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CS434b/654b: Pattern Recognition
Prof. Olga Veksler

Lecture 3
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Today

� Finish Matlab Introduction
� Course Roadmap
� Probability Topic: Conditional distributions
� Bayesian Decision Theory

� Two category classification
� Multiple category classification
� Discriminant Functions
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Course Road Map

a lot is 
known
”easier”

little is 
known

“harder”

Bayesian Decision theory
� Know probability distribution of the 

categories  
� never happens in real world

� Do not even need training data

a lot is 
known
”easier”

little is 
known
“harder”

� Can design optimal classifier

Example

salmon sea bass

respected fish expert says that salmon’s length 
has distribution  N(5,1) and sea bass’s length 
has distribution N(10,4)
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ML and Bayesian parameter estimation

� Shape of probability distribution is known
� Happens sometimes

� Labeled training data

a lot is 
known
”easier”

little is 
known
“harder”

salmon salmonsalmonbass

� Need to estimate parameters of probability 
distribution from the training data

Example

(((( ))))2
11,N σσσσµµµµ

(((( ))))2
22 ,N σσσσµµµµ

2
22

2
11 ,,, σσσσµµµµσσσσµµµµ

respected fish expert says salmon’s 
length has distribution             and sea 
bass’s length has distribution 

� Need to estimate parameters
� Then can use the methods from the  
bayesian decision theory 

Linear discriminant  functions and Neural Nets
� No probability distribution (no shape or 

parameters are known)
� Labeled data
� The shape of discriminant functions is 

known

a lot is 
known

little is 
known

salmon salmonsalmonbass

� Need to estimate parameters of the 
discriminant function (parameters of the 
line in case of linear discriminant)

bass
salmon

lig
ht

ne
ss

linear 
discriminant

function

length
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Non-Parametric Methods
� Neither probability distribution nor 

discriminant function is known
� Happens quite often

� All we have is labeled data

a lot is 
known
”easier”

little is 
known
“harder”

salmon salmonsalmonbass

� Estimate the probability distribution 
from the labeled data

Unsupervised Learning and Clustering

� Data is not labeled
� Happens quite often

a lot is 
known
”easier”

little is 
known
“harder”

1. Estimate the probability distribution 
from the unlabeled data

2. Cluster the data
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Course Road Map
1. Bayesian Decision theory (rare case)

� Know probability distribution of the categories  
� Do not even need training data
� Can design optimal classifier

2. ML and Bayesian parameter estimation
� Need to estimate Parameters of probability dist.
� Need training data

3. Non-Parametric Methods
� No probability distribution, labeled data

4. Linear discriminant  functions and Neural Nets
� The shape of discriminant functions is known
� Need to estimate parameters of discriminant functions

5. Unsupervised Learning and Clustering
� No probability distribution and unlabeled data

a lot is 
known

little is 
known

More on Probability

� For events A and B, we have defined

� Usually model with random variables not events. 
Need equivalents of these laws for mass and density 
functions (could go from random variables back to 
events, but time consuming)

Pr(A|B)=

U

Pr(A   B)
Pr(B)

conditional 
probability

(((( )))) (((( )))) (((( ))))����
====

====
n

1k
kk BPrB|APrAPr

law of total
probability

(((( )))) (((( )))) (((( ))))
(((( )))) (((( ))))����

====

==== n

1k
kk

ii
i

BPrB|APr

BPrB|APr
A|BPrBayes’ rule



6

Conditional Mass Function: Discrete RV
� For discrete RV nothing new because mass 

function is really a probability law
� Define conditional mass function of X given Y=y

by (((( )))) (((( ))))
(((( ))))yP

y,xP
y|xP ====

� This is a probability mass function because: 

(((( ))))
(((( ))))
(((( ))))

(((( ))))
(((( )))) 1
yP
yP

yP

y,xP
y|xP x

x

============
����

���� ∀∀∀∀

∀∀∀∀

y is fixed

� This is really nothing new because:

(((( )))) (((( ))))
(((( ))))

