CS434b/641a: Pattern Recognition
Prof. Olga Veksler

Lecture 10

Today

= Continue with Linear Discriminant Functions
= Last lecture: Perceptron Rule for weight learning
= This lecture: Minimum Squared Error (MSE) rule
= Pseudoinverse

= Gradient descent (Widrow-Hoff Procedure)
= Ho-Kashyap Procedure




LDF: Perceptron Criterion Function

= The perceptron criterion function
= try to find weight vector a s.t. ay; > 0 for all samples y;
= perceptron criterion function J,(a)= Y (-a'y)
= only look at the misclassified sampleyseym
= will converge in the linearly separable case

= Problem:

= will not converge in the nonseparable
case

= to ensure convergence can set

w_ 1"
k

= However we are not guaranteed that
we will stop at a good point

n

LDF: Minimum Squared-Error Procedures

= |dea: convert to easier and better understood problem

a'y; > 0 for all samples y;
solve system of linear inequalities

g

a'y; = b; for all samples y;
solve system of linear equations
= MSE procedure

= Choose positive constants b, b,,..., b,

= try to find weight vector a s.t. aly; = b; for all samples y;

= If we can find weight vector a such that a'y; = b, for all
samples y;, then ais a solution because b;'s are positive

= consider all the samples (not just the misclassified ones)




LDF: MSE Margins

g(y)=0 % Yi

= Since we want a'y; = b;, we expect sample y; to be at distance

b, from the separating hyperplane (normalized by ||a||)

= Thus by, b,,..., b, give relative expected distances or
“margins” of samples from the hyperplane

= Should make b; small if sample i is expected to be near
separating hyperplane, and make b; larger otherwise

= In the absence of any additional information, there are good
reasons to set b;= b,=...=b, =1

LDF: MSE Matrix Notation

= Need to solve n equations {

= |ntroduce matrix notation:

_V1(°) y(1) y(d)

o o v |[a] |2
Yg Ya© o yg ao b2

N : ,1 —

: : a'd 3
yO yQ .y b,

= Thus need to solve a linear system Ya=b




LDF: Exact Solution is Rare

= Thus need to solve a linear system Ya=b
= Yis an nby (d +1) matrix

= Exact solution can be found only if Y'is nonsingular
and square, in which case the inverse Y-’exists
= a=Y"b
= (number of samples) = (number of features + 1)
= almost never happens In practice

= in this case, guaranteed to find the separating hyperplane

LDF: Approximate Solution

= Typically Y is overdetermined, that is it has more
rows (examples) than columns (features)
= If it has more features than examples, should reduce

dimensionality
/8-

= Need Ya = b, but no exact solution exists for an
overdetermined system of equation
= More equations than unknowns

= Find an approximate solution a, thatis Ya = b

= Note that approximate solution a does not necessarily
give the separating hyperplane in the separable case

= But hyperplane corresponding to a may still be a good
solution, especially if there is no separating hyperplane




LDF: MSE Criterion Function

= Minimum squared error approach: find a which
minimizes the length of the error vector e

b
vt

Ya
= Thus minimize the minimum squared error criterion

function: , &
a)=|va-bf* =) (a'y,~bf
i=1

= Unlike the perceptron criterion function, we can
optimize the minimum squared error criterion
function analytically by setting the gradient to 0

LDF: Optimizing J a)

a)=|Ya-b* = i(a‘y,- -bf

i=1

= Let’'s compute the gradient:
o,
2a, n

| _dJs= i' -
vJ,(a)= aJs = da ,-Zﬂ“da(a Yi bi)2

aad N
T =Y 2Aay, - -):(a y.-b,)




LDF: Pseudo Inverse Solution

VJ,.(a)=2Y'(Ya-b)

= Setting the gradient to O:
2Y!(Ya-b)=0 = Y'Ya=Y'b
= Matrix Y'Y is square (it has d +1 rows and columns)
and it is often non-singular

= If Y'Y is non-singular, its inverse exists and we can
solve for a uniquely:

a=(Y'y)'vip

pseudo inverse of Y
(vvy v )y =(vy)'(viy)=1

LDF: Minimum Squared-Error Procedures

= If b=...=b,=1, MSE procedure is equivalent to finding a
hyperplane of best fit through the samples y;,,....¥,

J,(a)=|Ya-1,°

| S

n

= Then we shift this line to the origin, if this line was a
good fit, all samples will be classified correctly




