
This excerpt from

Foundations of Statistical Natural Language Processing.
Christopher D. Manning and Hinrich Schütze.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

p

i i

16 Text Categorization

This chapter both introduces an important NLP problem, text cat-
egorization, and provides a more general perspective on classification,
including coverage of a number of important classification techniques
that are not covered elsewhere in the book. Classification or categoriza-classification

categorization tion is the task of assigning objects from a universe to two or more classes
classes

or categories. Some examples are shown in table 16.1. Many of the tasks
categories

that we have already studied in detail, such as tagging, word sense disam-
biguation, and prepositional phrase attachment are classification tasks.
In tagging and disambiguation, we look at a word in context and classify
it as being an instance of one of its possible part of speech tags or an in-
stance of one of its senses. In PP attachment, the two classes are the two
different attachments. Two other NLP classification tasks are author and
language identification. Determining whether a newly discovered poem
was written by Shakespeare or by a different author is an example of au-
thor identification. A language identifier tries to pick the language that a
document of unknown origin is written in (see exercise 16.6).

In this chapter, we will concentrate on another classification problem,
text categorization. The goal in text categorization is to classify the topictext

categorization or theme of a document. A typical set of topic categories is the one used
in the Reuters text collection, which we will introduce shortly. Some of its
topics are “mergers and acquisitions,” “wheat,” “crude oil,” and “earnings
reports.” One application of text categorization is to filter a stream of
news for a particular interest group. For example, a financial journalist
may only want to see documents that have been assigned the category
“mergers and acquisitions.”

In general, the problem of statistical classification can be characterized
as follows. We have a training set of objects, each labeled with one ortraining set

p

i i

576 16 Text Categorization

Problem Object Categories

tagging context of a word the word’s tags
disambiguation context of a word the word’s senses
PP attachment sentence parse trees
author identification document authors
language identification document languages
text categorization document topics

Table 16.1 Some examples of classification tasks in NLP. For each example,
the table gives the type of object that is being classified and the set of possible
categories.

more classes, which we encode via a data representation model. Typicallydata

representation

model

each object in the training set is represented in the form (~x, c), where
~x ∈ Rn is a vector of measurements and c is the class label. For text
categorization, the information retrieval vector space model is frequently
used as the data representation. That is, each document is represented
as a vector of (possibly weighted) word counts (see section 15.2). Finally,
we define a model class and a training procedure. The model class ismodel class

training procedure a parameterized family of classifiers and the training procedure selects
one classifier from this family.1 An example of such a family for binary
classification is linear classifiers which take the following form:

g(~x) = ~w · ~x+w0

where we choose class c1 for g(~x) > 0 and class c2 for g(~x) ≤ 0. This
family is parameterized by the vector ~w and the threshold w0.

We can think of training procedures as algorithms for function fitting,
which search for a good set of parameter values, where ‘goodness’ is
determined by an optimization criterion such as misclassification rate or
entropy. Some training procedures are guaranteed to find the optimal
set of parameters. However, many iterative training procedures are only
guaranteed to find a better set in each iteration. If they start out in the
wrong part of the search space, they may get stuck in a local optimum
without ever finding the global optimum. An example of such a training
procedure for linear classifiers is gradient descent or hill climbing whichgradient descent

hill climbing we will introduce below in the section on perceptrons.

1. Note however that some classifiers like nearest-neighbor classifiers are non-parametric
and are harder to characterize in terms of a model class.

p

i i

577

YES is correct NO is correct
YES was assigned a b
NO was assigned c d

Table 16.2 Contingency table for evaluating a binary classifier. For example, a
is the number of objects in the category of interest that were correctly assigned
to the category.

Once we have chosen the parameters of the classifier (or, as we usually
say, trained the classifier), it is a good idea to see how well it is doing on
a test set. This test set should consist of data that was not used duringtest set

training. It is trivial to do well on data that the classifier was trained on.
The real test is an evaluation on a representative sample of unseen data
since that is the only measure that will tell us about actual performance
in an application.

For binary classification, classifiers are typically evaluated using a table
of counts like table 16.2. An important measure is classification accu-accuracy

racy which is defined as a+d
a+b+c+d , the proportion of correctly classified

objects. Other measures are precision, a
a+b , recall, a

a+c , and fallout, b
b+d .

See section 8.1.
In classification tasks with more than two categories, one begins by

making a 2×2 contingency table for each category ci separately (evaluat-
ing ci versus ¬ci). There are then two ways to proceed. One can compute
an evaluation measure like accuracy for each contingency table separately
and then average the evaluation measure over categories to get an overall
measure of performance. This process is called macro-averaging. Or onemacro-averaging

can do micro-averaging, in which one first makes a single contingency ta-micro-averaging

ble for all the data by summing the scores in each cell for all categories.
The evaluation measure is then computed for this large table. Macro-
averaging gives equal weight to each category whereas micro-averaging
gives equal weight to each object. The two types of averaging can give
divergent results when precision is averaged over categories with differ-
ent sizes. Micro-averaged precision is dominated by the large categories
whereas macro-averaged precision will give a better sense of the quality
of classification across all categories.

