
This excerpt from

Foundations of Statistical Natural Language Processing.
Christopher D. Manning and Hinrich Schütze.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

p

i i

15 Topics in Information Retrieval

Information Retrieval (IR) research is concerned with devel-
oping algorithms and models for retrieving information from document
repositories. IR might be regarded as a natural subfield of NLP because it
deals with a particular application of natural language processing. (Tra-
ditional IR research deals with text although retrieval of speech, images
and video are becoming increasingly common.) But in actuality, inter-
actions between the fields have been limited, partly because the special
demands of IR were not seen as interesting problems in NLP, partly be-
cause statistical methods, the dominant approach in IR, were out of favor
in NLP.

With the resurgence of quantitative methods in NLP, the connections
between the fields have increased. We have selected four examples of
recent interaction between the fields: probabilistic models of term dis-
tribution in documents, a problem that has received attention in both
Statistical NLP and IR; discourse segmentation, an NLP technique that has
been used for more effective document retrieval; and the Vector Space
Model and Latent Semantic Indexing (LSI), two IR techniques that have
been used in Statistical NLP. Latent Semantic Indexing will also serve
as an example of dimensionality reduction, an important statistical tech-
nique in itself. Our selection is quite subjective and we refer the reader
to the IR literature for coverage of other topics (see section 15.6). In the
following section, we give some basic background on IR, and then discuss
the four topics in turn.

p

i i

530 15 Topics in Information Retrieval

15.1 Some Background on Information Retrieval

The goal of IR research is to develop models and algorithms for retrieving
information from document repositories, in particular, textual informa-
tion. The classical problem in IR is the ad-hoc retrieval problem. In ad-hocad-hoc retrieval

problem retrieval, the user enters a query describing the desired information. The
system then returns a list of documents. There are two main models.
Exact match systems return documents that precisely satisfy some struc-exact match

tured query expression, of which the best known type is Boolean queries,Boolean queries

which are still widely used in commercial information systems. But for
large and heterogeneous document collections, the result sets of exact
match systems usually are either empty or huge and unwieldy, and so
most recent work has concentrated on systems which rank documents
according to their estimated relevance to the query. It is within such an
approach that probabilistic methods are useful, and so we restrict our
attention to such systems henceforth.

An example of ad-hoc retrieval is shown in figure 15.1. The query is
‘ “glass pyramid” Pei Louvre,’ entered on the internet search engine Alta
Vista. The user is looking for web pages about I. M. Pei’s glass pyramid
over the Louvre entrance in Paris. The search engine returns several rele-
vant pages, but also some non-relevant ones – a result that is typical for
ad-hoc searches due to the difficulty of the problem.

Some of the aspects of ad-hoc retrieval that are addressed in IR re-
search are how users can improve the original formulation of a query
interactively, by way of relevance feedback; how results from several textrelevance feedback

databases can be merged into one result list (database merging); whichdatabase merging

models are appropriate for partially corrupted data, for example, OCRed
documents; and how the special problems that languages other than En-
glish pose can be addressed in IR.

Some subfields of information retrieval rely on a training corpus of
documents that have been classified as either relevant or non-relevant to
a particular query. In text categorization, one attempts to assign docu-text

categorization ments to two or more pre-defined categories. An example is the subject
codes assigned by Reuters to its news stories (Lewis 1992). Codes like
CORP-NEWS (corporate news), CRUDE (crude oil) or ACQ (acquisitions)
make it easier for subscribers to find stories of interest to them. A finan-
cial analyst interested in acquisitions can request a customized newsfeed
that only delivers documents tagged with ACQ.

Filtering and routing are special cases of text categorization with onlyfiltering

routing

p

i i

15.1 Some Background on Information Retrieval 531

[AltaVista] [Advanced Query] [Simple Query] [Private eXtension Products] [Help with Query]

Search the Web Usenet
Display results Compact Detailed

Tip: When in doubt use lower-case. Check out Help for better matches.

 Word count: glass pyramid: about 200; Pei:9453; Louvre:26578

Documents 1-10 of about 10000 matching the query, best matches first.

Paris, France
Paris, France. Practical Info.-A Brief Overview. Layout: One of the most densely populated cities
in Europe, Paris is also one of the most accessible,...
http://www.catatravel.com/paris.htm - size 8K - 29 Sep 95

Culture
Culture. French culture is an integral part of France’s image, as foreign tourists are the first to
acknowledge by thronging to the Louvre and the Centre..
http://www.france.diplomatie.fr/france/edu/culture.gb.html - size 48K - 20 Jun 96

Travel World - Science Education Tour of Europe
Science Education Tour of Europe. B E M I D J I S T A T E U N I V E R S I T Y Science
Education Tour of EUROPE July 19-August 1, 1995...
http://www.omnitravel.com/007etour.html - size 16K - 21 Jul 95
http://www.omnitravel.com/etour.html - size 16K - 15 May 95

FRANCE REAL ESTATE RENTAL
LOIRE VALLEY RENTAL. ANCIENT STONE HOME FOR RENT. Available to rent is a
furnished, french country decorated, two bedroom, small stone home, built in the..
http://frost2.flemingc.on.ca/~pbell/france.htm - size 10K - 21 Jun 96

LINKS
PAUL’S LINKS. Click here to view CNN interactive and WEBNEWSor CNET. Click here to
make your own web site. Click here to manage your cash. Interested in...
http://frost2.flemingc.on.ca/~pbell/links.htm - size 9K - 19 Jun 96

Digital Design Media, Chapter 9: Lines in Space
Construction planes... Glass-sheet models... Three-dimensional geometric transformations...
Sweeping points... Space curves... Structuring wireframe...
http://www.gsd.harvard.edu/~malcolm/DDM/DDM09.html - size 36K - 22 Jul 95

No Title
Boston Update 94: A VISION FOR BOSTON’S FUTURE. Ian Menzies. Senior Fellow,
McCormack Institute. University of Massachusetts Boston. April 1994. Prepared..
http://www.cs.umb.edu/~serl/mcCormack/Menzies.html - size 25K - 31 Jan 96

Paris - Photograph
The Arc de Triomphe du Carrousel neatly frames IM Pei’s glass pyramid, Paris 1/6. © 1996
Richard Nebesky.

Figure 15.1 Results of the search ‘ “glass pyramid” Pei Louvre’ on an internet
search engine.

p

i i

532 15 Topics in Information Retrieval

two categories: relevant and non-relevant to a particular query (or infor-information need

mation need). In routing, the desired output is a ranking of documents
according to estimated relevance, similar to the ranking shown in fig-
ure 15.1 for the ad-hoc problem. The difference between routing and
ad-hoc is that training information in the form of relevance labels is
available in routing, but not in ad-hoc retrieval. In filtering, an estima-
tion of relevance has to be made for each document, typically in the form
of a probability estimate. Filtering is harder than routing because an
absolute (‘Document d is relevant’) rather than a relative assessment of
relevance (‘Document d1 is more relevant than d2’) is required. In many
practical applications, an absolute assessment of relevance for each indi-
vidual document is necessary. For example, when a news group is filtered
for stories about a particular company, users do not want to wait for a
month, and then receive a ranked list of all stories about the company
in the past month, with the most relevant shown at the top. Instead, it
is desirable to deliver relevant stories as soon as they come in without
knowledge about subsequent postings. As special cases of classification,
filtering and routing can be accomplished using any of the classification
algorithms described in chapter 16 or elsewhere in this book.

15.1.1 Common design features of IR systems

Most IR systems have as their primary data structure an inverted index.inverted index

An inverted index is a data structure that lists for each word in the col-
lection all documents that contain it (the postings) and the frequency ofpostings

occurrence in each document. An inverted index makes it easy to search
for ‘hits’ of a query word. One just goes to the part of the inverted index
that corresponds to the query word and retrieves the documents listed
there.

A more sophisticated version of the inverted index also contains posi-position

information tion information. Instead of just listing the documents that a word oc-
curs in, the positions of all occurrences in the document are also listed.
A position of occurrence can be encoded as a byte offset relative to the
beginning of the document. An inverted index with position information
lets us search for phrases. For example, to search for ‘car insurance,’phrases

we simultaneously work through the entries for car and insurance in
the inverted index. First, we intersect the two sets so that we only have
documents in which both words occur. Then we look at the position in-
formation and keep only those hits for which the position information

p

i i

15.1 Some Background on Information Retrieval 533

a also an and as at be but by
can could do for from go
have he her here his how
i if in into it its
my of on or our say she
that the their there therefore they
this these those through to until
we what when where which while who with would
you your

Table 15.1 A small stop list for English. Stop words are function words that
can be ignored in keyword-oriented information retrieval without a significant
effect on retrieval accuracy.

indicates that insurance occurs immediately after car. This is much more
efficient than having to read in and process all documents of the collec-
tion sequentially.

The notion of phrase used here is a fairly primitive one. We can only
search for fixed phrases. For example, a search for ‘car insurance rates’
would not find documents talking about rates for car insurance. This
is an area in which future Statistical NLP research can make important
contributions to information retrieval. Most recent research on phrases
in IR has taken the approach of designing a separate phrase identification
module and then indexing documents for identified phrases as well as
words. In such a system, a phrase is treated as no different from an
ordinary word. The simplest approach to phrase identification, which is
anathema to NLP researchers, but often performs surprisingly well, is to
just select the most frequent bigrams as phrases, for example, those that
occur at least 25 times.

In cases where phrase identification is a separate module, it is very
similar to the problem of discovering collocations. Many of the tech-
niques in chapter 5 for finding collocations can therefore also be applied
to identifying good phrases for indexing and searching.

In some IR systems, not all words are represented in the inverted index.
A stop list of ‘grammatical’ or function words lists those words that arestop list

function words deemed unlikely to be useful for searching. Common stop words are
the, from and could. These words have important semantic functions in
English, but they rarely contribute information if the search criterion is

p

i i

534 15 Topics in Information Retrieval

a simple word-by-word match. A small stop list for English is shown in
table 15.1.

A stop list has the advantage that it reduces the size of the inverted
index. According to Zipf’s law (see section 1.4.3), a stop list that covers
a few dozen words can reduce the size of the inverted index by half.
However, it is impossible to search for phrases that contain stop words
once the stop list has been applied – note that some occasionally used
phrases like when and where consist entirely of words in the stop list in
table 15.1. For this reason, many retrieval engines do not make use of a
stop list for indexing.

Another common feature of IR systems is stemming, which we brieflystemming

discussed in section 4.2.3. In IR, stemming usually refers to a simplified
form of morphological analysis consisting simply of truncating a word.
For example, laughing, laugh, laughs and laughed are all stemmed to
laugh-. Common stemmers are the Lovins and Porter stemmers, whichLovins stemmer

Porter stemmer differ in the actual algorithms used for determining where to truncate
words (Lovins 1968; Porter 1980). Two problems with truncation stem-
mers are that they conflate semantically different words (for example,
gallery and gall may both be stemmed to gall-) and that the truncated
stems can be unintelligible to users (for example, if gallery is presented
as gall-). They are also much harder to make work well for morphology-
rich languages.

