CS434a/541a: Pattern Recognition
Prof. Olga Veksler

Lecture 7

Curse of Dimensionality,
Dimensionality Reduction with PCA

Dimensionality on the Course Road Map

1. Bayesian Decision theory (rare case) alotis
= Know probability distribution of the categories known

= Do not even need training data
=  Can design optimal classifier
/2. ML and Bayesian parameter estimation
= Need to estimate Parameters of probability dist.
= Need training data
3. Non-Parametric Methods
= No probability distribution, labeled data
< 4. Linear discriminant functions and Neural Nets
= The shape of discriminant functions is known
= Need to estimate parameters of discriminant functions
5. Unsupervised Learning and Clustering |

= No probability distribution and unlabeled data little is
\ known

affects all these methods

Today

Curse of Dimensionality: Complexity

Problems of high dimensional data, “the
curse of dimensionality”

= running time

= overfitting

= number of samples required
Dimensionality Reduction Methods

= Principle Component Analysis (today)

= Fisher Linear Discriminant (next time)

Complexity (running time) increases with

dimension d

A lot of methods have at least O(nd?) complexity,

where nis the number of samples

= For example if we need to estimate covariance
matrix

So as d becomes large, O(nd?) complexity may
be too costly




Curse of Dimensionality: Overfitting

= |f dis large, n, the number of samples, may be
too small for accurate parameter estimation

= For example, covariance matrix has d?
parameters:

= For accurate estimation, n should be much bigger
than d?

= Otherwise model is too complicated for the data,
overfitting:

Curse of Dimensionality: Number of Samples

= Suppose we want to use the nearest neighbor
approach with k=1 (1NN)
= Suppose we start with only one feature
0 1
- reneoneon-
= This feature is not discriminative, i.e. it does not
separate the classes well
= We decide to use 2 features. For the 1NN method
to work well, need a lot of samples, i.e. samples
have to be dense
= To maintain the same density as in 1D (9 samples
per unit length), how many samples do we need?

Curse of Dimensionality: Overfitting

= Paradox: If n< d? we are better off assuming that
features are uncorrelated, even if we know this
assumption is wrong

= In this case, the covariance matrix has only d

parameters: 02 0
002
= We are likely to avoid overfitting because we fit a
model with less parameters:

model with more
parameters

model with less
parameters

Curse of Dimensionality: Number of Samples

=  We need 92 samples to maintain the same
density as in 1D
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Curse of Dimensionality: Number of Samples Curse of Dimensionality: Number of Samples

" Ofcourss, when we go from 1 feature to 2, no = |n general, if n samples is dense enough in 1D
one gives us more samples, we still have 9 9 ’ P 9

Then in d dimensions we need n9 samples!

[ | - = And n? grows really really fast as a function of d

= Common pitfall:
o m = |f we can’t solve a problem with a few features, adding
more features seems like a good idea
0 C 1 = However the number of samples usually stays the same

= The method with more features is likely to perform
worse instead of expected better

= This is way too sparse for TNN to work well

Curse of Dimensionality: Number of Samples Curse of Dimensionality: Number of Samples
= Things go from bad to worse if we decide to use 3 = For a fixed number of samples, as we add
features: it features, the graph of classification error:
- 1 [} B classeig'gition
@
u |
0 1 [ .
o Ly 1 ~ # features
| optimal # features|
u o
= Thus for each fixed sample size n, there is the
= If 9was dense enough in 1D, in 3D we need optimal number of features to use
93=729 samples!




The Curse of Dimensionality

= We should try to avoid creating lot of features
= Often no choice, problem starts with many features

= Example: Face Detection
= One sample point is k by m array of pixels

“

= Feature extraction is not trivial, usually every
pixel is taken as a feature

= Typical dimension is 20 by 20 = 400

= Suppose 70 samples are dense enough for 1
dimension. Need only 10400 samples

Dimensionality Reduction

= High dimensionality is challenging and redundant

It is natural to try to reduce dimensionality
Reduce dimensionality by feature combination:
combine old features x to create new features y

X, X, 72
x=[%2 | 1| X =[E]=y with k < d
X, X, \4

= For example, X,
/3l

Ideally, the new vector y should retain from x all
information important for classification

The Curse of Dimensionality

= Face Detection, dimension of one sample point is km
[ 11 1]]
K- T

:lll.