In this chapter we describe four classification techniques: decision
trees, maximum entropy modeling, perceptrons, and k nearest neigh-
bor classification. These are either important classification techniques

p

i i

578 16 Text Categorization

node 1
7681 articles
P(c|n1) = 0.300

split: cts
value: 2

node 2
5977 articles
P(c|n2) = 0.116

split: net
value: 1

cts<2

node 3
5436 articles
P(c|n3) = 0.050

net<1

node 4
541 articles

P(c|n4) = 0.649

net≥1

node 5
1704 articles
P(c|n5) = 0.943

split: vs
value: 2

cts≥2

node 6
301 articles

P(c|n6) = 0.694

vs<2

node 7
1403 articles
P(c|n7) = 0.996

vs≥1

Figure 16.1 A decision tree. This tree determines whether a document is part
of the topic category “earnings” or not. P(c|ni) is the probability of a document
at node ni to belong to the “earnings” category c.

in their own right, or, in the case of the perceptron, are the simplest ex-
ample of an important class of techniques, neural networks. We conclude
with some pointers to further reading.

16.1 Decision Trees

As the first class of classification models, we introduce decision trees.decision trees

An example of a decision tree is shown in figure 16.1. This tree de-
cides whether to assign documents to the Reuters category “earnings.”
We classify a document by starting at the top node, testing its question,
branching to the appropriate node, and then repeating this process until
we reach a leaf node. For example, a document with weight 1 for cts and
weight 3 for net takes the left branch at the top node and then the right
branch at the child node. Its probability P(c|n4) of being in the category
“earnings” given that it belongs to node 4 is then estimated as 0.649. At
each node, we show the number of articles in the training set that belong

p

i i

16.1 Decision Trees 579

0 1 2
0

1

2

0.050

0.649

cts

net

Figure 16.2 Geometric interpretation of part of the tree in figure 16.1.

to the node, the probability of a member of the node being in the cate-
gory “earnings,” the word (or dimension) we split on at this node, and the
weight of the word we split on.

Another way to visualize the tree is shown in figure 16.2. The horizon-
tal axis corresponds to the weight for cts, the vertical axis to the weight
for net. Questions ask whether the value of some feature is less than
some value or not. The top node in figure 16.1 defines a decision bound-
ary corresponding to the vertical line “cts = 2” in figure 16.2. The left
child node subdivides the left region into two regions above and below
“net = 1.” The upper subregion (marked with P(c|n) = 0.649) corre-
sponds to node 4, the lower subregion to node 4. Note that the region to
the right of the decision boundary “cts = 2” is not further subdivided be-
cause node 5 splits on vs, not on net. We would need a three-dimensional
graph to also show the effect of node 5.

The text categorization task that we use as an example in this chapter
is to build categorizers that distinguish the “earnings” category in the
Reuters collection. The Reuters collection is currently the most popularReuters

database for evaluating text categorization research. The version we use
(based on the so-called Modified Apte Split, Apté et al. 1994) consists
of 9603 training articles and 3299 test articles that were sent over the
Reuters newswire in 1987. The articles are categorized with more than
100 topics such as “mergers and acquisitions” and “interest rates.” An
example of an article in this category is shown in figure 16.3. See the
website for references to the Reuters collection.

The first task in text categorization is to find an appropriate data rep-

p

i i

580 16 Text Categorization

<REUTERS NEWID="11">
<DATE>26-FEB-1987 15:18:59.34</DATE>
<TOPICS><D>earn</D></TOPICS>
<TEXT>
<TITLE>COBANCO INC <CBCO> YEAR NET</TITLE>
<DATELINE> SANTA CRUZ, Calif., Feb 26 - </DATELINE>
<BODY>Shr 34 cts vs 1.19 dlrs

Net 807,000 vs 2,858,000
Assets 510.2 mln vs 479.7 mln
Deposits 472.3 mln vs 440.3 mln
Loans 299.2 mln vs 327.2 mln
Note: 4th qtr not available. Year includes 1985

extraordinary gain from tax carry forward of 132,000 dlrs,
or five cts per shr.
Reuter

</BODY></TEXT>
</REUTERS>

Figure 16.3 An example of a Reuters news story in the topic category “earn-
ings.” Parts of the original have been omitted for brevity.

resentation model. This is an art in itself, and usually depends on the
particular categorization method used, but to simplify things, we will
use a single data representation throughout this chapter. It is based on
the 20 words whose X2 score with the category “earnings” in the train-
ing set was highest (see section 5.3.3 for the X2 measure). The words
loss, profit, and cts (for “cents”), all three of which seem obvious as good
indicators for an earnings report, are some of the 20 words that were
selected. Each document was then represented as a vector of K = 20
integers, ~xj = (s1j , . . . , sKj), where sij was computed as the following
quantity:

sij = round

(
10× 1+ log(tfij)

1+ log(lj)

)
(16.1)

Here, tfij is the number of occurrences of term i in document j and lj is
the length of document j . The score sij is set to 0 for no occurrences of
the term. So for example, if profit occurs 6 times in a document of length
89 words, then the score for profit would be sij = 10 × 1+log(6)

1+log(89) ≈ 5.09

p

i i

16.1 Decision Trees 581

Word wj Term weight sij Classification

vs
mln
cts
;
&
000
loss
’
"
3
profit
dlrs
1
pct
is
s
that
net
lt
at

~x =

5
5
3
3
3
4
0
0
0
4
0
3
2
0
0
0
0
3
2
0

c = 1

Table 16.3 The representation of document 11, shown in figure 16.3. This
illustrates the data representation model which we use for classification in this
chapter.

which would be rounded to 5. This weighting scheme does log weighting
similar to the schemes discussed in chapter 15, while at the same time
incorporating weight normalization. We round values to make it easier
to present and inspect data for pedagogical reasons.