15.1.2 Evaluation measures

Since the quality of many retrieval systems depends on how well they
manage to rank relevant documents before non-relevant ones, IR resear-
chers have developed evaluation measures specifically designed to eval-
uate rankings. Most of these measures combine precision and recall in
a way that takes account of the ranking. As we explained in section 8.1,
precision is the percentage of relevant items in the returned set and re-
call is the percentage of all relevant documents in the collection that is in
the returned set.

Figure 15.2 demonstrates why the ranking of documents is important.
All three retrieved sets have the same number of relevant and not rele-
vant documents. A simple measure of precision (50% correct) would not
distinguish between them. But ranking 1 is clearly better than ranking 2
for a user who scans a returned list of documents from top to bottom

p

i i

15.1 Some Background on Information Retrieval 535

Evaluation Ranking 1 Ranking 2 Ranking 3
d1: ✓ d10: × d6: ×
d2: ✓ d9: × d1: ✓
d3: ✓ d8: × d2: ✓
d4: ✓ d7: × d10: ×
d5: ✓ d6: × d9: ×
d6: × d1: ✓ d3: ✓
d7: × d2: ✓ d5: ✓
d8: × d3: ✓ d4: ✓
d9: × d4: ✓ d7: ×
d10: × d5: ✓ d8: ×

precision at 5 1.0 0.0 0.4
precision at 10 0.5 0.5 0.5
uninterpolated av. prec. 1.0 0.3544 0.5726
interpolated av. prec. (11-point) 1.0 0.5 0.6440

Table 15.2 An example of the evaluation of rankings. The columns show three
different rankings of ten documents, where a ✓ indicates a relevant document
and a × indicates a non-relevant document. The rankings are evaluated accord-
ing to four measures: precision at 5 documents, precision at 10 documents,
uninterpolated average precision, and interpolated average precision over 11
points.

(which is what users do in many practical situations, for example, when
web searching).

One measure used is precision at a particular cutoff , for example 5cutoff

or 10 documents (other typical cutoffs are 20 and 100). By looking at
precision for several initial segments of the ranked list, one can gain a
good impression of how well a method ranks relevant documents before
non-relevant documents.

Uninterpolated average precision aggregates many precision numbersuninterpolated

average precision into one evaluation figure. Precision is computed for each point in the
list where we find a relevant document and these precision numbers are
then averaged. For example, for ranking 1 precision is 1.0 for d1, d2,
d3, d4 and d5 since for each of these documents there are only relevant
documents up to that point in the list. The uninterpolated average is
therefore also 1.0. For ranking 3, we get the following precision numbers
for the relevant documents: 1/2 (d1), 2/3 (d2), 3/6 (d3), 4/7 (d5), 5/8

p

i i

536 15 Topics in Information Retrieval

(d4), which averages to 0.5726.
If there are other relevant documents further down the list then these

also have to be taken into account in computing uninterpolated average
precision. Precision at relevant documents that are not in the returned set
is assumed to be zero. This shows that average precision indirectly mea-
sures recall, the percentage of relevant documents that were returned in
the retrieved set (since omitted documents are entered as zero precision).

Interpolated average precision is more directly based on recall. Preci-interpolated

average precision sion numbers are computed for various levels of recall, for example for
levels of recall

the levels 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% in
the case of an 11-point average (the most widely used measure). At recall
level α, precision β is computed at the point of the ranked list where the
proportion of retrieved relevant documents reaches α. However, if preci-
sion goes up again while we are moving down the list, then we interpolateinterpolate

and take the highest value of precision anywhere beyond the point where
recall level α was first reached. For example, for ranking 3 in figure 15.2
interpolated precision for recall level 60% is not 4/7, the precision at the
point where 60% recall is first reached as shown in the top diagram of
figure 15.2. Instead, it is 5/8 > 4/7 as shown in the bottom diagram of
figure 15.2. (We are assuming that the five relevant documents shown
are the only relevant documents.) The thinking here is that the user will
be willing to look at more documents if the precision goes up. The two
graphs in figure 15.2 are so-called precision-recall curves, with interpo-precision-recall

curves lated and uninterpolated values for 0%, 20%, 40%, 60%, 80%, and 100%
recall for ranking 3 in table 15.2.

There is an obvious trade-off between precision and recall. If the whole
collection is retrieved, then recall is 100%, but precision is low. On the
other hand, if only a few documents are retrieved, then the most relevant-
seeming documents will be returned, resulting in high precision, but re-
call will be low.

Average precision is one way of computing a measure that captures
both precision and recall. Another way is the F measure, which we intro-F measure

duced in section 8.1:

F = 1

α 1
P + (1−α) 1

R

(15.1)

where P is the precision, R is the recall and α determines the weighting
of precision and recall. The F measure can be used for evaluation at fixed
cutoffs if both recall and precision are important.

p

i i

15.1 Some Background on Information Retrieval 537

0 1
0

1

×
×

×
× ×

precision

recall

0 1
0

1

×
×

×
× ×

interpolated
precision

recall

Figure 15.2 Two examples of precision-recall curves. The two curves are for
ranking 3 in table 15.2: uninterpolated (above) and interpolated (below).

p

i i

538 15 Topics in Information Retrieval

Any of the measures discussed above can be used to compare the per-
formance of information retrieval systems. One common approach is to
run the systems on a corpus and a set of queries and average the perfor-
mance measure over queries. If the average of system 1 is better than the
average of system 2, then that is evidence that system 1 is better than
system 2.

Unfortunately, there are several problems with this experimental de-
sign. The difference in averages could be due to chance. Or it could be
due to one query on which system 1 outperforms system 2 by a large
margin with performance on all other queries being about the same. It is
therefore advisable to use a statistical test like the t test for system com-
parison (as shown in section 6.2.3).

15.1.3 The probability ranking principle (PRP)

Ranking documents is intuitively plausible since it gives the user some
control over the tradeoff between precision and recall. If recall for the
first page of results is low and the desired information is not found, then
the user can look at the next page, which in most cases trades higher
recall for lower precision.

The following principle is a guideline which is one way to make the
assumptions explicit that underlie the design of retrieval by ranking. We
present it in a form simplified from (van Rijsbergen 1979: 113):

Probability Ranking Principle (PRP). Ranking documents in order
of decreasing probability of relevance is optimal.

The basic idea is that we view retrieval as a greedy search that aims to
identify the most valuable document at any given time. The document
d that is most likely to be valuable is the one with the highest estimated
probability of relevance (where we consider all documents that haven’t
been retrieved yet), that is, with a maximum value for P(R|d). After mak-
ing many consecutive decisions like this, we arrive at a list of documents
that is ranked in order of decreasing probability of relevance.

Many retrieval systems are based on the PRP, so it is important to be
clear about the assumptions that are made when it is accepted.

One assumption of the PRP is that documents are independent. The
clearest counterexamples are duplicates. If we have two duplicates d1

and d2, then the estimated probability of relevance of d2 does not change
after we have presented d1 further up in the list. But d2 does not give

p

i i

15.2 The Vector Space Model 539

the user any information that is not already contained in d1. Clearly, a
better design is to show only one of the set of identical documents, but
that violates the PRP.

Another simplification made by the PRP is to break up a complex in-
formation need into a number of queries which are each optimized in
isolation. In practice, a document can be highly relevant to the complex
information need as a whole even if it is not the optimal one for an in-
termediate step. An example here is an information need that the user
initially expresses using ambiguous words, for example, the query jaguar
to search for information on the animal (as opposed to the car). The op-
timal response to this query may be the presentation of documents that
make the user aware of the ambiguity and permit disambiguation of the
query. In contrast, the PRP would mandate the presentation of documents
that are highly relevant to either the car or the animal.

A third important caveat is that the probability of relevance is only es-
timated. Given the many simplifying assumptions we make in designing
probabilistic models for IR, we cannot completely trust the probability
estimates. One aspect of this problem is that the variance of the esti-variance

mate of probability of relevance may be an important piece of evidence
in some retrieval contexts. For example, a user may prefer a document
that we are certain is probably relevant (low variance of probability esti-
mate) to one whose estimated probability of relevance is higher, but that
also has a higher variance of the estimate.

15.2 The Vector Space Model

The vector space model is one of the most widely used models for ad-hocvector space model

retrieval, mainly because of its conceptual simplicity and the appeal of
the underlying metaphor of using spatial proximity for semantic proxim-
ity. Documents and queries are represented in a high-dimensional space,
in which each dimension of the space corresponds to a word in the doc-
ument collection. The most relevant documents for a query are expected
to be those represented by the vectors closest to the query, that is, doc-
uments that use similar words to the query. Rather than considering the
magnitude of the vectors, closeness is often calculated by just looking at
angles and choosing documents that enclose the smallest angle with the
query vector.

In figure 15.3, we show a vector space with two dimensions, corre-

p

i i

540 15 Topics in Information Retrieval

0 1
0

1

insurance

car

q

d1

d2

d3

Figure 15.3 A vector space with two dimensions. The two dimensions corre-
spond to the terms car and insurance. One query and three documents are
represented in the space.

sponding to the words car and insurance. The entities represented in the
space are the query q represented by the vector (0.71,0.71), and three
documents d1, d2, and d3 with the following coordinates: (0.13,0.99),
(0.8,0.6), and (0.99,0.13). The coordinates or term weights are derivedterm weights

from occurrence counts as we will see below. For example, insurance may
have only a passing reference in d1 while there are several occurrences
of car – hence the low weight for insurance and the high weight for car.
(In the context of information retrieval, the word term is used for bothterm

words and phrases. We say term weights rather than word weights be-
cause dimensions in the vector space model can correspond to phrases
as well as words.)

In the figure, document d2 has the smallest angle with q, so it will be
the top-ranked document in response to the query car insurance. This is
because both ‘concepts’ (car and insurance) are salient in d2 and there-
fore have high weights. The other two documents also mention both
terms, but in each case one of them is not a centrally important term in
the document.

15.2.1 Vector similarity

To do retrieval in the vector space model, documents are ranked accord-
ing to similarity with the query as measured by the cosine measure orcosine

p

i i

15.2 The Vector Space Model 541

normalized correlation coefficient. We introduced the cosine as a measurenormalized

correlation

coefficient

of vector similarity in section 8.5.1 and repeat its definition here:

cos(~q, ~d) =
∑n
i=1 qidi√∑n

i=1 q
2
i

√∑n
i=1 d

2
i

(15.2)

where ~q and ~d are n-dimensional vectors in a real-valued space, the space
of all terms in the case of the vector space model. We compute how well
the occurrence of term i (measured by qi and di) correlates in query and
document and then divide by the Euclidean length of the two vectors to
scale for the magnitude of the individual qi and di .