[[[[ ]]]]
[[[[ ]]]] [[[[ ]]]]yYxX

yY
yYxX

yP
yxP

yxP ============
====

================ |Pr
Pr

Pr,
|

�

Conditional Mass Function: Bayes Rule

� The Bayes Rule: 

(((( )))) (((( ))))
(((( ))))

(((( )))) (((( ))))
(((( )))) (((( ))))����

∀∀∀∀

========

y

yPy|xP
yPy|xP

xP
x,yP

x|yP

� The law of Total Probability:

(((( )))) (((( )))) (((( )))) (((( ))))��������
∀∀∀∀∀∀∀∀

========
yy

yPy|xPy,xPxP
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Conditional Density Function: Continuous RV

� Does it make sense to talk about conditional density 
p(x|y) if Y is a continuous random variable?  After 
all, Pr[Y=y]=0, so we will never see Y=y in practice

� Measurements have limited accuracy. Can interpret 
observation y as observation in interval [y-ε, ε, ε, ε, y+εεεε],],],], and 
observation x as observation in interval  [x-ε, ε, ε, ε, x+εεεε]]]]

y

y-εεεε y+εεεε

x

x-εεεε x+εεεε

Conditional Density Function: Continuous RV

xx-ε x+ε

p(x)
� Let B(x) denote interval [x-εεεε,x+εεεε]  

(((( ))))[[[[ ]]]] (((( )))) (((( ))))xp2dxxpxBXPr
x

x

εεεε
εεεε

εεεε

≈≈≈≈====∈∈∈∈ ����
++++

−−−−

� Similarly (((( ))))[[[[ ]]]] (((( ))))yp2yBYPr εεεε≈≈≈≈∈∈∈∈

(((( )))) (((( ))))[[[[ ]]]] (((( ))))y,xp4yBYxBXPr 2εεεε≈≈≈≈∈∈∈∈∈∈∈∈ �

(((( )))) (((( )))) (((( ))))[[[[ ]]]]
εεεε2

yBY|xBXPr
y|xp

∈∈∈∈∈∈∈∈≈≈≈≈� Thus we should have  

(((( )))) (((( )))) (((( ))))[[[[ ]]]]
(((( ))))[[[[ ]]]]

(((( ))))
(((( ))))yp

y,xp
yBYPr2

yBYxBXPr
y|xp ≈≈≈≈

∈∈∈∈
∈∈∈∈∈∈∈∈≈≈≈≈

εεεε
�

� Which can be simplified to:   
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Conditional Density Function: Continuous RV
� Define conditional density function of X given Y=y

by
(((( )))) (((( ))))

(((( ))))yp
y,xp

y|xp ====

� This is a probability density function because: 

(((( )))) (((( ))))
(((( ))))

(((( ))))

(((( ))))
(((( ))))
(((( )))) 1
yp
yp

yp

dxy,xp
dx

yp
y,xp

dxy|xp ================
����

��������

∞∞∞∞

∞∞∞∞−−−−
∞∞∞∞

∞∞∞∞−−−−

∞∞∞∞

∞∞∞∞−−−−

y is fixed

� The law of Total Probability:

(((( )))) (((( )))) (((( ))))��������
∞∞∞∞

∞∞∞∞−−−−

∞∞∞∞

∞∞∞∞−−−−

======== dyypyxpdyyxpxp |),(

Conditional Density Function: Bayes Rule

� The Bayes Rule: 

(((( )))) (((( ))))
(((( ))))

(((( )))) (((( ))))
(((( )))) (((( ))))����

∞∞∞∞

∞∞∞∞−−−−

========
dyypyxp

ypyxp
xp

xyp
xyp

|

|,
|
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Mixed Discrete and Continuous