The representation of the document in figure 16.3 is shown in ta-
ble 16.3. As tends to happen when using an automatic feature selection
method, some of the selected words don’t seem promising as indicators
of “earnings,” for example, that and s. The three symbols “&”, “lt”, and “;”
were selected because of a formatting peculiarity in the publicly available
Reuters collection: a large proportion of articles in the category “earn-
ings” have a company tag like <CBCO> in the title line whose left angle
bracket was converted to an SGML character entity. We can think of this

p

i i

582 16 Text Categorization

entropy at node 1, P(C|N) = 0.300 0.611
entropy at node 2, P(C|N) = 0.116 0.359
entropy at node 5, P(C|N) = 0.943 0.219

weighted sum of 2 and 5 5977
7681 × 0.359+ 1704

7681 × 0.219 = 0.328
information gain 0.611− 0.328 = 0.283

Table 16.4 An example of information gain as a splitting criterion. The table
shows the entropies for nodes 1, 2, and 5 in figure 16.1, the weighted sum of the
child nodes and the information gain for splitting 1 into 2 and 5.

left angle bracket as indicating: “This document is about a particular
company.” We will see that this ‘meta-tag’ is very helpful for classifica-
tion. The title line of the document in figure 16.3 has an example of the
meta-tag.2

Now that we have a model class (decision trees) and a representation
for the data (20-element vectors), we need to define the training proce-
dure. Decision trees are usually built by first growing a large tree and
then pruning it back to a reasonable size. The pruning step is necessarypruning

because very large trees overfit the training set. Overfitting occurs whenoverfitting

classifiers make decisions based on accidental properties of the training
set that will lead to errors on the test set (or any new data). For exam-
ple, if there is only one document in the training set that contains both
the words dlrs and pct (for “dollars” and “percent”) and this document
happens to be in the earnings category, then the training procedure may
grow a large tree that categorizes all documents with this property as
being in this category. But if there is only one such document in the
training set, this is probably just a coincidence. When the tree is pruned
back, then the part that makes the corresponding inference (assign to
“earnings” if one finds both dlrs and pct), will be cut off, thus leading to
better performance on the test set.

For growing the tree, we need a splitting criterion for finding the fea-splitting criterion

ture and its value that we will split on and a stopping criterion whichstopping criterion

determines when to stop splitting. The stopping criterion can trivially be
that all elements at a node have an identical representation or the same
category so that splitting would not further distinguish them.

The splitting criterion which we will use here is to split the objects at a

2. The string “<” should really have been tokenized as a unit, but it can serve as an
example of the low-level data problems that occur frequently in text categorization.

p

i i

16.1 Decision Trees 583

node into two piles in the way that gives us maximum information gain.
Information gain (Breiman et al. 1984: 25, Quinlan 1986: section 4, Quin-information gain

lan 1993) is an information-theoretic measure defined as the difference
of the entropy of the mother node and the weighted sum of the entropies
of the child nodes:

G(a, y) = H(t)−H(t|a) = H(t)− (pL H(tL)+ pR H(tR)
)

(16.2)

where a is the attribute we split on, y is the value of a we split on, t is
the distribution of the node that we split, pL and pR are the proportion of
elements that are passed on to the left and right nodes, and tL and tR are
the distributions of the left and right nodes. As an example, we show the
values of these variables and the resulting information gain in table 16.4
for the top node of the decision tree in figure 16.1.

Information gain is intuitively appealing because it can be interpreted
as measuring the reduction of uncertainty. If we make the split that max-
imizes information gain, then we reduce the uncertainty in the resulting
classification as much as possible. There are no general algorithms for
finding the optimal splitting value efficiently. In practice, one uses heuris-
tic algorithms that find a near-optimal value.3

A node that is not split by the algorithm because of the stopping cri-
terion is a leaf node. The prediction we make at a leaf node is basedleaf node

on its members. We can compute maximum likelihood estimates, but
smoothing is often appropriate. For example, if a leaf node has 6 mem-
bers in the category “earnings” and 2 other members, then we would
estimate the category membership probability of a new document d in
the node as P(earnings|d) = 6+1

2+6+1+1 = 0.7 if we use add-one smoothing
(section 6.2.2).

Once the tree has been fully grown, we prune it to avoid overfitting
and to optimize performance on new data. At each step, we select the re-
maining leaf node that we expect by some criterion to be least helpful (or
even harmful) for accurate classification. One common pruning criterion
is to compute a measure of confidence that indicates how much evidence
there is that the node is ‘helpful’ (Quinlan 1993). We repeat the pruning
process until no node is left. Each step in the process (from the full tree
to the empty tree) defines a classifier – the classifier that corresponds to
the decision tree with the nodes remaining at this point. One way to se-

3. We could afford an exhaustive search for the optimal splitting value here because the
sij are integers in a small interval.

p

i i

584 16 Text Categorization

lect the best of these n trees (where n is the number of internal nodes of
the full tree) is by validation on held out data.validation

Validation evaluates a classifier on a held-out data set, the validationvalidation set

set to assess its accuracy. For the same reason as needing independent
test data, in order to evaluate how much to prune a decision tree we need
to look at a new set of data – which is what evaluation on the valida-
tion set does. (See section 6.2.3 for the same basic technique used in
smoothing.)

An alternative to pruning a decision tree is to keep the whole tree, but
to make the classifier probability estimates a function of internal as well
as leaf nodes. This is a means of getting at the more reliable probability
distributions of higher nodes without actually pruning away the nodes
below them. For each leaf node, we can read out the sequence of nodes
and associated probability distributions from that node to the root of
the decision tree. Rather than using held out data for pruning, held out
data can be used to train the parameters of a linear interpolation (sec-
tion 6.3.1) of all these distributions for each leaf node, and these interpo-
lated distributions can then be used as the final classification functions.
Magerman (1994) argues that this gives superior performance to pruning,
at least for the statistical parsing problem on which he was working (see
section 12.2.2).