Recall also from section 8.5.1 that cosine and Euclidean distance give
rise to the same ranking for normalized vectors:

(|~x− ~y|)2 =
n∑
i=1

(xi − yi)2

=
n∑
i=1

x2
i − 2

n∑
i=1

xiyi +
n∑
i=1

y2
i

= 1− 2
n∑
i=1

xiyi + 1

= 2(1−
n∑
i=1

xiyi)(15.3)

So for a particular query ~q and any two documents ~d1 and ~d2 we have:

cos(~q, ~d1) > cos(~q, ~d2) ⇔ |~q − ~d1| < |~q − ~d2|(15.4)

which implies that the rankings are the same. (We again assume normal-
ized vectors here.)

If the vectors are normalized, we can compute the cosine as a simple
dot product. Normalization is generally seen as a good thing – otherwise
longer vectors (corresponding to longer documents) would have an unfair
advantage and get ranked higher than shorter ones. (We leave it as an
exercise to show that the vectors in figure 15.3 are normalized, that is,√∑

i d2
i = 1.)

15.2.2 Term weighting

We now turn to the question of how to weight words in the vector space
model. One could just use the count of a word in a document as its term

p

i i

542 15 Topics in Information Retrieval

Quantity Symbol Definition
term frequency tfi,j number of occurrences of wi in dj
document frequency dfi number of documents in the collection that wi occurs in
collection frequency cfi total number of occurrences of wi in the collection

Table 15.3 Three quantities that are commonly used in term weighting in in-
formation retrieval.

Word Collection Frequency Document Frequency
insurance 10440 3997
try 10422 8760

Table 15.4 Term and document frequencies of two words in an example cor-
pus.

weight, but there are more effective methods of term weighting. The
basic information used in term weighting is term frequency, documentterm frequency

document

frequency

frequency, and sometimes collection frequency as defined in table 15.3.

collection

frequency

Note that dfi ≤ cfi and that
∑
j tfi,j = cfi . It is also important to note

that document frequency and collection frequency can only be used if
there is a collection. This assumption is not always true, for example if
collections are created dynamically by selecting several databases from
a large set (as may be the case on one of the large on-line information
services), and joining them into a temporary collection.

The information that is captured by term frequency is how salient a
word is within a given document. The higher the term frequency (the
more often the word occurs) the more likely it is that the word is a good
description of the content of the document. Term frequency is usually
dampened by a function like f (tf) = √

tf or f (tf) = 1 + log(tf), tf > 0
because more occurrences of a word indicate higher importance, but not
as much importance as the undampened count would suggest. For ex-
ample,

√
3 or 1+ log 3 better reflect the importance of a word with three

occurrences than the count 3 itself. The document is somewhat more
important than a document with one occurrence, but not three times as
important.

The second quantity, document frequency, can be interpreted as an in-
dicator of informativeness. A semantically focussed word will often occur
several times in a document if it occurs at all. Semantically unfocussed
words are spread out homogeneously over all documents. An example

p

i i

15.2 The Vector Space Model 543

from a corpus of New York Times articles is the words insurance and try
in table 15.4. The two words have about the same collection frequency,
the total number of occurrences in the document collection. But insur-
ance occurs in only half as many documents as try. This is because the
word try can be used when talking about almost any topic since one can
try to do something in any context. In contrast, insurance refers to a
narrowly defined concept that is only relevant to a small set of topics.
Another property of semantically focussed words is that, if they come
up once in a document, they often occur several times. Insurance occurs
about three times per document, averaged over documents it occurs in at
least once. This is simply due to the fact that most articles about health
insurance, car insurance or similar topics will refer multiple times to the
concept of insurance.

One way to combine a word’s term frequency tfi,j and document fre-
quency dfi into a single weight is as follows:

weight(i, j) =
{
(1+ log(tfi,j)) log N

dfi
if tfi,j ≥ 1

0 if tfi,j = 0
(15.5)

where N is the total number of documents. The first clause applies for
words occurring in the document, whereas for words that do not appear
(tfi,j = 0), we set weight(i, j) = 0.

Document frequency is also scaled logarithmically. The formula
log N

dfi
= logN − log dfi gives full weight to words that occur in 1 doc-

ument (logN − log dfi = logN − log 1 = logN). A word that occurred in
all documents would get zero weight (logN − log dfi = logN − logN = 0).

This form of document frequency weighting is often called inverse doc-inverse document

frequency ument frequency or idf weighting. More generally, the weighting scheme
idf in (15.5) is an example of a larger family of so-called tf.idf weighting

tf.idf

schemes. Each such scheme can be characterized by its term occurrence
weighting, its document frequency weighting and its normalization. In
one description scheme, we assign a letter code to each component of
the tf.idf scheme. The scheme in (15.5) can then be described as “ltn”
for logarithmic occurrence count weighting (l), logarithmic document fre-
quency weighting (t), and no normalization (n). Other weighting possi-
bilities are listed in table 15.5. For example, “ann” is augmented term
occurrence weighting, no document frequency weighting and no normal-
ization. We refer to vector length normalization as cosine normalization
because the inner product between two length-normalized vectors (the
query-document similarity measure used in the vector space model) is

p

i i

544 15 Topics in Information Retrieval

Term occurrence Document frequency Normalization
n (natural) tft,d n (natural) dft n (no normalization)

l (logarithm) 1+ log(tft,d) t log N
dft

c (cosine)

a (augmented) 0.5+ 0.5×tft,d
maxt (tft,d)

1√
w2

1+w2
2+...+w2

n

Table 15.5 Components of tf.idf weighting schemes. tft,d is the frequency of
term t in document d, dft is the number of documents t occurs in, N is the total
number of documents, and wi is the weight of term i.

their cosine. Different weighting schemes can be applied to queries and
documents. In the name “ltc.lnn,” the halves refer to document and query
weighting, respectively.

The family of weighting schemes shown in table 15.5 is sometimes crit-
icized as ‘ad-hoc’ because it is not directly derived from a mathematical
model of term distributions or relevancy. However, these schemes are
effective in practice and work robustly in a broad range of applications.
For this reason, they are often used in situations where a rough measure
of similarity between vectors of counts is needed.

15.3 Term Distribution Models

An alternative to tf.idf weighting is to develop a model for the distribu-
tion of a word and to use this model to characterize its importance for
retrieval. That is, we wish to estimate Pi(k), the proportion of times that
word wi appears k times in a document. In the simplest case, the dis-
tribution model is used for deriving a probabilistically motivated term
weighting scheme for the vector space model. But models of term distri-
bution can also be embedded in other information retrieval frameworks.

Apart from its importance for term weighting, a precise characteriza-
tion of the occurrence patterns of words in text is arguably at least as
important a topic in Statistical NLP as Zipf’s law. Zipf’s law describesZipf’s law

word behavior in an entire corpus. In contrast, term distribution mod-
els capture regularities of word occurrence in subunits of a corpus (e.g.,
documents or chapters of a book). In addition to information retrieval, a
good understanding of distribution patterns is useful wherever we want
to assess the likelihood of a certain number of occurrences of a specific
word in a unit of text. For example, it is also important for author identifi-

p

i i

15.3 Term Distribution Models 545

cation where one compares the likelihood that different writers produced
a text of unknown authorship.

Most term distribution models try to characterize how informative a
word is, which is also the information that inverse document frequency
is getting at. One could cast the problem as one of distinguishing con-
tent words from non-content (or function) words, but most models have
a graded notion of how informative a word is. In this section, we intro-
duce several models that formalize notions of informativeness. Three are
based on the Poisson distribution, one motivates inverse document fre-
quency as a weight optimal for Bayesian classification and the final one,
residual inverse document frequency, can be interpreted as a combination
of idf and the Poisson distribution.

15.3.1 The Poisson distribution

The standard probabilistic model for the distribution of a certain type of
event over units of a fixed size (such as periods of time or volumes of
liquid) is the Poisson distribution. Classical examples of Poisson distribu-Poisson

distribution tions are the number of items that will be returned as defects in a given
period of time, the number of typing mistakes on a page, and the number
of microbes that occur in a given volume of water.

The definition of the Poisson distribution is as follows.

Poisson Distribution. p(k; λi) = e−λi λi
k

k!
for some λi > 0

In the most common model of the Poisson distribution in IR, the parame-
ter λi > 0 is the average number of occurrences of wi per document, that
is, λi = cfi

N where cfi is the collection frequency and N is the total number
of documents in the collection. Both the mean and the variance of the
Poisson distribution are equal to λi :

E(p) = Var(p) = λi
Figure 15.4 shows two examples of the Poisson distribution.

In our case, the event we are interested in is the occurrence of a partic-
ular word wi and the fixed unit is the document. We can use the Poisson
distribution to estimate an answer to the question: What is the probabil-
ity that a word occurs a particular number of times in a document. We
might say that Pi(k) = p(k; λi) is the probability of a document having
exactly k occurrences of wi , where λi is appropriately estimated for each
word.

p

i i

546 15 Topics in Information Retrieval

•

•

•

• • • •

count

pr
ob

ab
ili

ty

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

•

• •

•

•

•
•

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

Figure 15.4 The Poisson distribution. The graph shows p(k; 0.5) (solid line)
and p(k; 2.0) (dotted line) for 0 ≤ k ≤ 6. In the most common use of this
distribution in IR, k is the number of occurrences of term i in a document, and
p(k; λi) is the probability of a document with that many occurrences.

The Poisson distribution is a limit of the binomial distribution. For the
binomial distribution b(k; n,p), if we let n → ∞ and p → 0 in such a way
that np remains fixed at value λ > 0, then b(x; n,p)→ p(k; λ). Assuming
a Poisson distribution for a term is appropriate if the following conditions
hold.

� The probability of one occurrence of the term in a (short) piece of text
is proportional to the length of the text.

� The probability of more than one occurrence of a term in a short piece
of text is negligible compared to the probability of one occurrence.

� Occurrence events in non-overlapping intervals of text are indepen-
dent.

We will discuss problems with these assumptions for modeling the dis-
tribution of terms shortly. Let us first look at some examples.

p

i i

15.3 Term Distribution Models 547

Word dfi cfi λi N(1− p(0; λi)) Overestimation
follows 21744 23533 0.2968 20363 0.94
transformed 807 840 0.0106 835 1.03
soviet 8204 35337 0.4457 28515 3.48
students 4953 15925 0.2008 14425 2.91
james 9191 11175 0.1409 10421 1.13
freshly 395 611 0.0077 609 1.54

Table 15.6 Document frequency (df) and collection frequency (cf) for 6 words
in the New York Times corpus. Computing N(1 − p(0; λi)) according to the
Poisson distribution is a reasonable estimator of df for non-content words (like
follows), but severely overestimates df for content words (like soviet). The pa-
rameter λi of the Poisson distribution is the average number of occurrences of
term i per document. The corpus has N = 79291 documents.

