CS434b/654b: Pattern Recognition
Prof. Olga Veksler

Lecture 5

Maximum Likelihood Parameter
Estimation

Today

= Introduction to parameter estimation
= Maximum Likelihood Estimation
= Bayesian Estimation

= will not do this one in detail

= | have more slides on this when what we’ll actually go
through for those who are interested




Introducton

= Bayesian Decision Theory in previous lectures
tells us how to design an optimal classifier if we
knew:
= P(c) (priors)
= P(x | c¢) (class-conditional densities)

= Unfortunately, we rarely have this complete
information!

= Suppose we know the shape of distribution, but
not the parameters
= Two types of parameter estimation

= Maximum Likelihood Estimation
= Bayesian Estimation (will not do this one in detail)

ML Parameter Estimation

= Shape of probability distribution is known | alotis

. known
= Happens sometimes el
= Labeled training data w==.== &0 g
= Need to estimate parameters of probability ®

distribution from the training data

Example
respected fish expert says salmon’s

length has distribution Mx,07) and sea -
bass’s length has distribution Mg,,02) -

= Need to estimate parameters u,,67,1,,07

A 4

= Then design classifiers according to the little is
bayesian decision theory known
“harder”




Independence Across Classes

= We have training data for each class

salmon sea bass salmon salmon  seabass  seabass
s e - Al - |

S —

= When estimating parameters for one class, will
only use the data collected for that class

= reasonable assumption that data from class c; gives
no information about distribution of class ¢;

estimate parameters for estimate parameters for
distribution of salmon from | | distribution of bass fro

o

Independence Across Classes

= For each class c; we have a proposed density
pi(x/ c¢; with unknown parameters ¢/ which we
need to estimate

= Since we assumed independence of data
across the classes, estimation is an identical
procedure for all classes

= To simplify notation, we drop sub-indexes and
say that we need to estimate parameters éfor
density p(x)

= the fact that we need to do so for each class on the
training data that came from that class is implied




ML vs. Bayesian Parameter Estimation

= Maximum Likelihood

= Parameters @are unknown but fixed (i.e. not random
variables)

= Bayesian Estimation
= Parameters @are random variables having some known a
priori distribution (prior)
= Can lead to better results but is more difficult

= After parameters are estimated with either ML or
Bayesian Estimation we use methods from Bayesian

decision theory for classification

Maximum Likelihood Parameter Estimation

= We have density p(x) which is completely
specified by parameters 6=[6,,..., 6]
= If p(x) is N(u, o2) then 6 =[u, 52

= To highlight that p(x) depends on parameters
6 we will write p(x/6)
= Note overloaded notation, p(x/6) is not a
conditional density
= Let D={x;, X,,..., X,,} be the nindependent
training samples in our data
= If p(x) is N(u, o) then X, X,,..., X,, are iid
samples from N(u, o2




Maximum Likelihood Parameter Estimation

= Consider the following function, which is
called likelihood of @ with respect to the set
of samples D

p(D]6)= ﬁp(xk 16)=F(6)

= Note if Dis fixed p(D/é) is not a density

= Maximum likelihood estimate (abbreviated
MLE) of gis the value of gthat maximizes
the likelihood function p(D|/6)

6 = argmax(p(D |6))

Maximum Likelihood Estimation (MLE)

p(D]6)= ﬁp(xk )

If Dis allowed to vary and @is fixed, by independence
p(D/@) is the joint density for D={x;, X,,..., X, }

If @ is allowed to vary and D is fixed, p(D/@) is not
density, it is likelihood F(6)!