Figure 16.4 shows how performance of a decision tree depends on
pruning. The x-axis corresponds to number of nodes pruned, the y-axis
to classification accuracy. In order to produce the graph we grew the
tree on 80% of the training set (7681 documents) and set 20% (1922 doc-
uments) aside as the validation set. The pruning of the top node is not
shown in the graph.4

The pattern we find is standard: performance on the training set is
maximum for the full tree and then falls off continuously. Since we op-
timize the initial construction of the full tree on the training set, larger
trees will fit the properties of the training set better than pruned trees,
hence the decrease in performance on the training set as we go from left
to right.

Accuracy for validation and test sets peaks somewhere in the middle.
When performance peaks we have reached the point where parts of the
tree that fit accidental properties of the training set have been pruned

4. The pruning criterion was to select the leaf node with the lowest information gain on
the validation set.

p

i i

16.1 Decision Trees 585

number of nodes pruned

cla
ss

ific
at

ion
 a

cc
ur

ac
y

800 850 900 950 1000

0.
90

0.
92

0.
94

0.
96

800 850 900 950 1000

0.
90

0.
92

0.
94

0.
96

800 850 900 950 1000

0.
90

0.
92

0.
94

0.
96

training set
validation set
test set

Figure 16.4 Pruning a decision tree. The graph shows how classification accu-
racy of a decision tree depends on pruning. Optimal performance on the test
set (96.21% accuracy) is reached for 951 nodes pruned. Optimal performance on
the validation set (93.91% accuracy) is reached for 974–977 nodes pruned. For
these four pruned trees, performance on the test set is 96.00%, close to optimal
performance. Performance on the training set is monotonically decreasing.

away. Oversimplifying a little bit, any further pruning will delete nodes
that capture correct generalizations about the “earnings” category, hence
the decrease in performance.

One strategy for selecting a tree is to pick the one that performs best
for the validation set. As we can see in the picture it does not perfectly
coincide with the peak for the test set, but it is close enough. The tree that
performs best on the validation set will often be slightly overtrained or
slightly undertrained, but usually it will be close to optimal performance.

Table 16.5 evaluates performance of the tree with 50 internal nodes on
the test set. This is the smallest tree with the optimal performance of
93.91% accuracy on the validation set.

A problem with setting aside a validation set is that a relatively large
part of the full training set is wasted. A better method is to use n-fold
cross-validation (cf. section 6.2.4) to estimate a good size for the prunedcross-validation

p

i i

586 16 Text Categorization

“earnings” “earnings” correct?
assigned? YES NO
YES 1024 69
NO 63 2143

Table 16.5 Contingency table for a decision tree for the Reuters category “earn-
ings.” Classification accuracy on the test set is 96.0%.

decision tree. For example, in 5-fold cross-validation we split the data
into five parts. We reserve one part as a validation set, train the tree on
the other four parts and then prune it back based on the held-out part.
This process is repeated four times using each of the other four parts as
a validation set. We then determine the average size of an optimally per-
forming pruned tree. Finally, a new tree is grown for the entire training
set and pruned back to what we have calculated to be the optimal size.

The interdependence of complexity of the learning device and accuracy
on the training set is an important characteristic of many classification
methods. If the device is too complex (or has too many parameters),
then we risk overfitting and low accuracy on new data. If the device is
not complex enough, it is not able to make maximum use of the training
data, which again leads to lower than optimal accuracy on new data. The
trick is to find just the right balance and cross-validation is one approach
to doing that.

Another common property of classification methods is shown in fig-
ure 16.5, the dependence of classification accuracy on the amount of
training data available. Not surprisingly, the more training data, the bet-
ter – up to a point where performance improvement levels off. Sometimes
one gets lucky with a small set (hence the fluctuations), but one cannot
be sure that a tree trained on a small data set will perform well.

Computing learning curves like those in figure 16.5 is important to de-learning curves

termine the size of an appropriate training set. Many training procedures
are computationally expensive, so it is advantageous to avoid overly large
training sets. But on the other hand, insufficient training data will result
in suboptimal classification accuracy. Looking at the curve lets one de-
cide how much data is enough for optimal performance. (Of course, there
are many cases in which one has no control over the amount of training
data available and has to live with a small training set even though a
larger one would give much better performance.)

p

i i

16.1 Decision Trees 587

number of articles in training set

cla
ss

ific
at

ion
 a

cc
ur

ac
y

0 2000 4000 6000 8000 10000 12000

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0 2000 4000 6000 8000 10000 12000

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0 2000 4000 6000 8000 10000 12000

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

training set
validation set
test set

Figure 16.5 Classification accuracy depends on the amount of training data
available. The x axis corresponds to the number of training documents the deci-
sion tree was trained on. The y axis corresponds to accuracy on the test set for
a decision tree selected based on a constant size validation set. Classification
accuracy is highly variable for small training set sizes and increases and levels
off for larger sets.