= The fact that we set up the problem with km
dimensions (features) does not mean it is really
a km-dimensional problem

= Space of all k by mimages has km dimensions

= Space of all kby m faces must be much smaller,
since faces form a tiny fraction of all possible images

= Most likely we are not setting the problem up with
the right features

= |If we used better features, we are likely need much
less than km-dimensions

Dimensionality Reduction

The best f(x) is most likely a non-linear function
= Linear functions are easier to find though
= For now, assume that f(x) is a linear mapping

= Thus it can be represented by a matrix W:

X, X, w, - w, ] % y

1 1d 1
X2 | = w| X =[; :|x2 =[E] with k <d
x-u )id Wy 0 Wiy )iu Y«




Feature Combination

= We will look at 2 methods for feature
combination

= Principle Component Analysis (PCA)
= Fischer Linear Discriminant (next lecture)

PCA

= After the data is projected on the best line, need to
transform the coordinate system to get 1D
representation for vector y

= Note that new data y has the same variance as old
data x in the direction of the green line
= PCA preserves largest variances in the data. We will

prove this statement, for now it is just an intuition of
what PCA will do

Principle Component Analysis (PCA)

= Main idea: seek most accurate data representation in
a lower dimensional space
= Example in 2-D

= Project data to 1-D subspace (a line) which minimize the
projection error

dimension 2

I . dimension 1

large projection errors, small projection errors,
bad line to project to good line to project to

= Notice that the the good line to use for projection lies
in the direction of largest variance

PCA: Approximation of Elliptical Cloud in 3D
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PCA

= What is the direction of largest variance in data?

= Recall that if x has multivariate distribution N(x,2),
direction of largest variance is given by eigenvector
corresponding to the largest eigenvalue of X

a

= This is a hint that we should be looking at the
covariance matrix of the data (note that PCA can be
applied to distributions other than Gaussian)

PCA: Linear Algebra for Derivation

= Recall that subspace W contains the zero vector, i.e.

it goes through the origin o
/thrs line is not a
subspace of R?

= For derivation, it will be convenient to project to
subspace W: thus we need to shift everything

<v——this line is a
o ® subspace of R?

PCA: Linear Algebra for Derivation

= Let Vbe a ddimensional linear space, and Wbe a k
dimensional linear subspace of V
= We can always find a set of d dimensional vectors
{e;.e,,...,, which forms an orthonormal basis for W
= <e,ep> = 0if fis not equal to jand <e;ep> = 1
= Thus any vector in chan be written as
e+, +..+ 8, =Y ae for scalars a,...,a,

i=1

PCA Derivation: Shift by the Mean Vector

Let V= R?2and Wbe the line
w x-2y=0. Then the orthonormal
basis for W is

2 {z2]

= Before PCA, subtract sample mean from the data
x—%Zx, =Xx-jl

= The new data has zero mean: E(X-E(X)) = E(X)-E(X) =0
= All we did is change the coordinate system

. X,
X; N .
o e
Lo P ° X7
o ©® 24 .
i >

= Another way to look at it:
= first step of getting y is to subtract the mean of x

x—y=1f(x)=g(x- @)




PCA: Derivation

= We want to find the most accurate representation of
data D={x;,X,,...,X,} in some subspace W which has
dimension k< d

= Let{e;.e,....e4 bethe orthonorkmal basis for W. Any
vector in Wcan be written as > ae,

i=1
= Thus x; will be represkented by some vector in W
Zaﬁei
i=1
= Error this representation:

2
k
error =|x, -y o€
i=1

PCA: Derivation

= To minimize J, need to take partial derivatives and
also enforce constraint that {e;,e,,...,e} are
orthogonal

% 2

X; = a6,

i=t

n
J(@4seees €4 Wyl ) = Y
=l

= Let us simplify J first

2

/:1 , = . i=1 t ] j’=(1 :=12
= ZHXIH _zzzaﬂxiei +ZZ%
j=1 j=1 i=1 j=1i=1

PCA: Derivation

= To find the total error, we need to sum over all xj’s

k
= Any x;can be written as ) ae
i=1
= Thus the total error for representation of all data D is:
sum over all data points

2

[ IS S, 29 Z

=1

k
X; —z;a,,e,

i=

unknowns error at one point

PCA: Derivation

k

n 2 n k n
J(€1err 4, @yrronnti )= X )| -2D Y @ XlE 4+ Y
j=1 j=1 i=1 j=1i=1
= First take partial derivatives with respect to a;,,
9
aq,

'ml

J(eyyes €45 tyyrnry )= —2X" 0, + 20,

= Thus the optimal value for ay,, is

-2xle+2a,, =0 = a, =Xx.e




PCA: Derivation

n k n k
(OS2 2 | ZHX H =23 Y a,xle, +>.> o

j=1i=1 j=1i=1

= Plug the optimal value for &, = x*,e,back into J

n_ k n k
J(e,,....,e ZHX H —22;2 x'e,)x'e, +Z;Z(xe )2
J=1 1= =

= Can simplify J

errser)= 3 33 e

j=1i=1

PCA: Derivation

Jowwr0)= 3 -Seise,
constant

= Minimizing J is equivalent to maximizing Ze Se,
i=1

= We should also enforce constraints effe;= 1 for all i

= Use the method of Lagrange multipliers, incorporate
the constraints with undetermined 4, ,..., 4,

= Need to maximize new function u

u(e,....e,)= Ze'Se ZA(,, 1)

2

PCA: Derivation
n k
eyr0)=3x [ -3 3 (xie)
= Rewrite Jusmg (atb)z— (a'b)(a'b) (bta)(atb)=bt(aat)b