� X discrete, Y continuous
� Bayes rule

(((( )))) (((( )))) (((( ))))
(((( ))))yp

xPxyp
yxP

|
| ====

� X continuous, Y discrete
� Bayes rule

(((( )))) (((( )))) (((( ))))
(((( ))))yP

xpxyP
yxp

|
| ====

18

Bayesian Decision Theory

� Know probability distribution of the 
categories  
� Almost never the case in real life!
� Nevertheless useful since other cases can be 

reduced to this one after some work

� Do not even need training data
� Can design optimal classifier
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Cats and Dogs
� Suppose we have these conditional probability 

mass functions for cats and dogs
� P(small ears | dog) = 0.1, P(large ears | dog) = 0.9
� P(small ears | cat) = 0.8, P(large ears | cat) = 0.2

� Observe an animal with large ears
� Dog or a cat?
� Makes sense to say dog because probability of 

observing large ears in a dog is much larger than 
probability of observing large ears in a cat
� Pr[large ears | dog] = 0.9 > 0.2= Pr[large ears | cat] = 0.2

� We choose the event of larger probability, i.e. 
maximum likelihood event

20

Example: Fish Sorting
� Respected fish expert says that 

� Salmon’ length has distribution  N(5,1)
� Sea bass’s length has distribution N(10,4)

� Recall if r.v. is    then it’s density is

(((( ))))
(((( ))))

2

2

2

2
1 σσσσ

µµµµ

ππππσσσσ

−−−−−−−−
====

l

elp

(((( ))))2,σσσσµµµµN

(((( ))))
(((( ))))

2
5 2

2
1

|
−−−−−−−−

====
l

esalmonlp
ππππ

(((( ))))
(((( ))))

4*2
10 2

22
1

|
−−−−−−−−

====
l

ebasslp
ππππ

� Thus class conditional densities are
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Likelihood function 

(((( ))))
(((( ))))

2
5 2

2
1

|
−−−−−−−−

====
l

esalmonlp
ππππ

(((( ))))
(((( ))))

4*2
10 2

22
1

|
−−−−−−−−

====
l

ebasslp
ππππ

� Thus class conditional densities are

fixed fixed

� Fix length, let fish class vary.  Then we get 
likelihood function (it is not density and not 
probability mass)

(((( ))))

(((( ))))

(((( ))))

����
����

����

����
����

����

����

====

====
====

−−−−−−−−

−−−−−−−−

bassclassife
22
1

salmonclassife
2
1

class|lp
8
10l

2
5l

2

2

ππππ

ππππ

fixed

22

Likelihood vs. Class Conditional Density

length7

Suppose a fish has length 7.  How do we classify it?

p(l | class)
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ML (maximum likelihood) Classifier

(((( ))))
(((( ))))

2
5 2

2
1

|
−−−−−−−−

====
l

esalmonlp
ππππ

(((( ))))
(((( ))))

4*2
10 2

22
1

|
−−−−−−−−

====
l

ebasslp
ππππ

� Instead, we choose class which maximizes likelihood

� We would like to choose salmon if 
[[[[ ]]]] [[[[ ]]]]bass|7lengthPrsalmon|7lengthPr ====>>>>====

� However, since length is a continuous r.v.,   
[[[[ ]]]] [[[[ ]]]] 0bass|7lengthPrsalmon|7lengthPr ================

� ML classifier: for an observed l:

(((( )))) (((( ))))bass|lp?salmon|lp
>>>>

<<<<

salmon

bass
in words: if p(l | salmon) > p(l | bass), 
classify as salmon, else classify as bass

24

> >

Interval Justification

7

p( 7 |bass)

p( 7 |salmon)

(((( ))))[[[[ ]]]] (((( ))))bass|7p2bass|7BlPr εεεε≈≈≈≈∈∈∈∈

(((( ))))[[[[ ]]]] (((( ))))salmon|7p2salmon|7BlPr εεεε≈≈≈≈∈∈∈∈
⇐⇐⇐⇐

Thus we choose 
the class (bass) 
which is more 
likely to have given 
the observation
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classify as salmon classify as sea bass

Decision Boundary

length6.70

26

Priors

� Suppose a fish expert says: in the fall, there 
are twice as many salmon as sea bass

� Prior for our fish sorting problem
� P(salmon) = 2/3
� P(bass) = 1/3

� Prior comes from prior knowledge, no data 
has been seen yet

� With the addition of prior to our model, how 
should we classify a fish of length 7?
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How Prior Changes Decision Boundary?