When are decision trees appropriate for a classification task in NLP?
Decision trees are more complex than classifiers like Naive Bayes (sec-
tion 7.2.1), linear regression (section 15.4.1), and logistic regression. If
the classification problem is simple (in particular, if it is linearly separa-
ble, see below), then these simpler methods are often preferable. Decision
trees also split the training set into smaller and smaller subsets. This
makes correct generalization harder, since there may not be enough data
for reliable prediction, and incorrect generalization easier, since smaller
sets have accidental regularities that don’t generalize. Figure 16.6 gives
a simple example of this problem from the domain of learning phono-
logical rules. Pruning addresses this problem to some extent, but some
learning problems are better handled by methods that look at all features
simultaneously. The other three methods we introduce in this chapter all
have this property.

pa

i i

588 16 Text Categorization

�

−voiced

−cont

−cor

t

+cor

−ant

t

+ant

ed

+cont

t

+voiced

−cont

−cor

d

+cor

−ant

d

+ant

ed

+cont

d

Figure 16.6 An example of how decision trees use data inefficiently from the
domain of phonological rule learning. The regular rule for the English past tense
is that one gets /t/ after a voiceless sound, and /d/ after a voiced sound, except
after [−cont, +cor, +ant] sounds (i.e., /t/, /d/) where one gets / ed/. Because
the voicing feature has the greatest information gain, the tree splits on that
feature first, but that makes the remaining conditioning harder to learn because
the relevant data has been subdivided into different bins within which learning
is attempted independently.

The greatest advantage of decision trees is that they can be interpreted
so easily. It is easy to trace the path from the root to a leaf node for
a couple of articles and to develop an intuition as to how the decision
tree works. This is not only invaluable in debugging one’s own code and
understanding a new problem domain, but it also allows one to explain
the classifier to researchers and laymen alike, an important property in
research collaboration and practical applications.

Exercise 16.1 [«]

What is the classification accuracy of the trivial tree with one leaf node for the
“earnings” category?

Exercise 16.2 [«]

In section 7.1, we introduced upper and lower bounds as a way to assess how
hard a particular classification problem is. What are upper and lower bounds for
the ‘earnings’ category?

Exercise 16.3 [««]

An important application of text categorization is the detection of spam (also
known as unsolicited bulk email). Try to collect at least a hundred spam mes-
sages and non-spam messages, divide them into training and test sets and build

p

i i

16.2 Maximum Entropy Modeling 589

a decision tree that detects spam. Finding the right features is paramount for
this task, so design your feature set carefully.

Exercise 16.4 [««]

Another important application of text categorization is the detection of ‘adult’
content, that is, content that is not appropriate for children because it is sexually
explicit. Collect training and test sets of adult and non-adult material from the
World Wide Web and build a decision tree that can block access to adult material.

Exercise 16.5 [««]

Collect a reasonable amount of text written by yourself and by a friend. You may
want to break up individual texts (e.g., term papers) into smaller pieces to get
a large enough set. Build a decision tree that automatically determines whether
you are the author of a piece of text. Note that it is often the ‘little’ words that
give an author away (for example, the relative frequencies of words like because
or though).

Exercise 16.6 [««]

Download a set of English and non-English texts from the World Wide Web or
use some other multilingual source. Build a decision tree that can distinguish
between English and non-English texts. (See also exercise 6.10.)

16.2 Maximum Entropy Modeling

Maximum entropy modeling is a framework for integrating information
from many heterogeneous information sources for classification. The
data for a classification problem is described as a (potentially large) num-
ber of features. These features can be quite complex and allow the exper-
imenter to make use of prior knowledge about what types of information
are expected to be important for classification. Each feature corresponds
to a constraint on the model. We then compute the maximum entropy
model, the model with maximum entropy of all the models that satisfy
the constraints. This term may initially seem perverse, since we have
spent most of the book trying to minimize the (cross) entropy of mod-
els, but the idea is that we do not want to go beyond the data. If we
chose a model with less entropy, we would add ‘information’ constraints
to the model that are not justified by the empirical evidence available to
us. Choosing the maximum entropy model is motivated by the desire to
preserve as much uncertainty as possible.

We have simplified matters in this chapter by neglecting the problem of
feature selection (we use the same 20 features throughout). In maximum
entropy modeling, feature selection and training are usually integrated.

p

i i

590 16 Text Categorization

Ideally, this enables us to specify all potentially relevant information at
the beginning, and then to let the training procedure worry about how to
come up with the best model for classification. We will only introduce the
basic method here and refer the reader to the Further Reading for feature
selection.

For a given set of features, we first compute the expectation of each fea-
ture based on the training set. Each feature then defines the constraint
that this empirical expectation be the same as the expectation the featureempirical

expectation has in our final maximum entropy model. Of all probability distributions
that obey these constraints, we attempt to find the maximum entropymaximum entropy

distribution distribution, the one with the highest entropy. One can show that there
is a unique such maximum entropy distribution and there exists an al-
gorithm, generalized iterative scaling, which is guaranteed to converge
to it.

The features fi are binary functions that can be used to characterize
any property of a pair (~x, c), where ~x is a vector representing an input
element (in our case the 20-dimensional vector of word weights repre-
senting an article as in table 16.3), and c is the class label (1 if the article
is in the “earnings” category, 0 otherwise). For text categorization, we
define features as follows:

fi(~xj , c) =
{

1 if sij > 0 and c = 1
0 otherwise

(16.3)

Recall that sij is the term weight for word i in Reuters article j . Note that
the use of binary features is different from the rest of this chapter: The
other classifiers use the magnitude of the weight, not just the presence
or absence of a word.5

The model class for the particular variety of maximum entropy model-
ing that we introduce here is loglinear models of the following form:loglinear models

p(~x, c) = 1
Z

K∏
i=1

αfi(~x,c)i(16.4)

where K is the number of features, αi is the weight for feature fi and Z is
a normalizing constant, used to ensure that a probability distribution
results. To use the model for text categorization, we compute p(~x,0) and

5. While the maximum entropy approach is not in principle limited to binary features,
known reasonably efficient solution procedures such as generalized iterative scaling,
which we introduce below, do only work for binary features.

p

i i

16.2 Maximum Entropy Modeling 591

p(~x,1) and, in the simplest case, choose the class label with the greater
probability.