Table 15.6 shows for six terms in the New York Times newswire how
well the Poisson distribution predicts document frequency. For each
word, we show document frequency dfi , collection frequency cfi , the es-
timate of λ (collection frequency divided by total number of documents
(79291)), the predicted df, and the ratio of predicted df and actual df.

Examining document frequency is the easiest way to check whether a
term is Poisson distributed. The number of documents predicted to have
at least one occurrence of a term can be computed as the complement
of the predicted number with no occurrences. Thus, the Poisson predicts
that the document frequency is d̂fi = N(1−Pi(0)) where N is the number
of documents in the corpus. A better way to check the fit of the Poisson
is to look at the complete distribution: the number of documents with 0,
1, 2, 3, etc. occurrences. We will do this below.

In table 15.6, we can see that the Poisson estimates are good for non-
content words like follows and transformed. We use the term non-content
word loosely to refer to words that taken in isolation (which is what most
IR systems do) do not give much information about the contents of the
document. But the estimates for content words are much too high, by a
factor of about 3 (3.48 and 2.91).

This result is not surprising since the Poisson distribution assumes
independence between term occurrences. This assumption holds approx-
imately for non-content words, but most content words are much more
likely to occur again in a text once they have occurred once, a property

p

i i

548 15 Topics in Information Retrieval

that is sometimes called burstiness or term clustering. However, thereburstiness

term clustering are some subtleties in the behavior of words as we can see for the last
two words in the table. The distribution of james is surprisingly close to
Poisson, probably because in many cases a person’s full name is given at
first mention in a newspaper article, but following mentions only use the
last name or a pronoun. On the other hand, freshly is surprisingly non-
Poisson. Here we get strong dependence because of the genre of recipes
in the New York Times in which freshly frequently occurs several times.
So non-Poisson-ness can also be a sign of clustered term occurrences in
a particular genre like recipes.

The tendency of content word occurrences to cluster is the main prob-
lem with using the Poisson distribution for words. But there is also the
opposite effect. We are taught in school to avoid repetitive writing. In
many cases, the probability of reusing a word immediately after its first
occurrence in a text is lower than in general. A final problem with the
Poisson is that documents in many collections differ widely in size. So
documents are not a uniform unit of measurement as the second is for
time or the kilogram is for mass. But that is one of the assumptions of
the Poisson distribution.

15.3.2 The two-Poisson model

A better fit to the frequency distribution of content words is provided by
the two-Poisson Model (Bookstein and Swanson 1975), a mixture of twotwo-Poisson Model

Poissons. The model assumes that there are two classes of documents
associated with a term, one class with a low average number of occur-
rences (the non-privileged class) and one with a high average number of
occurrences (the privileged class):

tp(k; π,λ1, λ2) = πe−λ1
λ1
k

k!
+ (1−π)e−λ2

λ2
k

k!

where π is the probability of a document being in the privileged class,
(1−π) is the probability of a document being in the non-privileged class,
and λ1 and λ2 are the average number of occurrences of word wi in the
privileged and non-privileged classes, respectively.

The two-Poisson model postulates that a content word plays two dif-
ferent roles in documents. In the non-privileged class, its occurrence is
accidental and it should therefore not be used as an index term, just as
a non-content word. The average number of occurrences of the word in

p

i i

15.3 Term Distribution Models 549

this class is low. In the privileged class, the word is a central content
word. The average number of occurrences of the word in this class is
high and it is a good index term.

Empirical tests of the two-Poisson model have found a spurious “dip” at
frequency 2. The model incorrectly predicts that documents with 2 occur-
rences of a term are less likely than documents with 3 or 4 occurrences.
In reality, the distribution for most terms is monotonically decreasing.
If Pi(k) is the proportion of times that word wi appears k times in a doc-
ument, then Pi(0) > Pi(1) > Pi(2) > Pi(3) > Pi(4) > As a fix, one can
use more than two Poisson distributions. The negative binomial is onenegative binomial

such mixture of an infinite number of Poissons (Mosteller and Wallace
1984), but there are many others (Church and Gale 1995). The negative
binomial fits term distributions better than one or two Poissons, but it
can be hard to work with in practice because it involves the computation
of large binomial coefficients.

15.3.3 The K mixture

A simpler distribution that fits empirical word distributions about as well
as the negative binomial is Katz’s K mixture:

Pi(k) = (1−α)δk,0 + α
β+ 1

(
β

β+ 1

)k
where δk,0 = 1 iff k = 0 and δk,0 = 0 otherwise and α and β are parame-
ters that can be fit using the observed mean λ and the observed inverse
document frequency IDF as follows.

λ = cf
N

IDF = log2
N
df

β = λ× 2IDF − 1 = cf− df
df

α = λ
β

The parameter β is the number of “extra terms” per document in which
the term occurs (compared to the case where a term has only one occur-
rence per document). The decay factor β

β+1 = cf−df
cf (extra terms per term

occurrence) determines the ratio Pi(k)
Pi(k−1) . For example, if there are 1

10 as

p

i i

550 15 Topics in Information Retrieval

Word k
0 1 2 3 4 5 6 7 8 ≥ 9

follows act. 57552.0 20142.0 1435.0 148.0 18.0 1.0
est. 57552.0 20091.0 1527.3 116.1 8.8 0.7 0.1 0.0 0.0 0.0

trans- act. 78489.0 776.0 29.0 2.0
formed est. 78489.0 775.3 30.5 1.2 0.0 0.0 0.0 0.0 0.0 0.0
soviet act. 71092.0 3038.0 1277.0 784.0 544.0 400.0 356.0 302.0 255.0 1248.0

est. 71092.0 1904.7 1462.5 1122.9 862.2 662.1 508.3 390.3 299.7 230.1
students act. 74343.0 2523.0 761.0 413.0 265.0 178.0 143.0 112.0 96.0 462.0

est. 74343.0 1540.5 1061.4 731.3 503.8 347.1 239.2 164.8 113.5 78.2
james act. 70105.0 7953.0 922.0 183.0 52.0 24.0 19.0 9.0 7.0 22.0

est. 70105.0 7559.2 1342.1 238.3 42.3 7.5 1.3 0.2 0.0 0.0
freshly act. 78901.0 267.0 66.0 47.0 8.0 4.0 2.0 1.0

est. 78901.0 255.4 90.3 31.9 11.3 4.0 1.4 0.5 0.2 0.1

Table 15.7 Actual and estimated number of documents with k occurrences for
six terms. For example, there were 1435 documents with 2 occurrences of fol-
lows. The K mixture estimate is 1527.3.

many extra terms as term occurrences, then there will be ten times as
many documents with 1 occurrence as with 2 occurrences and ten times
as many with 2 occurrences as with 3 occurrences. If there are no extra
terms (cf = df ⇒ β

β+1 = 0), then we predict that there are no documents
with more than 1 occurrence.

The parameter α captures the absolute frequency of the term. Two
terms with the same β have identical ratios of collection frequency to doc-
ument frequency, but different values for α if their collection frequencies
are different.

Table 15.7 shows the number of documents with k occurrences in the
New York Times corpus for the six words that we looked at earlier. We
observe that the fit is always perfect for k = 0. It is easy to show that this
is a general property of the K mixture (see exercise 15.3).

The K mixture is a fairly good approximation of term distribution, espe-
cially for non-content words. However, it is apparent from the empirical
numbers in table 15.7 that the assumption:

Pi(k)
Pi(k+ 1)

= c, k ≥ 1

does not hold perfectly for content words. As in the case of the two-
Poisson mixture we are making a distinction between low base rate of
occurrence and another class of documents that have clusters of occur-
rences. The K mixture assumes Pi(k)

Pi(k+1) = c for k ≥ 1, which concedes

p

i i

15.3 Term Distribution Models 551

that k = 0 is a special case due to a low base rate of occurrence for many
words. But the ratio Pi(k)

Pi(k+1) seems to decline for content words even for
k ≥ 1. For example, for soviet we have:

Pi(0)
Pi(1) =

71092
3038 ≈ 23.4 Pi(1)

Pi(2) =
3038
1277 ≈ 2.38

Pi(2)
Pi(3) =

1277
784 ≈ 1.63 Pi(3)

Pi(4) =
784
544 ≈ 1.44

Pi(4)
Pi(5) =

544
400 ≈ 1.36

In other words, each occurrence of a content word we find in a text de-
creases the probability of finding an additional term, but the decreases
become consecutively smaller. The reason is that occurrences of content
words tend to cluster in documents whose core topic is associated with
the content word. A large number of occurrences indicates that the con-
tent word describes a central concept of the document. Such a central
concept is likely to be mentioned more often than a “constant decay”
model would predict.

We have introduced Katz’s K mixture here as an example of a term dis-
tribution model that is more accurate than the Poisson distribution and
the two-Poisson model. The interested reader can find more discussion
of the characteristics of content words in text and of several probabilistic
models with a better fit to empirical distributions in (Katz 1996).

15.3.4 Inverse document frequency

We motivated inverse document frequency (IDF) heuristically in section
15.2.2, but we can also derive it from a term distribution model. In the
derivation we present here, we only use binary occurrence information
and do not take into account term frequency.

To derive IDF, we view ad-hoc retrieval as the task of ranking docu-
ments according to the odds of relevance:odds of relevance

O(d) = P(R|d)
P(¬R|d)

where P(R|d) is the probability of relevance of d and P(¬R|d) is the
probability of non-relevance. We then take logs to compute the log odds,
and apply Bayes’ formula:

logO(d) = log
P(R|d)
P(¬R|d)

p

i i

552 15 Topics in Information Retrieval

= log
P(d|R)P(R)
P(d)

P(d|¬R)P(¬R)
P(d)

= logP(d|R)− logP(d|¬R)+ logP(R)− logP(¬R)

Let us assume that the query Q is the set of words {wi}, and let the
indicator random variables Xi be 1 or 0, corresponding to occurrence
and non-occurrence of word wi in d. If we then make the conditional
independence assumption discussed in section 7.2.1, we can write:

logO(d) =
∑
i

[
logP(Xi|R)− logP(Xi|¬R)

]+ logP(R)− logP(¬R)

Since we are only interested in ranking, we can create a new rank-
ing function g(d) which drops the constant term logP(R) − logP(¬R).
With the abbreviations pi = P(Xi = 1|R) (word i occurring in a rele-
vant document) and qi = P(Xi = 1|¬R) (word i occurring in a non-
relevant document), we can write g(d) as follows. (In the second line,
we make use of P(Xi = 1|_) = y = y1(1 − y)0 = yXi (1 − y)1−Xi and
P(Xi = 0|_) = 1 − y = y0(1 − y)1 = yXi (1 − y)1−Xi so that we can write
the equation more compactly.)

g(d) =
∑
i
[logP(Xi|R)− logP(Xi|¬R)]

=
∑
i
[log(pXii (1− pi)1−Xi)− log(qXii (1− qi)1−Xi)]

=
∑
i
Xi log

pi(1− qi)
(1− pi)qi +

∑
i

log
1− pi
1− qi

=
∑
i
Xi log

pi
1− pi +

∑
i
Xi log

1− qi
qi

+
∑
i

log
1− pi
1− qi

In the last equation above,
∑
i log 1−pi

1−qi is another constant term which
does not affect the ranking of documents, and so we can drop it as well
giving the final ranking function:

g′(d) =
∑
i
Xi log

pi
1− pi +

∑
i
Xi log

1− qi
qi

(15.6)

If we have a set of documents that is categorized according to relevance
to the query, we can estimate the pi and qi directly. However, in ad-hoc
retrieval we do not have such relevance information. That means we

p

i i

15.3 Term Distribution Models 553

have to make some simplifying assumptions in order to be able to rank
documents in a meaningful way.