Recall our approximation of integral trick

PriDe Blx,.... x,116]~ e[| p(x, 16)

Thus ML chooses @that is most likely to have given
the observed data D




ML Parameter Estimation vs. ML Classifier

fixed

= Recall ML classifier data
decide class ¢; which maximizes p(*{/c,-)

= Compare with ML parameter estimation
fixed
data

choose @ that maximizes p(D/6)

= ML classifier and ML parameter estimation use
the same principles applied to different
problems

Maximum Likelihood Estimation (MLE)

= Instead of maximizing p(D/@), it is usually easier to
maximize In(p(D/6))

= Since log is monotonic p(D/6)
6 =argma D/@)) = /
gmax(p(D|6) ﬁ%@)
=argmax(Inp(D|6))
[

= To simplify notation, In(p(D|6))=/6)

" k=n n
0 = argmax I(0) = arg max[lnn p(x, |6 )J =arg max(z Inp(x, | 0)}
6 6 k=1 6 k=1
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FIGURE 3.1. The top graph shows several training points in one dimension, known or
assumed to be drawn from a Gaussian of a particular variance, but unknown mean.
Four of the infinite number of candidate source distributions are shown in dashed
lines. The middle figure shows the likelihood p(T28) as a function of the mean. If we
had a very large number of training points, this likelihood would be very narrow. The
value that maximizes the likelihood is marked 8: it also maximizes the logarithm of
the likelihood-—that is, the log-likelihood I{#), shown al the bottom. Note that even
though they look similar, the likelihood p(|@) is shown as a function of & whereas the
conditional density pi(x|#) is shown as a function of x. Furthermare, as a function of &,
the likelihood p(D|#) is not a probability density function and its area has no signifi-
cance. From: Richard O. Duda, Peter E. Hart, and David G. Stork, FPattern Classification.
Copyright @ 2001 by John Wiley & Sons, Inc. 2

MLE: Maximization Methods

= Maximizing (6) can be solved using standard
methods from Calculus

= Let 8=(6,, 6, ..., 6,)' and let V, be the gradient
operator

| o o 0
® |96,706," " 96,

= Set of necessary conditions for an optimum is:

= Also have to check that #that satisfies the above
condition is maximum, not minimum or saddle point.
Also check the boundary of range of 8




MLE Example: Gaussian with unknown u

= Fortunately for us, most of the ML estimates of any
densities we would care about have been computed

= Let’s go through an example anyway

= Let p(x/ 1) be N(u,02) that is 2 is known, but uis
unknown and needs to be estimated, so 8= u

ji=argmaxI(u)=arg max(Z Inp(x, | ,u)J =
p u ket

gm(g,( o] -t m
=argmax2( In 275 - % aﬁ‘)]

u k=1

MLE Example: Gaussian with unknown u

arg max(I(u)) = arg maxzn:(_ In\ 270 — (x ,(2 ; ﬁt)z ]

H u k=1

= Thus the ML estimate of the mean is just the
average value of the training data, very intuitive!

= average of the training data would be our guess for
the mean even if we didn’t know about ML estimates




MLE for Gaussian with unknown u, o2

= Similarly it can be shown that if p(x/ u,072) is
N(u, o), that is x both mean and variance are
unknown, then again very intuitive result
I UL - ~
p=—>x, 6 =—>(x-af
ni= ni=
= Similarly it can be shown that if p(x/ &,2) is

N(u, 2), that is x is a multivariate gaussian with
both mean and covariance matrix unknown, then

> (% = a)x, - )

~ 1 .
Iu=_zxk J =
M= k=1

n

S|=

How to Measure Performance of MLE?

= How good is a ML estimate 4§ ?

= or actually any other estimate of a parameter?
= The natural measure of error would be |6- 4|
= But \9-6? is random, we cannot compute it

before we carry out experiments

= We want to say something meaningful about our
estimate as a function of @

= A way to solve this difficulty is to average the
error, i.e. compute the mean absolute error

Elje— éu= ﬂe- é‘p(x,, Xy yeeey X, )AX,0X ,...dX,,




How to Measure Performance of MLE?s

= |t is usually much easier to compute an almost
equivalent measure of performance, the mean
squared error. El( o é)z ]

= Do a little algebra, and use Var(X)=E(X?)-(E(X))?