Note that, in this section, features contain information about the classfeatures

of the object in addition to the ‘measurements’ of the object we want to
classify. Here, we are following most publications on maximum entropy
modeling in defining feature in this sense. The more common use of the
term “feature” (which we have adopted for the rest of the book) is that it
only refers to some characteristic of the object, independent of the class
the object is a member of.

Equation (16.4) defines a loglinear model because, if we take logs on
both sides, then log p is a linear combination of the logs of the weights:

log p(~x, c) = − logZ +
K∑
i=1

fi(~x, c) logαi(16.5)

Loglinear models are an important class of models for classification.
Other examples of the class are logistic regression (McCullagh and Nelder
1989) and decomposable models (Bruce and Wiebe 1999). We introduce
the maximum entropy modeling approach here because maximum en-
tropy models have been the most widely used loglinear models in Sta-
tistical NLP and because it is an application of the important maximum
entropy principle.

16.2.1 Generalized iterative scaling

Generalized iterative scaling is a procedure for finding the maximum en-generalized

iterative scaling tropy distribution p∗ of form (16.4) that obeys the following set of con-
straints:

Ep∗ fi = Ep̃ fi(16.6)

In other words, the expected value of fi for p∗ is the same as the expected
value for the empirical distribution (in other words, the training set).

The algorithm requires that the sum of the features for each possible
(~x, c) be equal to a constant C:6

∀~x, c
∑
i
fi(~x, c) = C(16.7)

6. See Berger et al. (1996) for Improved Iterative Scaling, a variant of generalized iterative
scaling that does not impose this constraint.

p

i i

592 16 Text Categorization

In order to fulfil this requirement, we define C as the greatest possible
feature sum:

C Ö max
~x,c

K∑
i=1

fi(~x, c)

and add a feature fK+1 that is defined as follows:

fK+1(~x, c) = C −
K∑
i=1

fi(~x, c)

Note that this feature is not binary, in contrast to the others.
Ep fi is defined as follows:

Ep fi =
∑
~x,c

p(~x, c)fi(~x, c)(16.8)

where the sum is over the event space, that is, all possible vectors ~x and
class labels c. The empirical expectation is easy to compute:

Ep̃ fi =
∑
~x,c

p̃(~x, c)fi(~x, c) = 1
N

N∑
j=1

fi(~xj , c)(16.9)

where N is the number of elements in the training set and we use the fact
that the empirical probability for a pair that doesn’t occur in the training
set is 0.

In general, the maximum entropy distribution Ep fi cannot be computed
efficiently since it would involve summing over all possible combinations
of ~x and c, a potentially infinite set. Instead, we use the following approx-
imation (Lau 1994: 25):

Ep fi = 1
N

N∑
j=1

∑
c

p(c|~xj)fi(~xj , c)(16.10)

where c ranges over all possible classes, in our case c ∈ {0,1}.
Now we have all the pieces to state the generalized iterative scaling

algorithm:

� Initialize {α(1)i }. Any initialization will do, but usually we choose
α(1)i = 1,∀1 ≤ j ≤ K + 1. Compute Ep̃ fi as shown above. Set n = 1.

� Compute p(n)(~x, c) for the distribution p(n) given by the {α(n)i } for
each element (~x, c) in the training set:

p(n)(~x, c) = 1
Z

K+1∏
i=1

(
α(n)i

)fi(x,c)(16.11)

pa

i i

16.2 Maximum Entropy Modeling 593

~x c
profit “earnings” f1 f2 β = f1 logα1 + f2 logα2 2β

(0) 0 0 1 1 2
(0) 1 0 1 1 2
(1) 0 0 1 1 2
(1) 1 1 0 2 4

Table 16.6 An example of a maximum entropy distribution in the form of equa-
tion (16.4). The vector ~x consists of a single element, indicating the presence
or absence of the word profit in the article. There are two classes (member
of “earnings” or not). Feature f1 is 1 if and only if the article is in “earnings”
and profit occurs. f2 is the “filler” feature fK+1. For one particular choice of
the parameters, namely logα1 = 2.0 and logα2 = 1.0, we get after normal-
ization (Z = 2 + 2 + 2 + 4 = 10) the following maximum entropy distribution:
p(0,0) = p(0,1) = p(1,0) = 2/Z = 0.2 and p(1,1) = 4/Z = 0.4. An example of a
data set with the same empirical distribution is ((0,0), (0,1), (1,0), (1,1), (1,1)).

� Compute Ep(n) fi for all 1 ≤ i ≤ K + 1 according to equation (16.10).

� Update the parameters αi :

α(n+1)
i = α(n)i

(
Ep̃ fi
Ep(n) fi

) 1
C

(16.12)

� If the parameters of the procedure have converged, stop, otherwise
increment n and go to 2.

We present the algorithm in this form for readability. In an actual im-
plementation, it is more convenient to do the computations using loga-
rithms.

One can show that this procedure converges to a distribution p∗ that
obeys the constraints (16.6), and that of all such distributions it is the one
that maximizes the entropy H(p) and the likelihood of the data. Darroch
and Ratcliff (1972) show that this distribution always exists and is unique.

A toy example of a maximum entropy distribution that generalized it-
erative scaling will converge to is shown in table 16.6.

Exercise 16.7 [«]

What are the classification decisions for the distribution in table 16.6? Compute
P(“earnings”|profit) and P(“earnings”|¬profit).

p

i i

594 16 Text Categorization

Does profit Is topic “earnings”?
occur? YES NO
YES 20 9
NO 8 13

Table 16.7 An empirical distribution whose corresponding maximum entropy
distribution is the one in table 16.6.