LDF: Minimum Squared-Error Procedures
= Only guaranteed the separating hyperplane if Ya > 0

a'y,
= that is if all elements of vector Ya=! : ] are positive

t
= We have Ya=b s
b, + ¢, '
= Thatis Ya= b 5 where € may be negative
n+8n

= If g,..., g are small relative to by,..., b,, then each element
of Yais positive, and a gives a separating hyperplane
= |f approximation is not good, & may be large and negative,
for some i, thus b; + & will be negative and a is not a
separating hyperplane
= Thus in linearly separable case, least squares solution
a does not necessarily give separating hyperplane
= But it will give a “reasonable” hyperplane

LDF: Minimum Squared-Error Procedures

= We are free to choose b. May be tempted to make b
large as a way to insure Ya=b>0

= Does not work
= Let Bbe a scalar, let’s try b instead of b

= if @a*is a least squares solution to Ya = b, then for any
scalar g, least squares solutionto Ya= b is pa*

arg min|Ya— gb|” = argmin p°|Y(a/ B)- b’
= argmin|Y(a/g8)-b|" = a*
= thus if for some ith element of Ya is less than 0, that is
yia < 0, then y!; (Ba) < 0,

= Relative difference between components of b matters,
but not the size of each individual component




LDF: How to choose b in MSE Procedure?

= So far we assumed that constants b,, b,,..., b,are
positive but otherwise arbitrary

= Good choice is b;= b,=...= b,= 1. In this case,
1. MSE solution is basically identical

to Fischer’s linear discriminant
solution

2. MSE solution approaches the Bayes discriminant
function as the number of samples goes to infinity

gB(X)= P(C1 | X)—P(02 | X)

LDF: Example

Class 1: (6 9), (57) d
Class 2: (5 9), (0 4) 1 3

Set vectors y,, ¥», Y3, Y4 by :
adding extra feature and ¢ .

- 0 1 2 3 4 5 6

ol

“normalizing”
6| vi=|5| vo=|"5
Y:= 9 Yo = > i3 = "9

Matrix Yis then Y=

n
NN~ -
QLI
KON©




LDF: Example

1 10F
= Choose b= ; | e
1 ([ J
8 /
= |n matlab, a=Y\b solves the f w7
least squares problem S
2.7
a= 1.0 % 0 > 4 5
{_0.9}

= Note ais an approximation to Ya = b, since no

exact solution exists 0.4 1
Ya=|13|.|1

0.6 1
1.1 1

= This solution does give a separating hyperplane
since Ya> 0

LDF: Example

Class 1: (6 9), (57)

Class 2: (5 9), (0 10)

The last sample is very far
compared to others from the

separating hyperplane O R S
I Iy
y1_9 _V2—7 ys; = "9 .V4—_10

1 6 9

: _ 1 7
Matrix Y= _; _5 _9g
-1 0




LDF: Example

1

= Choose b=|!
1

= |[n matlab, a=Y\b solves the
least squares problem

7 [ ]

3.2 65 ‘
a= 0.2 %2 0 2 4 6

-04
= Note ais an approximation to Ya = b, since no

exact solution exists g.g 1
] 1
Ya=|_0.04|%|1

1.16 1

= This solution does not give a separating
hyperplane since aly; < 0

LDF: Example

= MSE pays to much attention to isolated “noisy”
examples (such examples are called outliers)

MSE solution
outlier .
*., desired solution

= No problems with convergence though, and
solution it gives ranges from reasonable to good

10



LDF: Example

= we know that 4t point is far far
from separating hyperplane
= |n practice we don’t know this

1

1

1
10

= |n Matlab, solve a=Y\b E

-1.1
a=| 1.7
-0.9

0.9 1
= Note ais an approximation to Ya = b, Ya={ Z,:g] ;{ ;]
10

= Thus appropriate b=

8
6
4
oL
0
2
4

N
o
n
IS
(=)

= This solution does give the separating hyperplane
since Ya> 0

LDF: Gradient Descent for MSE solution
J,(a)=|Ya-b[’

= May wish to find MSE solution by gradient descent:

1. Computing the inverse of Y'Y may be too costly

2. Y'Y may be close to singular if samples are highly
correlated (rows of Y are almost linear
combinations of each other)
= computing the inverse of Y'Y is not numerically stable

= In the beginning of the lecture, computed the

gradient:
vJ (a)=2Y'(Ya-b)

11



LDF: Widrow-Hoff Procedure

vJ (a)=2Y'(Ya-Db)

= Thus the update rule for gradient descent:
k1) — gk _ n(“)Y’(Ya(") _ b)

= If g =4"/k weight vector a® converges to the MSE
solution a, that is Y¥( Ya-b)=0

= Widrow-Hoff procedure reduces storage
requirements by considering single samples
sequentially:

a = a® _ Wy (yta® _ p,)

LDF: Ho-Kashyap Procedure

= |In the MSE procedure, if b is chosen arbitrarily,
finding separating hyperplane is not guaranteed

= Suppose training samples are linearly separable.
Then there is as and positive bs s.t.