Sere)=Ff -3e 3 )},.

j=1

=3 -Seise
j=1 i=1

= Where $=) x,X]
=

= Sis called the scatter matrix, it is just n-1 times the
sample covariance matrix we have seen before

3= n11Z(X —jt)x; - a)'

j=1

PCA: Derivation

= |f xis avector and fix)= f(x,,...
simplify notation, define

Xg) is a function, to

of
ox,
of
X,

d =
Ef(x)_

= |t can be shown that %(x'x):Zx

= If Ais a symmetric matrix, it can be shown that

i(x'Ax) =2Ax
dx




PCA: Derivation

k k
u(e1,...,ek ) = Zeilsei - Z'li(e;ei _1)

i=1 j=1
= Compute the partial derivatives with respect to e,

0
Eu(e1,...,e,()= 2Se,, -24,e,=0

Note: e, is a vector, what we are really doing here is
taking partial derivatives with respect to each
element of e, and then arranging them up in a
linear equation

= Thus 4, and e,, are eigenvalues and eigenvectors of

scatter matrix S
Se,, = A.e,

PCA

= The larger the eigenvalue of S, the larger is the
variance in the direction of corresponding eigenvector

A, =30
]
0.8

o.°l\.‘

A, =0.

= This result is exactly what we expected: project x into
subspace of dimension k which has the largest
variance

= This is very intuitive: restrict attention to directions
where the scatter is the greatest

PCA: Derivation

n k
J(e,-e,)= Z}Hx,Hz = Ze}Se,
= i=
= Let's plug e,back into Jand use Se, =4,e,
n 2 k 2 n 2 k
Je,me)=Y x| -2 alel =Y |x,[ -2 4
= = Constant

= Thus to minimize J take for the basis of Wthe k
eigenvectors of S corresponding to the k largest
eigenvalues

PCA

= Thus PCA can be thought of as finding new
orthogonal basis by rotating the old axis until the
directions of maximum variance are found

783

o."\.‘ ]




PCA as Data Approximation

= Let {e;e,....ey} be all deigenvectors of the scatter
matrix S, sorted in order of decreasing corresponding
eigenvalue

= Without any approximation, for any sample x;:
error of approximation

d
X; = Z1a, €, =€ +.. .+ + Uy €yt Uy €y
=
approximation of x;

= coefficients a;,,=x"e, are called principle components

= The larger k, the better is the approximation

= Components are arranged in order of importance, more
important components come first

= Thus PCA takes the first k most important
components of x;as an approximation to x;

Recipe for Dimension Reduction with PCA

Data D={x,,X,,...,X,}. Each x;is a d-dimensional
vector. Wish to use PCA to reduce dimension to k

P
1. Find the sample mean A= ;ZX,-
i=1
. Subtract sample mean from the data z, = x;,- &

. Compute the scatter matrix $=3 22
i=1
. Compute eigenvectors e;,e,,...,e, corresponding to
the k largest eigenvalues of S

. Let e;,e,,...,, be the columns of matrix E = le,---e]

A W N

(63}

6. The desired y which is the closest approximation
to xis y=E'z

PCA: Last Step

= Now we know how to project the data

= Last step is to change the coordinates to get final
k-dimensional vector y

= Letmatrix E=[e,---e]
= Then the coordinate transformationis y = E‘x
e, (]

= Under Et, the eigenvectors Ele e e oli
become the standard basis: N I R

e 0

PCA Example Using Matlab

= Let D={(1,2),(2,3),(3,2),(4,4),(5,4),(6,7),(7,6),(9,7)}
= Convenient to arrange data in array

12] | % !
X=|::|=]|": . Y
97 X E /
2 @ [ ]

= Mean u=mean(X)=[4.6 4.4] L

= Subtract mean from data to get new data array Z

H -3.6 -44
Z=X-|:|=X-repmat(u,8,1)=| : :
i 44 26

= Compute the scatter matrix S
-3.6 4.47_[57 40
S=7xcov(Z)=[-3.6 -4.4 +..+[4.4 2.6 =
K( )= ][_ 4,4] [ ][2.6] [40 34]

matlab uses unbiased estimate for covariance, so S=(n-1)*cov(2)
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PCA Example Using Matlab

= Use [V,D] =eig(S) to get eigenvalues and
eigenvectors of S

A, =87 and e, = [: 3‘8;] )

4 [
A,=38and e,= [E-g_ 8] " 1).

= Projection to 1D space in the direction of e,
Y=elz' = ([- 0.8 - 0.6][: GG g:g’D —[4.3 - —5.1]
= [}'1 .V.s]

Drawbacks of PCA

= PCA was designed for accurate data
representation, not for data classification
= Preserves as much variance in data as possible

= If directions of maximum variance is important for
classification, will work

= However the directions of maximum variance may
be useless for classification

H n ([ : apply PCA
m® o
mg 0° to each class

= Next Lecture: Fisher Linear

Discriminant
= preserve direction useful for discrimination
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