Exercise 16.8 [«]

Show that the distribution in table 16.6 is a fixed point for iterative general-
ized scaling. That is, computing one iteration should leave the distribution
unchanged.

Exercise 16.9 [«]

Consider the distribution in table 16.7. Show that for the features defined in
table 16.6, this distribution has the same feature expectations Ep as the one in
table 16.6.

Exercise 16.10 [«]

Compute a number of iterations of generalized iterative scaling for the data
in table 16.7 (using the features defined in table 16.6). The procedure should
converge towards the distribution in table 16.6.

Exercise 16.11 [««]

Select one of exercises 16.3 through 16.6 and build a maximum entropy model
for the corresponding text categorization task.

16.2.2 Application to text categorization

We have already suggested how to define appropriate features for text
categorization in equation (16.3). For the task of identifying Reuters
“earnings” articles we end up with 20 features, each corresponding to
one of the selected words, and the fK+1 feature introduced at the start of
the last subsection.

Table 16.8 shows the weights found by generalized iterative scaling
after convergence (500 iterations). We trained on the 9603 articles in the
training set. The features with the highest weights are vs, cts, profit and lt.
If we use P(“earnings”|~x) > P(¬“earnings”|~x) as our decision rule, we get
the classification results in table 16.9. Classification accuracy is 88.6%.

An important question in an implementation is when to stop the iter-
ation. One way to test for convergence is to compute the log difference

p

i i

16.2 Maximum Entropy Modeling 595

Word wi Feature weight logαi

vs 0.613
mln −0.110
cts 1.298
; −0.432
& −0.429
000 −0.413
loss −0.332
’ −0.085
" 0.202
3 −0.463
profit 0.360
dlrs −0.202
1 −0.211
pct −0.260
is −0.546
s −0.490
that −0.285
net −0.300
lt 1.016
at −0.465
fK+1 0.009

Table 16.8 Feature weights in maximum entropy modeling for the category
“earnings” in Reuters.

“earnings” “earnings” correct?
assigned? YES NO
YES 735 24
NO 352 2188

Table 16.9 Classification results for the distribution corresponding to ta-
ble 16.8 on the test set. Classification accuracy is 88.6%.

p

i i

596 16 Text Categorization

between empirical and estimated feature expectations (logEp̃ − logEp(n)),
which should approach zero. Ristad (1996) recommends to also look at
the largest α when doing iterative scaling. If the largest weight becomes
too large, then this indicates a problem with either the data representa-
tion or the implementation.

When is the maximum entropy framework presented in this section ap-
propriate as a classification method? The somewhat lower performance
on the “earnings” task compared to some of the other methods indicates
one characteristic that is a shortcoming in some situations: the restric-
tion to binary features seems to have led to lower performance. In text
categorization, we often need a notion of “strength of evidence” which
goes beyond a simple binary feature recording presence or absence of ev-
idence. The feature-based representation we use for maximum entropy
modeling is not optimal for this purpose.

Generalized iterative scaling can also be computationally expensive due
to slow convergence (but see (Lau 1994) for suggestions for speeding up
convergence). For binary classification, the loglinear model defines a lin-
ear separator that is in principle no more powerful than Naive Bayes orNaive Bayes

linear regression, classifiers that can be trained more efficiently. How-linear regression

ever, it is important to stress that, apart from the theoretical power of
a classification method, the training procedure is crucial. Generalized
iterative scaling takes dependence between features into account in con-
trast to Naive Bayes and other linear classifiers. If feature dependence is
not expected to a be a problem, then Naive Bayes is a better choice than
maximum entropy modeling.

Finally, the lack of smoothing can also cause problems. For example,
if we have a feature that always predicts a certain class, then this fea-
ture may get an excessively high weight. One way to deal with this is
to ‘smooth’ the empirical data by adding events that did not occur. In
practice, features that occur less than five times are usually eliminated.

One of the strengths of maximum entropy modeling is that it offers
a framework for specifying all possibly relevant information. The attrac-
tion of the method lies in the fact that arbitrarily complex features can be
defined if the experimenter believes that these features may contribute
useful information for the classification decision. For example, Berger
et al. (1996: 57) define a feature for the translation of the preposition
in from English to French that is 1 if and only if in is translated as pen-
dant and in is followed by the word weeks within three words. There is
also no need to worry about heterogeneity of features or weighting fea-

p

i i

16.3 Perceptrons 597

tures, two problems that often cause difficulty in other classification ap-
proaches. Model selection is well-founded in the maximum entropy prin-
ciple: we should not add any information over and above what we find
in the empirical evidence. Maximum entropy modeling thus provides a
well-motivated probabilistic framework for integrating information from
heterogeneous sources.

We could only allude here to another strength of the method: an inte-
grated framework for feature selection and classification. (The fact that
we have not done maximum entropy feature selection here is perhaps
the main reason for the lower classification accuracy.) Most classifica-
tion methods cannot deal with a very large number of features. If there
are too many features initially, an (often ad-hoc) method has to be used
to winnow the feature set down to a manageable size. This is what we
have done here, using the X2 test for words. In maximum entropy mod-
eling one can instead specify all potentially relevant features and use
extensions of the basic method such as those described by Berger et al.
(1996) to simultaneously select features and fit the classification model.
Since the two are integrated, there is a clear probabilistic interpretation
(in terms of maximum entropy and maximum likelihood) of the result-
ing classification model. Such an interpretation is less clear for other
methods such as perceptrons and k nearest neighbors.