First, we assume that pi is small and constant for all terms. The first
term of g′ then becomes

∑
i Xi log pi

1−pi = c
∑
i Xi , a simple count of the

number of matches between query and document, weighted by c.
The fraction in the second term can be approximated by assuming that

most documents are not relevant so qi = P(Xi = 1|¬R) ≈ P(wi) = dfi
N ,

which is the maximum likelihood estimate of P(wi), the probability of
occurrence of wi not conditioned on relevance.

1− qi
qi

= 1− dfi
N

dfi
N

= N − dfi
dfi

≈ N
dfi

The last approximation, N−dfi
dfi

≈ N
dfi

, holds for most words since most
words are relatively rare. After applying the logarithm, we have now
arrived at the IDF weight we introduced earlier. Substituting it back into
the formula for g′ we get:

g′(d) ≈ c
∑
i
Xi +

∑
i
Xi idfi(15.7)

This derivation may not satisfy everyone since we weight the term ac-
cording to the ‘opposite’ of the probability of non-relevance rather than
directly according to the probability of relevance. But the probability of
relevance is impossible to estimate in ad-hoc retrieval. As in many other
cases in Statistical NLP, we take a somewhat circuitous route to get to a
desired quantity from others that can be more easily estimated.

15.3.5 Residual inverse document frequency

An alternative to IDF is residual inverse document frequency or RIDF .residual inverse

document

frequency

RIDF

Residual IDF is defined as the difference between the logs of actual docu-
ment frequency and document frequency predicted by Poisson:

RIDF = IDF− log2(1− p(0; λi))

where IDF = log2
N
df , and p is the Poisson distribution with parameter λi =

cfi
N , the average number of occurrences of wi per document. 1− p(0; λi)
is the Poisson probability of a document with at least one occurrence. So,
for example, RIDF for insurance and try in table 15.4 would be 7.3 and
6.2, respectively (with N = 79291, verify this!).

p

i i

554 15 Topics in Information Retrieval

Term 1 Term 2 Term 3 Term 4
Query user interface
Document 1 user interface HCI interaction
Document 2 HCI interaction

Table 15.8 Example for exploiting co-occurrence in computing content similar-
ity. For the query and the two documents, the terms they contain are listed in
their respective rows.

As we saw above, the Poisson distribution only fits the distribution of
non-content words well. Therefore, the deviation from Poisson is a good
predictor of the degree to which a word is a content word.

15.3.6 Usage of term distribution models

We can exploit term distribution models in information retrieval by using
the parameters of the model fit for a particular term as indicators of
relevance. For example, we could use RIDF or the β in the K mixture as a
replacement for IDF weights (since content words have large β and large
RIDF, non-content words have smaller β and smaller RIDF).

Better models of term distribution than IDF have the potential of as-
sessing a term’s properties more accurately, leading to a better model
of query-document similarity. Although there has been little work on
employing term distribution models different from IDF in IR, it is to be
hoped that such models will eventually lead to better measures of content
similarity.

15.4 Latent Semantic Indexing

In the previous section, we looked at the occurrence patterns of individ-
ual words. A different source of information about terms that can be
exploited in information retrieval is co-occurrence: the fact that two orco-occurrence

more terms occur in the same documents more often than chance. Con-
sider the example in table 15.8. Document 1 is likely to be relevant to the
query since it contains all the terms in the query. But document 2 is also
a good candidate for retrieval. Its terms HCI and interaction co-occur
with user and interface, which can be evidence for semantic relatedness.
Latent Semantic Indexing (LSI) is a technique that projects queries andLatent Semantic

Indexing

p

i i

15.4 Latent Semantic Indexing 555

A =



d1 d2 d3 d4 d5 d6

cosmonaut 1 0 1 0 0 0
astronaut 0 1 0 0 0 0
moon 1 1 0 0 0 0
car 1 0 0 1 1 0
truck 0 0 0 1 0 1



Figure 15.5 An example of a term-by-document matrix A.

−0.5−1.0−1.5

0.5

1.0

−0.5

−1.0

dim 2

dim 1

×
d1

×

d2

× d3

×

d4

×
d5

× d6

Figure 15.6 Dimensionality reduction. The documents in matrix 15.5 are
shown after the five-dimensional term space has been reduced to two dimen-
sions. The reduced document representations are taken from figure 15.11. In
addition to the document representations d1, . . . , d6, we also show their length-
normalized vectors, which show more directly the similarity measure of cosine
that is used after LSI is applied.

p

i i

556 15 Topics in Information Retrieval

documents into a space with “latent” semantic dimensions. Co-occurring
terms are projected onto the same dimensions, non-co-occurring terms
are projected onto different dimensions. In the latent semantic space, a
query and a document can have high cosine similarity even if they do not
share any terms – as long as their terms are semantically similar accord-
ing to the co-occurrence analysis. We can look at LSI as a similarity metric
that is an alternative to word overlap measures like tf.idf.

The latent semantic space that we project into has fewer dimensions
than the original space (which has as many dimensions as terms). LSI is
thus a method for dimensionality reduction. A dimensionality reductiondimensionality

reduction technique takes a set of objects that exist in a high-dimensional space and
represents them in a low-dimensional space, often in a two-dimensional
or three-dimensional space for the purposes of visualization. The exam-
ple in figure 15.5 may demonstrate the basic idea. This matrix defines a
five-dimensional space (whose dimensions are the five words astronaut,
cosmonaut, moon, car and truck) and six objects in the space, the docu-
ments d1, . . . , d6. Figure 15.6 shows how the six objects can be displayed
in a two-dimensional space after the application of SVD (dimension 1 and
dimension 2 are taken from figure 15.11, to be explained later). The visu-
alization shows some of the relations between the documents, in partic-
ular the similarity between d4 and d5 (car/truck documents) and d2 and
d3 (space exploration documents). These relationships are not as clear in
figure 15.5. For example, d2 and d3 have no terms in common.

There are many different mappings from high-dimensional spaces to
low-dimensional spaces. Latent Semantic Indexing chooses the mapping
that, for a given dimensionality of the reduced space, is optimal in a
sense to be explained presently. This setup has the consequence that the
dimensions of the reduced space correspond to the axes of greatest vari-
ation. Consider the case of reducing dimensionality to 1 dimension. In
order to get the best possible representation in 1 dimension, we will look
for the axis in the original space that captures as much of the variation in
the data as possible. The second dimension corresponds to the axis that
best captures the variation remaining after subtracting out what the first
axis explains and so on. This reasoning shows that Latent Semantic In-
dexing is closely related to Principal Component Analysis (PCA), anotherPrincipal

Component Analysis technique for dimensionality reduction. One difference between the two
techniques is that PCA can only be applied to a square matrix whereas LSI

can be applied to any matrix.
Latent semantic indexing is the application of a particular mathemat-

p

i i

15.4 Latent Semantic Indexing 557

ical technique, called Singular Value Decomposition or SVD, to a word-
by-document matrix. SVD (and hence LSI) is a least-squares method. The
projection into the latent semantic space is chosen such that the repre-
sentations in the original space are changed as little as possible when
measured by the sum of the squares of the differences. We first give a
simple example of a least-squares method and then introduce SVD.

15.4.1 Least-squares methods

Before defining the particular least-squares method used in LSI, it is in-
structive to study the most common least-squares approximation: fitting
a line to a set of points in the plane by way of linear regression.linear regression

Consider the following problem. We have a set of n points: (x1, y1),
(x2, y2), . . . , (xn, yn). We would like to find the line:

f (x) =mx+ b
with parametersm and b that fits these points best. In a least-squares ap-
proximation, the best fit is the one that minimizes the sum of the squares
of the differences:

SS(m,b) =
n∑
i=1

(
yi − f (xi)

)2 =
n∑
i=1

(yi −mxi − b)2(15.8)

We compute b by solving ∂SS(m,b)
∂b = 0, the value of b for which SS(m,b)

reaches its minimum:

∂SS(m,b)
∂b

=
n∑
i=1

[2(yi −mxi − b)(−1)] = 0

⇔ [∑n

i=1
yi
]− [m∑n

i=1
xi
]− [nb] = 0

⇔ b = ȳ −mx̄(15.9)

where ȳ =
∑n
i=1 yi
n and x̄ =

∑n
i=1 xi
n are the means of the x and y coordinates,

respectively.
We now substitute (15.9) for b in (15.8) and solve ∂SS(m,b)

∂m = 0 for m:

∂SS(m,b)
∂m

= ∂
∑n
i=1(yi −mxi − ȳ +mx̄)2

∂m
= 0

⇔
n∑
i=1

2(yi −mxi − ȳ +mx̄)(−xi + x̄) = 0

p

i i

558 15 Topics in Information Retrieval

0 1 2 3 4 5 6 7 8
0

1

2

3

4

×

×
×

×
y

x

Figure 15.7 An example of linear regression. The line y = 0.25x + 1 is the
best least-squares fit for the four points (1,1), (2,2), (6,1.5), (7,3.5). Arrows show
which points on the line the original points are projected to.