� Without priors

� How should this change with prior?
� P(salmon) = 2/3
� P(bass) = 1/3

6.70

salmon sea bass

? ?

length

6.70

salmon sea bass
length

28

Bayes Decision Rule

1. Have likelihood functions 
p(length | salmon) and p(length | bass)

2. Have priors P(salmon) and P(bass)

� Question: Having observed fish of certain 
length, do we classify it as salmon or bass?

� Natural Idea:
� salmon if
� bass if 

(((( )))) (((( ))))length|bassPlength|salmonP >>>>
(((( )))) (((( ))))length|salmonPlength|bassP >>>>
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Posterior

� P(salmon | length) and P(bass | length)          
are called posterior distributions, because 
the data (length) was revealed (post data)

� How to compute posteriors? Not obvious

� From Bayes rule:

(((( )))) (((( ))))
(((( ))))lengthp

length,salmonp
length|salmonP ====

(((( )))) (((( ))))
(((( ))))lengthp

salmonPsalmon|lengthp====

(((( )))) (((( )))) (((( ))))
(((( ))))lengthp

bassPbass|lengthp
length|bassP ====

� Similarly:

30

MAP (maximum a posteriori) classifier

(((( )))) (((( ))))
(((( ))))

(((( )))) (((( ))))
(((( ))))lengthp

bassPbass|lengthp
?

lengthp
salmonPsalmon|lengthp

<<<<

>>>>
salmon

bass

(((( )))) (((( )))) (((( )))) (((( ))))bassPbass|lengthp?salmonPsalmon|lengthp
<<<<

>>>>salmon

bass

(((( )))) (((( ))))lengthbassPlengthsalmonP |?|
<<<<

>>>>

bass

salmon
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31

Back to Fish Sorting Example

(((( ))))
(((( ))))

2
5 2

2
1

|
−−−−−−−−

====
l

esalmonlp
ππππ

(((( ))))
(((( ))))

8
10 2

22
1

|
−−−−−−−−

====
l

ebasslp
ππππ

� likelihood

� Priors:    P(salmon) = 2/3,  P(bass) = 1/3
(((( )))) (((( ))))

3
1

e
22
1

3
2

e
2
1 8

10l
2
5l 22

∗∗∗∗>>>>∗∗∗∗
−−−−−−−−

−−−−−−−−

ππππππππ
� Solve inequality

6.70

salmon sea bass
length7.18

new decision 
boundary

� New decision boundary makes sense since 
we expect to see more salmon

Prior P(s)=2/3 and P(b)= 1/3  vs. 
Prior P(s)=0.999 and P(b)= 0.001

7.1 8.9 length

salmon
bass
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Likelihood vs Posteriors

length

P(salmon|l) P(bass|l)

p(l|salmon)

p(l|bass)

likelihood
p(l|fish class)

density with 
respect to 

length, area 
under the 
curve is 1

posterior P(fish class| l) 
mass function with respect to fish class, so for 

each l, P(salmon| l )+P(bass| l ) = 1 

More on Posterior

(((( )))) (((( )))) (((( ))))
(((( ))))lP

cPc|lP
l|cP ====

Prior
(given)

posterior density
(our goal)

likelihood
(given)

normalizing factor, often do not even need 
it for classification since P(l) does not 
depend on class c. If we do need it, from 
the law of total probability:

Notice this formula consists of likelihoods 
and priors, which are given

(((( )))) (((( )))) (((( )))) (((( )))) (((( ))))basspbass|lpsalmonpsalmon|lplP ++++====
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More on Posterior

(((( )))) (((( )))) (((( ))))
(((( ))))lP

cPclP
lcP

|
| ====

c lcause (class) effect (length)