Elo-6f|-yvarle) +  (€6)-oF

variance bias

estimator should expectation should
have low variance be close to the true 6

How to Measure Performance of MLE?

Elo~6F |- var(é) + (£(6)-of

variance

bias
ideal case bad case bad case

) 1el6) 10(6)

A —
X EBN x

] A —T & — & —> ~ L J
E(6)=+6 g E(6)=6
no bias large bias no bias

low variance low variance high variance
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Bias and Variance for MLE of the Mean

= Let’s compute the bias for ML estimate of the mean
i 18 12 1L
Elil=£ 23 x| <23 ] = 230 - u

= Thus this estimate is unbiased!

= How about variance of ML estimate of the mean? )

Ela- p?)= Ela? - 2ua+ p?]= 47 - 20E(a)+ E[(%;XJ ]

0_2

' n
= Thus variance is very small for a large number of
samples (the more samples, the smaller is variance)

= Thus the MLE of the mean is a very good estimator

Bias and Variance for MLE of the Mean

= Suppose someone claims they have a new great
estimator for the mean, just take the first sample!

U= X,

= Thus this estimator is unbiased: E(4) = E(x,)= u

= However its variance is: tp(6)
El(a- p7]= El(x, - pY|= 02
—
= Thus variance can be very large - X
and does not improve as we E(é)= P
increase the number of samples
no bias

high variance

11



MLE Bias for Mean and Variance
= How about ML estimate for the variance?

n

El6?]= E[%Z(xk -,&)2] ="T'102 # 02

k=1

= Thus this estimate is biased!
= This is because we used £ instead of true u
= Bias =0 as n- infinity, asymptotically unbiased

~

= Unbiased estimate & =ﬁ2(xk - iy
= 1 k=1

= Variance of MLE of variance can be shown
to go to 0 as n goes to infinity

MLE for Uniform distribution U[0,6]

= Xis U[0,8] if its density is 1/8inside [0,6] and 0
otherwise (uniform distribution on [0,4] )

, 1Pix10) F(o)
| & & g A P PE

n

= The likelihood is F(6)=

k=
k=1

1 .
p(x,[8)= ? if 92 max{x1 ----- X,,}
0 if @< max{x,,.., X}

n k=n
= Thus @ = arg max (H p(x, | 0)) = max{ X,,..., X,,}
8 k=1

= This is not very pleasing since for sure 8 should be
larger than any observed x!
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Bayesian Parameter Estimation

= Suppose we have some idea of the range
where parameters ¢ should be
= Shouldn’t we formalize such prior knowledge in

hopes that it will lead to better parameter
estimation?

= Let #be a random variable with prior
distribution P(6)
= This is the key difference between ML and
Bayesian parameter estimation

= This key assumption allows us to fully exploit the
information provided by the data

Bayesian Parameter Estimation

= As in MLE, suppose p(x|6) is completely specified if

@ is given

But now @is a random variable with prior p(6)

= Unlike MLE case, p(x|6) is a conditional density

= After we observe the data D, using Bayes rule we
can compute the posterior p(6/D)

= Recall that for the MAP classifier we find the class c;
that maximizes the posterior p(c/D)

= By analogy, a reasonable estimate of @is the one
that maximizes the posterior p(é /D)

= But @is not our final goal, our final goal is the
unknown p(x)

= Therefore a better thing to do is to maximize p(x/D),
this is as close as we can come to the unknown p(x) !