Ya*=b°>0

= |f we knew bs could apply MSE procedure to find the

separating hyperplane
= |dea: find both as and bs

= Minimize the following criterion function, restricting to

pOS|t|Ve b: JHK (a, b) — HYa _ bHZ

= Jylas,b%)=0

12



LDF: Ho-Kashyap Procedure

Jo(a,b)=|Ya—-b|*

= As usual, take partial derivatives w.r.t. aand b
V.Ju =2Y'(Ya-b)=0
V. J« =—2(Ya-b)=0

= Use modified gradient descent procedure to find a
minimum of Jyk(a,b)

= Alternate the two steps below until convergence:
1) Fix b and minimize Jyk(a,b) with respect to a
2) Fix a and minimize Jyk(a,b) with respect to b

LDF: Ho-Kashyap Procedure

V. Ju =2Y'(Ya-b)=0  V,Jyx=-2(Ya-b)=0

= Alternate the two steps below until convergence:
1) Fix b and minimize Jy(a,b) with respect to a
2) Fix a and minimize Jyk(a,b) with respect to b

= Step (1) can be performed with pseudoinverse

= For fixed b minimum of Jyk(a,b) with respect to a is
found by solving

2Y'(Ya—b)=0
= Thus
a=(Y'y)'v'p

13



LDF: Ho-Kashyap Procedure

= Step 2: fix @ and minimize Jyk(a,b) with respect to b

= We can’'t use b= Ya because b has to be positive

= Solution: use modified gradient descent
= Regular gradient descent rule:
bk = p*) _ Iy, y(a®), p®)

= If any components of Vv, J are positive, b will
decrease and can possibly become negative

rfetd11

LDF: Ho-Kashyap Procedure

= start with positive b, follow negative gradient but
refuse to decrease any components of b

= This can be achieved by setting all the positive
components of V,J to 0

b+t = p®) _py % v, J(@®,6®) - jv,Jd(@®,b®)|

= here |v| denotes vector we get after applying absolute
value to all elements of v

SO

= Not doing steepest descent anymore, but we are
still doing descent and ensure that b is positive

14



LDF: Ho-Kashyap Procedure

ple+n) = pk) _ 1 [V J(a(k ) |V J(a(k plk ))/]

V,J=-2(Ya-b)=0

= Let e®=ya®_p® = —EVJb(a("),b("))

= Then
b(k+1) b(k) 1[_ ze(k) _ |26(k) |]
2

= pt) + ”[e(k) +| e'k) |]

LDF: Ho-Kashyap Procedure

= The final Ho-Kashyap procedure:
0) Start with arbitrary a(™ and b("> 0, let k = 1
repeat steps (1) through (4)
1) e = ya®) _ p®
2) Solve for b+ using a® and b
b(k+1) = b(k) + ﬂ[e(k) +| e(k) |]
3) Solve for ak+") using btk+1)
a(k+1) — (Yty)—1yl b(k+1)
4) k=k+1
until eé®>=0 or k> kp,,, or bk*) = bk

= For convergence, learning rate should be fixed
between 0 <7 < 1

15



LDF: Ho-Kashyap Procedure

pl+) — plk) 4 U[e(k) +| e |]

What if e® is negative for all components?
= plk+1) = bk and corrections stop
Write e out:
e® = va® - p® ~y(y'y)'y'p® _ p®

Multiply by Yt
yie® = yi(y(vty )"y 'b® - p®) = yip® _y1p® — g
Thus Ytel®) = 0

LDF: Ho-Kashyap Procedure
= Thus Yte® =0

= Suppose training samples are linearly separable.
Then there is a® and positive bS s.t.