� If cause c is present, it easy to determine the 
probability of effect l with  likelihood P(l|c) 

� Usually observe the effect l without knowing cause c. 
Hard to determine cause c because there may be 
several causes which could produce same effect l

� Bayes rule makes I easy to determine posterior 
P(c|l), if we know likelihood P(l|c) and prior P(c)

posterior likelihood prior

36

More on Priors

� Prior comes from prior knowledge, no data 
has been seen yet

� If there is a reliable source prior knowledge, 
it should be used

� Some problems cannot even be solved 
reliably without a good prior

� However prior alone is not enough, we still 
need likelihood
� P(salmon)=2/3, P(sea bass)=1/3
� If I don’t let you see the data, but ask you to 

guess, will you choose salmon or sea bass?
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More on Map Classifier

(((( )))) (((( )))) (((( ))))
(((( ))))lP

cPc|lP
l|cP ====

posterior likelihood prior

� If P(salmon)=P(bass) (uniform prior) MAP classifier 
becomes ML classifier (((( )))) (((( ))))c|lPl|cP ∝∝∝∝

(((( )))) (((( )))) (((( ))))cPc|lPl|cP ∝∝∝∝

� Do not care about P(l) when maximizing P(c|l )
proportional

� If for some observation l, P(l|salmon)=P(l|bass), then 
this observation is uninformative and decision is 
based solely on the prior (((( )))) (((( ))))cPl|cP ∝∝∝∝

38

Justification for MAP Classifier
� Let’s compute probability of error for the 

MAP estimate:
(((( )))) (((( ))))l|bassP?l|salmonP

<<<<

>>>>

bass

salmon

� For any particular l, probability of error

Pr[error| l ]=
if we decide salmonP(bass|l)

if  we decide bassP(salmon|l)

Thus MAP classifier is optimal  for each 
individual l !
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Justification for MAP Classifier
� We are interested to minimize error not just for 

one l, we really want to minimize the average 
error over all l

[[[[ ]]]] (((( )))) [[[[ ]]]] (((( ))))dllpl|errorPrdll,errorperrorPr ��������
∞∞∞∞

∞∞∞∞−−−−

∞∞∞∞

∞∞∞∞−−−−

========

� If Pr[error| l ]is as small as possible, the integral is 
small as possible

Thus MAP classifier minimizes the probability of error!

� But Bayes rule makes  Pr[error| l ] as small as 
possible

More General Case

� Have more than one feature [[[[ ]]]]d21 x,...,x,xx ====
{{{{ }}}}m21 c,...,c,c� Have more than 2 classes

� Let’s generalize a little bit
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More General Case

� As before, for each j we have
� is likelihood of observation x given that 

the true class is
� is prior probability of class  
� is posterior probability of class       given 

that we observed data x

(((( ))))jcP
jc

(((( ))))jc|xp

jc
(((( ))))x|cP j jc

� Evidence, or probability density for data 

(((( )))) (((( )))) (((( ))))����
====

====
m

1j
jj cPc|xpxp

need to make this
as small as possible

Minimum Error Rate Classification

� Want to minimize average probability of error 

[[[[ ]]]] (((( )))) [[[[ ]]]] (((( ))))dxxpx|errorPrdxx,errorperrorPr �������� ========

[[[[ ]]]] (((( ))))x|cP1x|errorPr i−−−−==== ic� if we decide class 

[[[[ ]]]]x|errorPr� is minimized with MAP classifier
� Decide on class ci if 

(((( )))) (((( )))) ijx|cPx|cP ji ≠≠≠≠∀∀∀∀>>>>
MAP classifier is optimal

If we want to minimize the 
probability of error

1

P(c1|x) P(c2|x)
P(c3|x)

1-P(c1|x) 1-P(c2|x)
1-P(c3|x)
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General Bayesian Decision Theory

� Suppose some mistakes are more costly 
than others (classifying a benign tumor as 
cancer is not as bad as classifying cancer 
as benign tumor)