⇔ 0 = −
n∑
i=1

(ȳ − yi)(x̄− xi)+m
n∑
i=1

(x̄− xi)2

⇔ m =
∑n
i=1(ȳ − yi)(x̄− xi)∑n

i=1(x̄− xi)2
(15.10)

Figure 15.7 shows an example of a least square fit for the four points
(1,1), (2,2), (6,1.5), (7,3.5). We have:

x̄ = 4, ȳ = 2,m =
∑n
i=1(ȳ − yi)(x̄− xi)∑n

i=1(x̄− xi)2
= 6.5

26
= 0.25

and

b = ȳ −mx̄ = 2− 0.25× 4 = 1

15.4.2 Singular Value Decomposition

As we have said, we can view Singular Value Decomposition or SVD as a
method of word co-occurrence analysis. Instead of using a simple word
overlap measure like the cosine, we instead use a more sophisticated sim-
ilarity measure that makes better similarity judgements based on word

p

i i

15.4 Latent Semantic Indexing 559

co-occurrence. Equivalently, we can view SVD as a method for dimension-
ality reduction. The relation between these two viewpoints is that in the
process of dimensionality reduction, co-occurring terms are mapped onto
the same dimensions of the reduced space, thus increasing similarity in
the representation of semantically similar documents.

Co-occurrence analysis and dimensionality reduction are two ‘func-
tional’ ways of understanding LSI. We now look at the formal definition
of LSI. LSI is the application of Singular Value Decomposition (SVD) to
document-by-term matrices in information retrieval. SVD takes a ma-
trix A and represents it as Â in a lower dimensional space such that
the “distance” between the two matrices as measured by the 2-norm is
minimized:

∆ = ‖A− Â‖2(15.11)

The 2-norm for matrices is the equivalent of Euclidean distance for vec-
tors. SVD is in fact very similar to fitting a line, a one-dimensional object,
to a set of points, which exists in the two-dimensional plane. Figure 15.7
shows which point on the one-dimensional line each of the original points
corresponds to (see arrows).

Just as the linear regression in figure 15.7 can be interpreted as pro-
jecting a two-dimensional space onto a one-dimensional line, so does SVD

project an n-dimensional space onto a k-dimensional space where n� k.
In our application (word-document matrices), n is the number of word
types in the collection. Values of k that are frequently chosen are 100 and
150. The projection transforms a document’s vector in n-dimensional
word space into a vector in the k-dimensional reduced space.

One possible source of confusion is that equation (15.11) compares the
original matrix and a lower-dimensional approximation. Shouldn’t the
second matrix have fewer rows and columns, which would make equa-
tion (15.11) ill-defined? The analogy with line fitting is again helpful here.
The fitted line exists in two dimensions, but it is a one-dimensional ob-
ject. The same is true for Â: it is a matrix of lower rank, that is, it could
be represented in a lower-dimensional space by transforming the axes of
the space. But for the particular axes chosen it has the same number of
rows and columns as A.

The SVD projection is computed by decomposing the document-by-
term matrix At×d into the product of three matrices, Tt×n, Sn×n, andDd×n:

At×d = Tt×nSn×n
(
Dd×n

)
T(15.12)

p

i i

560 15 Topics in Information Retrieval

T =



cosm. astr. moon car truck
Dimension 1 −0.44 −0.13 −0.48 −0.70 −0.26
Dimension 2 −0.30 −0.33 −0.51 0.35 0.65
Dimension 3 0.57 −0.59 −0.37 0.15 −0.41
Dimension 4 0.58 0.00 0.00 −0.58 0.58
Dimension 5 0.25 0.73 −0.61 0.16 −0.09



Figure 15.8 The matrix T of the SVD decomposition of the matrix in figure 15.5.
Values are rounded.

S =


2.16 0.00 0.00 0.00 0.00
0.00 1.59 0.00 0.00 0.00
0.00 0.00 1.28 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.39



Figure 15.9 The matrix of singular values of the SVD decomposition of the
matrix in figure 15.5. Values are rounded.

where n = min(t, d). We indicate dimensionality by subscripts: A has t
rows and d columns, T has t rows and n columns and so on. DT is the
transpose of D, the matrix D rotated around its diagonal: Dij =

(
DT
)
ji .

Examples of A, T , S, and D are given in figure 15.5 and figures 15.8
through 15.10. Figure 15.5 shows an example of A. A contains the docu-
ment vectors with each column corresponding to one document. In other
words, element aij of the matrix records how often term i occurs in doc-
ument j . The counts should be appropriately weighted (as discussed in
section 15.2). For simplicity of exposition, we have not applied weighting
and assumed term frequencies of 1.

Figures 15.8 and 15.10 show T and D, respectively. These matrices
have orthonormal columns. This means that the column vectors haveorthonormal

unit length and are all orthogonal to each other. (If a matrix C has or-
thonormal columns, then CTC = I, where I is the diagonal matrix with a
diagonal of 1’s, and zeroes elsewhere. So we have TTT = DTD = I.)

We can view SVD as a method for rotating the axes of the n-dimensional
space such that the first axis runs along the direction of largest variation

p

i i

15.4 Latent Semantic Indexing 561

D =



d1 d2 d3 d4 d5 d6

Dimension 1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
Dimension 2 −0.29 −0.53 −0.19 0.63 0.22 0.41
Dimension 3 0.28 −0.75 0.45 −0.20 0.12 −0.33
Dimension 4 0.00 0.00 0.58 0.00 −0.58 0.58
Dimension 5 −0.53 0.29 0.63 0.19 0.41 −0.22



Figure 15.10 The matrix D of the SVD decomposition of the matrix in fig-
ure 15.5. Values are rounded.

among the documents, the second dimension runs along the direction
with the second largest variation and so forth. The matrices T and D
represent terms and documents in this new space. For example, the first
column of T corresponds to the first row of A, and the first column of D
corresponds to the first column of A.

The diagonal matrix S contains the singular values of A in descending
order (as in figure 15.9). The ith singular value indicates the amount of
variation along the ith axis. By restricting the matrices T , S, and D to
their first k < n rows one obtains the matrices Tt×k, Sk×k, and (Dd×k)T.
Their product Â is the best least square approximation of A by a matrix
of rank k in the sense defined in equation (15.11). One can also prove
that SVD is unique, that is, there is only one possible decomposition of a
given matrix.1 See Golub and van Loan (1989) for an extensive treatment
of SVD including a proof of the optimality property.

That SVD finds the optimal projection to a low-dimensional space is the
key property for exploiting word co-occurrence patterns. SVD represents
terms and documents in the lower dimensional space as well as possible.
In the process, some words that have similar co-occurrence patterns are
projected (or collapsed) onto the same dimension. As a consequence, the
similarity metric will make topically similar documents and queries come
out as similar even if different words are used for describing the topic. If
we restrict the matrix in figure 15.8 to the first two dimensions, we end
up with two groups of terms: space exploration terms (cosmonaut, as-
tronaut, and moon) which have negative values on the second dimension

1. SVD is unique up to sign flips. If we flip all signs in the matrices D and T , we get a
second solution.

p

i i

562 15 Topics in Information Retrieval

d1 d2 d3 d4 d5 d6

Dimension 1 −1.62 −0.60 −0.04 −0.97 −0.71 −0.26
Dimension 2 −0.46 −0.84 −0.30 1.00 0.35 0.65

Figure 15.11 The matrix B = S2×2D2×n of documents after rescaling with sin-
gular values and reduction to two dimensions. Values are rounded.

d1 d2 d3 d4 d5 d6

d1 1.00
d2 0.78 1.00
d3 0.40 0.88 1.00
d4 0.47 −0.18 −0.62 1.00
d5 0.74 0.16 −0.32 0.94 1.00
d6 0.10 −0.54 −0.87 0.93 0.74 1.00

Table 15.9 The matrix of document correlations BTB. For example, the nor-
malized correlation coefficient of documents d3 and d2 (when represented as in
figure 15.11) is 0.88. Values are rounded.

and automobile terms (car and truck) which have positive values on the
second dimension. The second dimension directly reflects the different
co-occurrence patterns of these two groups: space exploration terms only
co-occur with other space exploration terms, automobile terms only co-
occur with other automobile terms (with one exception: the occurrence
of car in d1). In some cases, we will be misled by such co-occurrences
patterns and wrongly infer semantic similarity. However, in most cases
co-occurrence is a valid indicator of topical relatedness.

These term similarities have a direct impact on document similarity.
Let us assume a reduction to two dimensions. After rescaling with the
singular values, we get the matrix B = S2×2D2×n shown in figure 15.11
where S2×2 is S restricted to two dimensions (with the diagonal elements
2.16, 1.59). Matrix B is a dimensionality reduction of the original matrix
A and is what was shown in figure 15.6.

Table 15.9 shows the similarities between documents when they are
represented in this new space. Not surprisingly, there is high similarity
between d1 and d2 (0.78) and d4, d5, and d6 (0.94, 0.93, 0.74). These
document similarities are about the same in the original space (i.e. when
we compute correlations for the original document vectors in figure 15.5).
The key change is that d2 and d3, whose similarity is 0.00 in the original

p

i i

15.4 Latent Semantic Indexing 563

space, are now highly similar (0.88). Although d2 and d3 have no common
terms, they are now recognized as being topically similar because of the
co-occurrence patterns in the corpus.

Notice that we get the same similarity as in the original space (that is,
zero similarity) if we compute similarity in the transformed space without
any dimensionality reduction. Using the full vectors from figure 15.10
and rescaling them with the appropriate singular values we get:

−0.28×−0.20× 2.162 +−0.53×−0.19× 1.592+
−0.75× 0.45× 1.282 + 0.00× 0.58× 1.002 + 0.29× 0.63× 0.392 ≈ 0.00

(If you actually compute this expression, you will find that the answer is
not quite zero, but this is only because of rounding errors. But this is as
good a point as any to observe that many matrix computations are quite
sensitive to rounding errors.)

We have computed document similarity in the reduced space using the
product of D and S. The correctness of this procedure can be seen by
looking at ATA, which is the matrix of all document correlations for the
original space:

ATA = (TSDT
)

TTSDT = DSTTTTSDT = (DS)(DS)T(15.13)

Because T has orthonormal columns, we have TTT = I. Furthermore,
since S is diagonal, S = ST. Term similarities are computed analogously
since one observes that the term correlations are given by:

AAT = TSDT
(
TSDT

)
T = TSDTDSTTT = (TS)(TS)T(15.14)

One remaining problem for a practical application is how to fold que-
ries and new documents into the reduced space. The SVD computation
only gives us reduced representations for the document vectors in ma-
trix A. We do not want to do a completely new SVD every time a new
query is launched. In addition, in order to handle large corpora efficiently
we may want to do SVD for only a sample of the documents (for example
a third or a fourth). The remaining documents would then be folded in.

The equation for folding documents into the space can again be derived
from the basic SVD equation:

A = TSDT(15.15)

⇔ TTA = TTTSDT

⇔ TTA = SDT

p

i i

564 15 Topics in Information Retrieval

So we just multiply the query or document vector with the transpose of
the term matrix T (after it has been truncated to the desired dimensional-
ity). For example, for a query vector ~q and a reduction to dimensionality
k, the query representation in the reduced space is Tt×kT~q.