Ya*=b*>0
= Multiply both sides by (etk) )t
0 — (e(k))t Yas = (e(k))tbs

= Either by e¥ = 0 or one of its components is
positive

16



LDF: Ho-Kashyap Procedure

= In the linearly separable case,
= ek =0, found solution, stop
= one of components of e¥ is positive, algorithm continues

= In non separable case,

= ek will have only negative components eventually, thus
found proof of nonseparability

= No bound on how many iteration need for the proof of
nonseparability

LDF: Ho-Kashyap Procedure Example

= Class 1: (6 9), (5 7) 7"
= Class 1: (5 9), (0 10) 9 "
22 g B
. ' ¢
= Matrix Y=l _y _5 _9g R R R
-1 0-10

1

1
Start with a‘”:lj} and b = ;
1

Use fixed learning 7 =0.9
16

3 m_| 13
Atthe start Ya™"=| _ ;¢

- 11

17



LDF: Ho-Kashyap Procedure Example

= |teration 1:

18| |1 3

= e = yal) _pi) = =

e =Ya"-b"=|_s5\-|1| =|-16
-11] [1] [-12

= solve for b? using a”and b("

b® = b 1 0.9[e +/eM || =

1

= solve for a® using b

a(2) = (Yty)—1yt b(2) =|:

i Bl 1Bl |20
1170916 |*|16||=| 1
1 12| |12 1

LDF: Ho-Kashyap Procedure Example

10 |

= Continue iterations until Ya > 0 .

= |n practice, continue until minimum .
component of Yais less then 0.01

6 L
2 0 2

= After 104 iterations converged to solution
-34.9 28
a=[ 27.3} b= 23]

1

= adoes gives a separating hyperplane

Ya=1012
1.48

18



LDF: MSE for Multiple Classes

= Suppose we have m classes
Define m linear discriminant functions

g.(x)=w'x+w, i=1,..,m

Given x, assign class c; if
9i(x) 2 g;(x) vj#i

Such classifier is called a linear machine

A linear machine divides the feature space into ¢
decision regions, with g;(x) being the largest
discriminant if x is in the region R;

LDF: Many Classes

19



LDF: MSE for Multiple Classes

= We still use augmented feature vectors yy,,..., ¥,
Define m linear discriminant functions

gi(y)=ayy i=1,.,m

Given y, assign class ¢; if
t t . -
ayzay V] #1

For each class i, makes sense to seek weight
vector a;, s.t.

ay=1 Vy € class i
ay=0 Vy ¢ class i

If we find such a,,..., a,, the training error will be 0

LDF: MSE for Multiple Classes

= For each class i, find weight vector a;, s.t.
ay=1 Vy € class i
ay=0 Vy ¢ class i

We can solve for each a; independently

Let n; be the number of samples in class i

Let Y; be matrix whose rows are samples from
class i, so it has d +1 columns and n; rows

Let’s pile all samples in n by d +71 matrix Y:

Y. sample from class1
sample from class1

y=|%| -
Y,

m

sample from class m
sample from class m

20



LDF: MSE for Multiple Classes

= Let b; be a column vector of length n which is 0
everywhere except rows corresponding to samples

from class i, where itis 7:p1
1 rows corresponding
bi = 1 to samples from class i
0]
= We need to solve: Ya, =b, 0]
sample from class1 Ly 0
sample from class1 | | 2 1
: o =|:
sample from class m ) 1
sample from class m = :
0

LDF: MSE for Multiple Classes

= We need to solve Ya; = b;
= Usually no exact solution since Y is overdetermined

= Use least squares to minimize norm of the error
vector || Ya; - b; ||

= LSE solution with pseudoinverse:
a =(Y'v)'y'p,

= Thus we need to solve m LSE problems, one for
each class

= Can write these m LSE problems in one matrix

21



LDF: MSE for Multiple Classes

= Let’s pile all b; as columns in n by ¢ matrix B
B= [b1 bn]

= Let’s pile all a;as columns in d +71 by m matrix A

<

A=[a, - a,] -

weights a,
weights a,
weights a,,

= m LSE problems can be represented i

sample from class1
sample from class1
sample from class?2
sample from class3
sample from class3
sample from class3

Y

5
cocoaoco <
s aa000

>

Il

W

weights for c3
|
o000

weights for c1
weights for c2

>
W

LDF: MSE for Multiple Classes

= Qur objective function is:
J(A)=3 |Ya - b/’
i=1

= J(A) is minimized with the use of pseudoinverse
A=(Y'y)'vyB

22



LDF: Summary

= Perceptron procedures
= find a separating hyperplane in the linearly separable case,
= do not converge in the non-separable case

= can force convergence by using a decreasing learning rate,
but are not guaranteed a reasonable stopping point

= MSE procedures

= converge in separable and not separable case

= may not find separating hyperplane if classes are linearly
separable

= use pseudoinverse if Y'Y is not singular and not too large
= use gradient descent (Widrow-Hoff procedure) otherwise

= Ho-Kashyap procedures
= always converge
= find separating hyperplane in the linearly separable case
= more costly
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