be seen. Fig. 9(d) showeal Neurological Institute, McGill University (courtesy of D.
the best result that can be obtained from Fig. 9(b) using globinold). The original volume has 50 256 256 slices with
thresholding. When applying both algorithms two Gaussian digexel size 0.97% 0.977x 3.0 mm. Fig. 10 shows the segmen-
tributions are used for the two tissue classes (WM and GM) atation and bias field estimation results of four different slices.
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Fig. 10. Four slices of a 3-D MR volume image with real bias field. In each row, from left to right: the original slice, the estimated bias field,reétesiasto
and the segmentation.

We also obtained several coronal scans along with their mahan the intraslice voxel dimensions. In such a situation, an
ually guided segmentations from the Internet Brain Segmentsetropic neighborhood system may cause problems. Therefore,
tion Repository (IBSR) of the Masachusetts General Hospitaln anisotropic 3-D neighborhood system is used with a smaller
Two examples with their original images, bias field estimationgjeight across slices.
restorations, and both the manually guided segmentation and\lthough the HMRF-EM framework itself is theoretically
our segmentations are shown in three views (coronal, transvess®)nd, the initial estimation based on thresholding is rather
and sagittal) in Figs. 11 and 12. heuristic. Due to the high variability of brain MR images in

We can see the above two data sets have very different biems of their intensity ranges and contrasts between brain
field patterns and image qualities. In both cases, our algorithissues, it is not guaranteed that the thresholding procedure will
performs well visually. Although a quantitative comparison witproduce perfect results. In most cases, however, the final seg-
the provided manually guided segmentation could be carrietentation results are stable even with slightly different initial
out, this was not done due to the poor quality of the manualkgstimates. This is largely attributable to the robust HMRF-EM
guided segmentation. The transverse and the sagittal viewsalgforithm. However, as a local minimization method, the EM
the image show various small structures are missing from thkgorithm can be trapped in a local minimum. In some cases,
manual segmentation; also various CSF and nonbrain regiovizere the image is poorly defined, the thresholding procedure
are misclassified as gray or WM. may fail to find the right thresholds for brain tissues, especially
the threshold for GM and WM. With an initial condition far
from normal, the EM procedure is likely to give a wrong final
segmentation. In general, the initial estimation is a difficult

A practical issue has to be addressed in the 3-D implemearoblem and it will certainly be an important issue to be studied
tation of the HMRF-EM algorithm. Theoretically the MRFin future work.
neighborhood system should be three-dimensionally isotropicWe found many scanners produce images with strongly
However, the slice thickness of a 3-D volume is often largerarying bias field across slices. Thus, the very top or bottom

IX. DISCUSSIONS ANDCONCLUSION
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Fig. 11. Data set | from the IBSR. The three rows show the image in coronal, transverse, and sagittal view respectively. In each row, from |dfetonigihalt
slice, the estimated bias field, the restored slice, our segmentation, and the manually guided segmentation.

Fig.12. Data set Il from the IBSR. The three rows show the image in coronal, transverse, and sagittal view respectively. In each row, from Igfetonigjhal
slice, the estimated bias field, the restored slice, our segmentation, and the manually guided segmentation.

slices can have very different intensities to those in the middlaias field patterra-priori, this normalization is a very difficult
This can cause the initial parameter estimation to be totaltyoblem.

wrong as it is done in 3-D and all the pixels in the volume are With respect to the computational load, the whole algorithm
considered as a whole. Attempting to carry out the initial esis slightly slower than the original FM model-based MEM al-
mation two-dimensionally in a slice-by-slice manner is still fagorithm due to the additional MRF-MAP classification and the
from ideal as there are not enough pixels to compute statistied! fitting procedure. However, by employing the fast deter-
in top or bottom slices. It would appear that to effectively solvninistic ICM method and certain optimizations to the program,
this problem certain intensity normalization across slices h&suns reasonably quickly. Currently, it takes 10 seconds for a
to be performed so that for different slices, the mean intensiti2s6 x 256 2-D image and less than 10 minutes for a 3-D image
of a given tissue is similar. However, without knowing thevith 40256 x 256 slices in an Intel PIl 400 MHZ-based system.
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To conclude, we have presented a fully automatic approactj4]
for segmenting brain MR images. The method is based on an
HMRF-EM framework, which is a combination of the HMRF |5
model and the associated MRF-MAP estimation and the EM
fitting procedures. The HMRF model is proposed in this paper[G]
as a substitute for the widely used FM model, which is sensitive
to noise and, therefore, not robust. As a very general methodi7]
the HMRF-EM framework could be applied to many different
image segmentation problems. 8]

We also show that the framework can easily be extendedl
by incorporating other techniques in order to improve its [°]
performance on certain problems. As an example, we demony,
strated how the bias field correction algorithm by Guillemaud
and Brady [6] can be incorporated into this framework. As[n]
a result, a 3-D fully automatic approach for brain MR image
segmentation is achieved and significant improvements have
been observed in terms of both the bias field estimation and tHé?]
tissue classification. [13]
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