{{{{ }}}}k21 ,...,, αααααααααααα

� In close cases we may want to refuse to 
make a decision (let human expert handle 
tough case)
� allow actions

� Allow loss functions                 describing loss 
occurred when taking action      when the true 
class is 

(((( ))))ji c|ααααλλλλ
iαααα

jc

Conditional Risk
� Suppose we observe x and wish to take 

action  iαααα
� If the true class is , by definition, we incur 

loss  (((( ))))ji c|ααααλλλλ
jc

� Probability that the true class is      after 
observing x is 

jc
(((( ))))x|cP j

(((( )))) (((( )))) (((( ))))����
====

====
m

1j
jjii x|cPc|x|R ααααλλλλαααα

� The expected loss associated with taking 
action      is called conditional risk and it is:iαααα
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Conditional Risk

(((( )))) (((( )))) (((( ))))����
====

====
m

1j
jjii x|cPc|x|R ααααλλλλαααα

sum over disjoint events 
(different classes)

probability of  
class      given 
observation x

jc

penalty for 
taking action       
if observe x

iαααα

1c

2c

3c
4c

λλλλ(ααααi|c1)

λλλλ(ααααi|c2)
λλλλ(ααααi|c3)

λλλλ(ααααi|c4)
jc

part of overall penalty 
which comes from event 
that  true class is 

Example: Zero-One loss function
� action     is decision that true class is

(((( )))) (((( )))) (((( )))) ========����
====

m

1j
jjii x|cPc|x|R ααααλλλλαααα

(((( ))))x|cP1 i−−−−====

� MAP classifier is Bayes decision rule under 
zero-one loss function

(((( ))))
����
����
���� ======== otherwise

jiifc ji 1
0|ααααλλλλ (no mistake)

(mistake)

(((( )))) ====����
≠≠≠≠ ji

j x|cP

� Thus MAP classifier optimizes R(ααααi|x)
(((( )))) (((( )))) ijx|cPx|cP ji ≠≠≠≠∀∀∀∀>>>>

iciαααα

[[[[ ]]]]icdecideiferrorPr====
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Overall Risk
� Decision rule is a 

function αααα(x) which for 
every x specifies action 
out of {{{{ }}}}k21 ,...,, αααααααααααα

need to make this as small as possible

(((( )))) (((( ))))(((( )))) (((( ))))dxxpx|xRR ����==== αααααααα
� The average risk for αααα(x) 

� Bayes decision rule αααα(x)  for every x is the action 
which minimizes the conditional risk

(((( )))) (((( )))) (((( ))))����
====

====
m

1j
jjii x|cPc|x|R ααααλλλλαααα

� Bayes decision rule αααα(x)  is optimal, i.e. gives the 
minimum possible overall risk R*

X

{{{{ }}}}k21 ,...,, αααααααααααα
x1
x2
x3

αααα(x1)

αααα(x2)
αααα(x3)

Bayes Risk: Example
� Salmon is more tasty and expensive than sea bass

(((( ))))
(((( ))))

2
5 2

2
1

|
−−−−−−−−

====
l

esalmonlp
ππππ

(((( ))))
(((( ))))

4*2
10 2

22
1

|
−−−−−−−−

====
l

ebasslp
ππππ

� Likelihoods

(((( )))) 2bass|salmonsb ======== λλλλλλλλ classify bass as salmon
(((( )))) 1salmon|bassbs ======== λλλλλλλλ classify salmon as bass

0bbss ======== λλλλλλλλ no mistake, no loss

(((( )))) (((( )))) (((( )))) (((( ))))l|bPl|bPl|sPl|salmonR sbsbss λλλλλλλλλλλλ ====++++====

� Priors  P(salmon)= P(bass)

(((( )))) (((( )))) (((( )))) (((( ))))l|sPl|bPl|sPl|bassR bsbbbs λλλλλλλλλλλλ ====++++====