13



Bayesian Estimation: Formula for p(x|D)

= From the definition of joint distribution:
p(x D)= [ p(x,6| D)do

= Using the definition of conditional probability:
p(x | D)= [p(x|6,D)p(6 | D)do

= But p(_x/B,D):p(x/e) since p(x/@) is completely
specified by @ known unknown

p(x| D)= [pGxIB)p@ | D)do

= Using Bayes formula,

__p(D]6)p(6) A
p(e|D)—Ip(D|9)p(9)d9 p(D|6) lklp( «16)

Bayesian Estimation vs. MLE

= So in principle p(x/D) can be computed
= |n practice, it may be hard to do integration analytically,
may have to resort to numerical methods

[1p(x. 10)p(6)
p(x D)= [ p(x |6)— dg
JT1 p(x. 16)p(6)d6

= Contrast this with the MLE solution which requires
differentiation of likelihood to get p(x /6

= Differentiation is easy and can always be done analytically

14



Bayesian Estimation vs. MLE

= p(x/D) can be thought of as the weighted average of
the proposed model all possible values of @

support @ receives
from the data

p(x D)= [ p(x|6)p(0|D)do
proposed model
with certain 6
= Contrast this with the MLE solution which always
gives us a single model:
p(x /6)

= When we have many possible solutions, taking their
sum averaged by their probabilities seems better
than spitting out one solution

Bayesian Estimation: Example for U[0,d]

= Let X be U[0,6. Recall p(x/6)=1/6inside [0, else 0

p(x/6) p(6)
1 1 %
0 10
0 10 0
1 L T L >

= Suppose we assume a U[0,10] prior on &

= good prior to use if we just now the range of @but don’t
know anything else

= We need to compute p(x|D)= jp(x |8)p(6| D)dé

V><

n i _ p(D|0)p(0) _ =
with p(o|D)—Ip(D|6)p(e)d6 and p(Dle)-lk':I1p(xk|e)

15



Bayesian Estimation: Example for U[0,6]

= We need to compute p(x | D)= [ p(x|6)p(6 | D)de

p(D [6)p(6)

= using p(¢ /D)= [p(D6)p(6)de

and  p(016)=]] plx, 16)
= When computing MLE of 6, we had

1
p(D]6)=1g" for 6 > max{ x,,..., x,}
0 otherwise

= Thus

p(6 /D)= cain for max{ x,,..., X, } <6 <10
0 otherwise

N
10 de

= where cis the normalizing constant, i.e. ¢=

n
e

Bayesian Estimation: Example for U[0,6]

= We need to compute p(x | D)= [ p(x |8)p(6 | D)d6
p(6 /D)= cgin for max{ X,,..., X, }< 6 <10
0 otherwise

1 p(x [6)
0
(7] X
L >
= We have 2 cases:
1. case x < max{x,, X,,..., X, } constant

1 independent of x

10
p(X /D) - Imax{ x,,...x,,}che =@
2. case x> max{Xy, X,,..., X, }
10 1 c
p(x D)= "c

0 _| C (o

dé = = -
* |nx"| n10"

o= Tne"
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Bayesian Estimation: Example for U[0,6]

mL_p(x /6)
EBayes p(x /D)

= Note that even after x >max {x;, X,,..., X,,}, Bayes
density is not zero, which makes sense

= curious fact: Bayes density is not uniform, i.e. does
not have the functional form that we have assumed!

ML vs. Bayesian Estimation with Broad Prior

= Suppose p(6) is flat and broad (close to uniform prior)
= p(6/D) tends to sharpen if there is a lot of data

[ fiip(D L 689) p(x|6) p(x /6)

3

6
= Thus p D/@ocp H/D )/p(6) WI|| have the same sharp

peak as p(6/D)
A
= But by definition, peak of p(D|@) is the ML estimate &
= The integral is dominated by the peak:

p(x /D)= [ p(x 16)p(6 | D)d6 = p(x |6)] p(6 | D)d6 =p(x | 6)
= Thus as n goes to infinity, Bayesian estimate will

approach the density corresponding to the MLE!
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ML vs. Bayesian Estimation: General Prior

= Maximum Likelihood Estimation
= Easy to compute, use differential calculus
= Easx\to interpret (returns one model)
= p(x/6) has the assumed parametric form

= Bayesian Estimation
= Hard compute, need multidimensional integration

= Hard to interpret, returns weighted average of
models

= p(x/D) does not necessarily have the assumed
parametric form

= Can give better results since use more
information about the problem (prior information)
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