15.4.3 Latent Semantic Indexing in IR

The application of SVD to information retrieval was originally proposed
by a group of researchers at Bellcore (Deerwester et al. 1990) and called
Latent Semantic Indexing (LSI) in this context. LSI has been comparedLatent Semantic

Indexing to standard vector space search on several document collections. It was
found that LSI performs better than vector space search in many cases,
especially for high-recall searches (Deerwester et al. 1990; Dumais 1995).
LSI’s strength in high-recall searches is not surprising since a method that
takes co-occurrence into account is expected to achieve higher recall. On
the other hand, due to the noise added by spurious co-occurrence data
one sometimes finds a decrease in precision.

The appropriateness of LSI also depends on the document collection.
Recall the example of the vocabulary problem in figure 15.8. In a hetero-
geneous collection, documents may use different words to refer to the
same topic like HCI and user interface in the figure. Here, LSI can help
identify the underlying semantic similarity between seemingly dissimilar
documents. However, in a collection with homogeneous vocabulary, LSI

is less likely to be useful.
The application of SVD to information retrieval is called Latent Seman-

tic Indexing because the document representations in the original term
space are transformed to representations in a new reduced space. The
dimensions in the reduced space are linear combinations of the original
dimensions (this is so since matrix multiplications as in equation (15.16)
are linear operations). The assumption here (and similarly for other
forms of dimensionality reduction like principal component analysis) is
that these new dimensions are a better representation of documents and
queries. The metaphor underlying the term “latent” is that these new di-
mensions are the true representation. This true representation was then
obscured by a generation process that expressed a particular dimension
with one set of words in some documents and a different set of words in
another document. LSI analysis recovers the original semantic structure
of the space and its original dimensions. The process of assigning dif-
ferent words to the same underlying dimension is sometimes interpreted

p

i i

15.4 Latent Semantic Indexing 565

as a form of soft term clustering since it groups terms according to the
dimensions that they are represented on in the reduced space.

One could also argue that the SVD representation is not only better
(since it is based on the ‘true’ dimensions), but also more compact. Many
documents have more than 150 unique terms. So the sparse vector rep-
resentation will take up more storage space than the compact SVD rep-
resentation if we reduce to 150 dimensions. However, the efficiency gain
due to more compact representations is often outweighed by the addi-
tional cost of having to go through a high-dimensional matrix multiplica-
tion whenever we map a query or a new document to the reduced space.
Another problem is that an inverted index cannot be constructed for SVD

representations. If we have to compute the similarity between the query
and every single document, then an SVD-based system can be slower than
a term-based system that searches an inverted index.

The actual computation of SVD is quadratic in the rank of the document
by term matrix (the rank is (bounded by) the smaller of the number of
documents and the number of terms) and cubic in the number of singular
values that are computed (Deerwester et al. 1990: 395).2 For very large
collections subsampling of documents and selection of terms according
to frequency is often employed in order to reduce the cost of computing
the Singular Value Decomposition.

One objection to SVD is that, along with all other least-squares meth-
ods, it is really designed for normally-distributed data. But, as can benormality

assumption seen from the discussion earlier in this chapter, such a distribution is
inappropriate for count data, and count data is, after all, what a term-by-
document matrix consists of. The link between least squares and normal
distribution can be easily seen by looking at the definition of the normal
distribution (section 2.1.9):

n(x; µ,σ) = 1

σ
√

2π
exp

[
−1

2

(
x− µ
σ

)2
]

where µ is the mean and σ the covariance. The smaller the squared de-
viation from the mean (x− µ)2, the higher the probability n(x; µ,σ). So
the least squares solution is the maximum likelihood solution. But this
is only true if the underlying data distribution is normal. Other distri-

2. However, others have suggested that given the particular characteristics of the matri-
ces that SVD is applied to in information retrieval the complexity is linear in the number
of documents and (approximately) quadratic in the number of singular values. See (Oard
and DeClaris 1996), (Berry et al. 1995), and (Berry and Young 1995) for discussion.

p

i i

566 15 Topics in Information Retrieval

butions like Poisson or negative binomial are more appropriate for term
counts. One problematic feature of SVD is that, since the reconstruction
Â of the term-by-document matrix A is based on a normal distribution,
it can have negative entries, clearly an inappropriate approximation for
counts. A dimensionality reduction based on Poisson would not predict
such impossible negative counts.

In defense of LSI (and the vector space model in general which can also
be argued to assume a normal distribution), one can say that the matrix
entries are not counts, but weights. Although this is not an issue that
has been investigated systematically, the normal distribution could be
appropriate for the weighted vectors even if it is not for count vectors.

From a practical point of view, LSI has been criticized for being compu-
tationally more expensive than other word co-occurrence methods while
not being more effective. Another method that also uses co-occurrence
is pseudo-feedback (also called pseudo relevance feedback and two-stagepseudo-feedback

retrieval, Buckley et al. 1996; Kwok and Chan 1998). In pseudo-feedback,
the top n documents (typically the top 10 or 20) returned by an ad-hoc
query are assumed to be relevant and added to the query. Some of these
top n documents will not actually be relevant, but a large enough pro-
portion usually is to improve the quality of the query. Words that occur
frequently with query words will be among the most frequent in the top n.
So pseudo-feedback can be viewed as a cheap query-specific way of doing
co-occurrence analysis and co-occurrence-based query modification.

Still, in contrast to many heuristic methods that incorporate term co-
occurrence into information retrieval, LSI has a clean formal framework
and a clearly defined optimization criterion (least squares) with one glo-
bal optimum that can be efficiently computed. This conceptual simplicity
and clarity make LSI one of the most interesting IR approaches that go
beyond query-document term matching.

15.5 Discourse Segmentation

Text collections are increasingly heterogeneous. An important aspect of
heterogeneity is length. On the world wide web, document sizes range
from home pages with just one sentence to server logs of half a megabyte.

The weighting schemes discussed in section 15.2.2 take account of dif-
ferent lengths by applying cosine normalization. However, cosine nor-
malization and other forms of normalization that discount term weights

p

i i

15.5 Discourse Segmentation 567

according to document length ignore the distribution of terms within a
document. Suppose that you are looking for a short description of angio-
plasty. You would probably prefer a document in which the occurrences
of angioplasty are concentrated in one or two paragraphs since such a
concentration is most likely to contain a definition of what angioplasty
is. On the other hand, a document of the same length in which the occur-
rences of angioplasty are scattered uniformly is less likely to be helpful.

We can exploit the structure of documents and search over structurally
defined units like sections and paragraphs instead of full documents.
However, the best subpart of a document to be returned to the user often
encompasses several paragraphs. For example, in response to a query on
angioplasty we may want to return the first two paragraphs of a subsec-
tion on angioplasty, which introduce the term and its definition, but not
the rest of the subsection that goes into technical detail.

Some documents are not structured into paragraphs and sections. Or,
in the case of documents structured by means of a markup language like
HTML, it is not obvious how to break them apart into units that would be
suitable for retrieval.

These considerations motivate an approach that breaks documents
into topically coherent multi-paragraph subparts. In the rest of this sub-
section we will describe one approach to multiparagraph segmentation,
the TextTiling algorithm (Hearst and Plaunt 1993; Hearst 1994, 1997).TextTiling

15.5.1 TextTiling

The basic idea of this algorithm is to search for parts of a text where the
vocabulary shifts from one subtopic to another. These points are thensubtopic

interpreted as the boundaries of multi-paragraph units.
Sentence length can vary considerably. Therefore, the text is first di-

vided into small fixed size units, the token sequences. Hearst suggeststoken sequences

a size of 20 words for token sequences. We refer to the points between
token sequences as gaps. The TextTiling algorithm has three main com-gaps

ponents: the cohesion scorer, the depth scorer and the boundary selector.
The cohesion scorer measures the amount of ‘topic continuity’ or cohe-cohesion scorer

sion at each gap, that is, the amount of evidence that the same subtopic
is prevalent on both sides of the gap. Intuitively, we want to consider
gaps with low cohesion as possible segmentation points.

The depth scorer assigns a depth score to each gap depending on howdepth scorer

low its cohesion score is compared to the surrounding gaps. If cohesion

p

i i

568 15 Topics in Information Retrieval

at the gap is lower than at surrounding gaps, then the depth score is high.
Conversely, if cohesion is about the same at surrounding gaps, then the
depth score is low. The intuition here is that cohesion is relative. One
part of the text (say, the introduction) may have many successive shifts in
vocabulary. Here we want to be cautious in selecting subtopic boundaries
and only choose those points with the lowest cohesion scores compared
to their neighbors. Another part of the text may have only slight shifts for
several pages. Here it is reasonable to be more sensitive to topic changes
and change points that have relatively high cohesion scores, but scores
that are low compared to their neighbors.

The boundary selector is the module that looks at the depth scores andboundary selector

selects the gaps that are the best segmentation points.
Several methods of cohesion scoring have been proposed.

� Vector Space Scoring. We can form one artificial document out of the
token sequences to the left of the gap (the left block) and another
artificial document to the right of the gap (the right block). (Hearst
suggests a length of two token sequences for each block.) These two
blocks are then compared by computing the correlation coefficient of
their term vectors, using the weighting schemes that were described
earlier in this chapter for the vector space model. The idea is that the
more terms two blocks share the higher their cohesion score and the
less likely they will be classified as a segment boundary. Vector Space
Scoring was used by Hearst and Plaunt (1993) and Salton and Allen
(1993).

� Block comparison. The block comparison algorithm also computes the
correlation coefficient of the gap’s left block and right block, but it only
uses within-block term frequency without taking into account (inverse)
document frequency.

� Vocabulary introduction. A gap’s cohesion score in this algorithm is
the negative of the number of new terms that occur in left and right
block, that is terms that have not occurred up to this point in the text.
The idea is that subtopic changes are often signaled by the use of new
vocabulary (Youmans 1991). (In order to make the score a cohesion
score we multiply the count of new terms by −1 so that larger scores
(fewer new terms) correspond to higher cohesion and smaller scores
(more new terms) correspond to lower cohesion.)

The experimental evidence in (Hearst 1997) suggests that Block Compar-
ison is the best performing of these three algorithms.

p

i i

15.5 Discourse Segmentation 569

g1 g2 g3

s1

s2

s3

g1 g2 g3 g4 g5

s1

s2

s3

s4

s5

g1 g2 g3 g4 g5 g6 g7

s1

s2

s3

s4

s5

s6

s7

text1 text2 text3

gaps

cohesion

Figure 15.12 Three constellations of cohesion scores in topic boundary identi-
fication.