� Risk (((( )))) (((( )))) (((( ))))����
====

====
m

1j
jj x|cPc|x|R ααααλλλλαααα (((( )))) (((( ))))l|bPl|sP bs αααααααα λλλλλλλλ ++++====
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Bayes Risk: Example
(((( )))) (((( ))))l|bPl|salmonR sbλλλλ==== (((( )))) (((( ))))l|sPl|bassR bsλλλλ====

� Bayes decision rule (optimal for our loss function)

(((( )))) (((( ))))l|sP?l|bP bssb λλλλλλλλ
>>>>

<<<< salmon

bass

� Need to solve (((( ))))
(((( )))) sb

bs

l|sP
l|bP

λλλλ
λλλλ<<<<

(((( )))) (((( )))) (((( ))))
(((( )))) (((( )))) (((( ))))

(((( ))))
(((( )))) sb

bs

s|lP
b|lP

sPs|lPlp
lpbPb|lP

λλλλ
λλλλ<<<<====

� Or, equivalently, since priors are equal:

Bayes Risk: Example
(((( ))))
(((( )))) sb

bs

s|lP
b|lP

λλλλ
λλλλ<<<<� Need to solve

(((( ))))

(((( )))) 1

exp221

exp22

2
5l

8
10l

2

2

<<<<
⋅⋅⋅⋅

⋅⋅⋅⋅
−−−−−−−−

−−−−−−−−

ππππ

ππππ

� Substituting likelihoods and losses 
(((( ))))

(((( )))) 1

exp

exp

2
5l

8
10l

2

2

<<<<
−−−−−−−−

−−−−−−−−

⇔⇔⇔⇔

(((( ))))

(((( )))) (((( ))))1ln

exp

exp
ln

2
5l

8
10l

2

2

<<<<
����
����
����

����

				

















����

����

−−−−−−−−

−−−−−−−−

⇔⇔⇔⇔

(((( )))) (((( ))))
0

2
5l

8
10l 22

<<<<
−−−−++++

−−−−−−−−

⇔⇔⇔⇔

⇔⇔⇔⇔ ⇔⇔⇔⇔ 0l20l3 2 <<<<−−−− ⇔⇔⇔⇔ 6667.6l <<<<

6.67

salmon sea bass
length6.70

new decision 
boundary
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fixed number
Independent of x

likelihood
ratio

Likelihood Ratio Rule

� In 2 category case, use likelihood ratio rule

(((( ))))
(((( ))))

(((( ))))
(((( ))))1

2

1121

2212

2

1

cP
cP

c|xP
c|xP

λλλλλλλλ
λλλλλλλλ

−−−−
−−−−>>>>

� If above inequality holds, decide c1

� Otherwise decide c2

Discriminant Functions

� All decision rules have the same structure: 
at observation x choose class     s.t.

(((( )))) (((( )))) ijxgxg ji ≠≠≠≠∀∀∀∀>>>>
ic

� ML decision rule: (((( )))) (((( ))))ii c|xPxg ====

� MAP decision rule: (((( )))) (((( ))))x|cPxg ii ====

� Bayes decision rule: (((( )))) (((( ))))x|cRxg ii −−−−====

discriminant
function
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Discriminant Functions
� Classifier can be viewed as network which 

computes m discriminant functions and selects 
category corresponding to the largest discriminant

features

discriminant
functions

select class
giving maximim

(((( ))))xg2 (((( ))))xgm(((( ))))xg1

1x 2x 3x dx

� gi(x) can be replaced with any monotonically 
increasing  function, the results will be unchanged

54

Decision Regions

� Discriminant functions split the feature 
vector space X into decision regions

(((( )))) {{{{ }}}}i2 gmaxxg ====

1c

3c
1c

2c
3c
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Important Points 

� If we know probability distributions for the 
classes, we can design the optimal 
classifier

� Definition of “optimal” depends on the 
chosen loss function
� Under the minimum error rate (zero-one loss 

function
� No prior: ML classifier is optimal
� Have prior: MAP classifier is optimal

� More general loss function
� General Bayes classifier is optimal