The second step in TextTiling is the transformation of cohesion scores
into depth scores. We compute the depth score for a gap by summing the
heights of the two sides of the valley it is located in, for example (s1−s2)+
(s3 − s2) for g2 in text 1 in figure 15.12. Note that high absolute values
of the cohesion scores by themselves will not result in the creation of a
segment boundary. TextTiling views subtopic changes and segmentation
as relative. In a text with rapid fluctuations of topic or vocabulary from
paragraph to paragraph only the most radical changes will be accorded
the status of segment boundaries. In a text with only subtle subtopic
changes the algorithm will be more discriminating.

For a practical implementation, several enhancements of the basic al-
gorithm are needed. First, we need to smooth cohesion scores to address
situations like the one in text 2 in figure 15.12. Intuitively, the difference
s1−s2 should contribute to the depth score of gap g4. This is achieved by
smoothing scores using a low pass filter. For example, the depth score si
for gi is replaced by (si−1 + si + si+1)/3. This procedure effectively takes
into consideration the cohesion scores of gaps at a distance of two from
the central gap. If they are as high as or higher than the two immediately
surrounding gaps, they will increase the score of the central gap.

p

i i

570 15 Topics in Information Retrieval

We also need to add heuristics to avoid a sequence of many small
segments (this type of segmentation is rarely chosen by human judges
when they segment text into coherent units). Finally, the parameters of
the methods for computing cohesion and depth scores (size of token
sequence, size of block, smoothing method) may have to be adjusted de-
pending on the text sort we are working with. For example, a corpus with
long sentences will require longer token sequences.

The third component of TextTiling is the boundary selector. It esti-
mates average µ and standard deviation σ of the depth scores and selects
all gaps as boundaries that have a depth score higher than µ − cσ for
some constant c (for example, c = 0.5 or c = 1.0). We again try to avoid
using absolute scores. This method selects gaps that have ‘significantly’
low depth scores, where significant is defined with respect to the average
and the variance of scores.

In an evaluation, Hearst (1997) found good agreement between seg-
ments found by TextTiling and segments demarcated by human judges.
It remains an open question to what degree segment retrieval leads to
better information retrieval performance than document retrieval when
evaluated on precision and recall. However, many users prefer to see a
hit in the context of a natural segment which makes it easier to quickly
understand the context of the hit (Egan et al. 1989).

Text segmentation could also have important applications in other ar-
eas of Natural Language Processing. For example, in word sense disam-
biguation segmentation could be used to find the natural units that are
most informative for determining the correct sense of a usage. Given the
increasing diversity of document collections, discourse segmentation is
guaranteed to remain an important topic of research in Statistical NLP

and IR.

15.6 Further Reading

Two major venues for publication of current research in IR are the TREC

proceedings (Harman 1996, see also the links on the website), which re-
port results of competitions sponsored by the US government, and the
ACM SIGIR proceedings series. Prominent journals are Information Pro-
cessing & Management, the Journal of the American Society for Informa-
tion Science, and Information Retrieval.

The best known textbooks on information retrieval are books by van

p

i i

15.6 Further Reading 571

Rijsbergen (1979), Salton and McGill (1983) and Frakes and Baeza-Yates
(1992). See also (Losee 1998) and (Korfhage 1997). A collection of seminal
papers was recently edited by Sparck Jones and Willett (1998). Smeaton
(1992) and Lewis and Jones (1996) discuss the role of NLP in informa-
tion retrieval. Evaluation of IR systems is discussed in (Cleverdon and
Mills 1963), (Tague-Sutcliffe 1992), and (Hull 1996). Inverse document
frequency as a term weighting method was proposed by Sparck Jones
(1972). Different forms of tf.idf weighting were extensively investigated
within the SMART project at Cornell University, led by Gerard Salton
(Salton 1971b; Salton and McGill 1983). Two recent studies are (Singhal
et al. 1996) and (Moffat and Zobel 1998).

The Poisson distribution is further discussed in most introductions to
probability theory, e.g., (Mood et al. 1974: 95). See (Harter 1975) for a
way of estimating the parameters π,λ1, and λ2 of the two-Poisson model
without having to assume a set of documents labeled as to their class
membership. Our derivation of IDF is based on (Croft and Harper 1979)).
RIDF was introduced by Church (1995).

Apart from work on better phrase extraction, the impact of NLP on IR in
recent decades has been surprisingly small, with most IR researchers fo-
cusing on shallow analysis techniques. Some exceptions are (Fagan 1987;
Bonzi and Liddy 1988; Sheridan and Smeaton 1992; Strzalkowski 1995;
Klavans and Kan 1998). However, recently there has been much more
interest in tasks such as automatically summarizing documents rather
than just returning them as is (Salton et al. 1994; Kupiec et al. 1995), and
such trends may tend to increase the usefulness of NLP in IR applications.

One task that has benefited from the application of NLP techniques is
cross-language information retrieval or CLIR (Hull and Grefenstette 1998;cross-language

information

retrieval

CLIR

Grefenstette 1998). The idea is to help a user who has enough knowledge
of a foreign language to understand texts, but not enough fluency to for-
mulate a query. In CLIR, such a user can type in a query in her native
language, the system then translates the query into the target language
and retrieves documents in the target language. Recent work includes
(Sheridan et al. 1997; Nie et al. 1998) and the Notes of the AAAI sympo-
sium on cross-language text and speech retrieval (Hull and Oard 1997).
Littman et al. (1998b) and Littman et al. (1998a) use Latent Semantic In-
dexing for CLIR.

We have only presented a small selection of work on modeling term
distributions in IR. See (van Rijsbergen 1979: ch. 6) for a more systema-
tic introduction. (Robertson and Sparck Jones 1976) and (Bookstein and

p

i i

572 15 Topics in Information Retrieval

Swanson 1975) are other important papers (the latter is a decision theo-
retic approach). Information theory has also been used to motivate IDF

(Wong and Yao 1992). An application of residual inverse document fre-
quency to the characterization of index terms is described by Yamamoto
and Church (1998).

The example in table 15.8 is adapted from (Deerwester et al. 1990). The
term-by-document matrix we used as an example for SVD is small. It can
easily be decomposed using one of the standard statistical packages (we
used S-plus). For a large corpus, we have to deal with several hundred
thousand terms and documents. Special algorithms have been developed
for this purpose. See (Berry 1992) and NetLib on the world wide web for
a description and implementation of several such algorithms.

Apart from term-by-document matrices, SVD has been applied to word-
by-word matrices by Schütze and Pedersen (1997) and to discourse seg-
mentation (Kaufmann 1998). Dolin (1998) uses LSI for query categoriza-
tion and distributed search, using automated classification for collection
summarization.

Latent Semantic Indexing has also been proposed as a cognitive model
for human memory. Landauer and Dumais (1997) argue that it can ex-
plain the rapid vocabulary growth found in school-age children.

Text segmentation is an active area of research. Other work on thetext segmentation

problem includes (Salton and Buckley 1991), (Beeferman et al. 1997) and
(Berber Sardinha 1997). Kan et al. (1998) make an implementation of their
segmentation algorithm publicly available (see website). An information
source that is different from the word overlap measure used in TextTiling
is so-called lexical chains: chains of usages of one or more semanticallylexical chains

related words throughout a text. By observing starts, interruptions, and
terminations of such chains, one can derive a different type of description
of the subtopic structure of text (Morris and Hirst 1991).

Text segmentation is a rather crude treatment of the complexity of
written texts and spoken dialogues which often have a hierarchical and
non-linear structure. Trying to do justice to this complex structure is
a much harder task than merely detecting topic changes. Finding the
best approach to this problem is an active area of research in Statistical
NLP. The special issue of Computational Linguistics on empirical dis-discourse analysis

course analysis, edited by Walker and Moore (1997), is a good starting
point for interested readers.

When Statistical NLP methods became popular again in the early 1990s,
discourse modeling was initially an area with a low proportion of statisti-

pa

i i

15.7 Exercises 573

cal work, but there has been a recent surge in the application of quantita-
tive methods. For some examples, see (Stolcke et al. 1998), (Walker et al.
1998) and (Samuel et al. 1998) for probabilistic approaches to dialog mod-dialog modeling

eling and (Kehler 1997) and (Ge et al. 1998) for probabilistic approaches
to anaphora resolution.anaphora

resolution

15.7 Exercises

Exercise 15.1 [«]

Try to find out the characteristics of various internet search engines. Do they
use a stop list? Try to search for stop words. Can you search for the phrase the
the? Do the engines use stemming? Do they normalize words to lowercase? For
example, does a search for iNfOrMaTiOn return anything?

Exercise 15.2 [«]

The simplest way to process phrases in the vector space model is to add them as
separate terms. For example, the query car insurance rates might be translated
into an internal representation that contains the terms car, insurance, rates, car
insurance, insurance rates. This means that phrases and their constituent words
are treated as independent sources of evidence. Discuss why this is problematic.

Exercise 15.3 [«]

Show that Katz’s K mixture satisfies:

Pi(0) = 1− dfi
N
.

That is, the fit of the estimate to the actual count is always perfect for the num-
ber of documents with zero occurrences.

Exercise 15.4 [«]

Compute Residual IDF for the words in table 15.7. Are content words and non-
content words well separated?

Exercise 15.5 [«]

Select a non-content word, a content word and a word which you are not sure
how to classify and compute the following quantities for them: (a) document
frequency and collection frequency, (b) IDF, (c) RIDF, and (d) α and β of the
K mixture. (You can use any reasonable size corpus of your choice.)

Exercise 15.6 [«]

Depending on λ, the Poisson distribution is either monotonically falling or has
the shape of a curve that first rises, and then falls. Find examples of each. What
is the property of λ that determines the shape of the graph?

p

i i

574 15 Topics in Information Retrieval

Exercise 15.7 [«]

Compute the SVD decomposition of the term-by-document matrix in figure 15.5
using S-Plus or another software package.

Exercise 15.8 [««]

In this exercise, we look at two assumptions about subtopic structure that are
made in TextTiling.

First, TextTiling performs a linear segmentation, that is, a text is divided into
a sequence of segments. No attempt is made to impose further structure. One
example where the assumption of linearity is not justified is noted by Hearst:
a sequence of three paragraphs that is then summarized in a fourth paragraph.
Since the summary paragraph has vocabulary from paragraphs 1 and 2 that does
not occur in paragraph 3 a segment boundary between 3 and 4 is inferred. Pro-
pose a modification of TextTiling that would recognize paragraphs 1–4 as a unit.

Another assumption that TextTiling relies on is that most segment boundaries
are characterized by pronounced valleys like the one in text 1 in figure 15.12.
But sometimes there is a longer flat region between two segments. Why is this a
problem for the formulation of the algorithm described above? How could one
fix it?

This excerpt from

Foundations of Statistical Natural Language Processing.
Christopher D. Manning and Hinrich Schütze.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

	Foundations of Statistical Natural Language Processing: Chap15 - Topics in Information Retrieval
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46

	Copyright notice