In this section we have only attempted to give enough information to
help the reader to decide whether maximum entropy modeling is an ap-
propriate framework for their classification task when compared to other
classification methods. More detailed treatments of maximum entropy
modeling are mentioned in the Further Reading.

16.3 Perceptrons

We present perceptrons here as a simple example of a gradient descentgradient descent

(or reversing the direction of goodness, hill climbing) algorithm, an im-hill climbing

portant class of iterative learning algorithms. In gradient descent, we
attempt to optimize a function of the data that computes a goodness
criterion like squared error or likelihood. In each step, we compute the
derivative of the function and change the parameters of the model in the
direction of the steepest gradient (steepest ascent or descent, depending
on the optimality function). This is a good idea because the direction of

p

i i

598 16 Text Categorization

1 comment: Categorization Decision
2 funct decision(~x, ~w,θ) ≡
3 if ~w · ~x > θ then
4 return yes
5 else
6 return no
7 fi.
9 comment: Initialization

10 ~w = 0
11 θ = 0
12 comment: Perceptron Learning Algorithm
13 while not converged yet do
14 for all elements ~xj in the training set do
15 d = decision(~xj , ~w, θ)
16 if class(~xj) = d then
17 continue
18 elsif class(~xj) = yes and d = no then
19 θ = θ − 1
20 ~w = ~w + ~xj
21 elsif class(~xj) = no and d = yes then
22 θ = θ + 1
23 ~w = ~w − ~xj
24 fi
25 end
26 end

Figure 16.7 The Perceptron Learning Algorithm. The perceptron decides “yes”
if the inner product of weight vector and data vector is greater than θ and “no”
otherwise. The learning algorithm cycles through all examples. If the current
weight vector makes the right decision for an instance, it is left unchanged.
Otherwise, the data vector is added to or subtracted from the weight vector,
depending on the direction of the error.

p

i i

16.3 Perceptrons 599

steepest gradient is the direction where we can expect the most improve-
ment in the goodness criterion.

Without further ado, we introduce the perceptron learning algorithm in
figure 16.7. As before, text documents are represented as term vectors.
Our goal is to learn a weight vector ~w and a threshold θ, such that com-
paring the dot product of the weight vector and the term vector against
the threshold provides the categorization decision. We decide “yes” (the
article is in the “earnings” category) if the inner product of weight vector
and document vector is greater than the threshold and “no” otherwise:

Decide “yes” iff ~w · ~x =
K∑
i=1

wixij > θ

where K is the number of features (K = 20 for our example as before)
and xij is component i of vector ~xj .

The basic idea of the perceptron learning algorithm is simple. If the
weight vector makes a mistake, we move it (and θ) in the direction of
greatest change for our optimality criterion

∑K
i=1wixij − θ. To see that

the changes to ~w and θ in figure 16.8 are made in the direction of greatest
change, we first define an optimality criterion φ that incorporates θ into
the weight vector:

φ(~w ′) = φ(

w1

w2
...
wK
θ

) = ~w ′ · ~x′ =

w1

w2
...
wK
θ

 ·

x1

x2
...
xK
−1

The gradient of φ (which is the direction of greatest change) is the vec-
tor ~x′:

∇φ(~w ′) = ~x′

Of all vectors of a given length that we can add to ~w ′, ~x′ is the one that will
change φ the most. So that is the direction we want to take for gradient
descent; and it is indeed the change that is implemented in figure 16.7.

Figure 16.8 shows one error-correcting step of the algorithm for a two-
dimensional problem. The figure also illustrates the class of models that
can be learned by perceptrons: linear separators. Each weight vector de-
fines an orthogonal line (or a plane or hyperplane in higher dimensions)
that separates the vector space into two halves, one with positive values,

p

i i

600 16 Text Categorization

~w

~x

~x

~w + ~x

S S′

NO
YES

NO
YES

Figure 16.8 One error-correcting step of the perceptron learning algorithm.
Data vector ~x is misclassified by the current weight vector ~w since it lies on
the “no”-side of the decision boundary S. The correction step adds ~x to ~w and
(in this case) corrects the decision since ~x now lies on the “yes”-side of S′, the
decision boundary of the new weight vector ~w + ~x.

one with negative values. In figure 16.8, the separator is S, defined by ~w .
Classification tasks in which the elements of two classes can be perfectly
separated by such a hyperplane are called linearly separable.linearly separable

One can show that the perceptron learning algorithm always converges
towards a separating hyperplane when applied to a linearly separable
problem. This is the perceptron convergence theorem. It might seemperceptron

convergence

theorem

plausible that the perceptron learning algorithm will eventually find a
solution if there is one, since it keeps adjusting the weights for misclassi-
fied elements, but since an adjustment for one element will often reverse
classification decisions for others, the proof is not trivial.

p

i i

16.3 Perceptrons 601

Word wi Weight

vs 11
mln 6
cts 24
; 2
& 12
000 −4
loss 19
’ −2
" 7
3 −7
profit 31
dlrs 1
1 3
pct −4
is −8
s −12
that −1
net 8
lt 11
at −6

θ 37

Table 16.10 Perceptron for the “earnings” category. The weight vector ~w and
θ of a perceptron learned by the perceptron learning algorithm for the category
“earnings” in Reuters.

Table 16.10 shows the weights learned by the perceptron learning algo-
rithm for the “earnings” category after about 1000 iterations. As with the
model parameters in maximum entropy modeling we get high weights
for cts, profit and lt. Table 16.11 shows the classification results on the
test set. Overall accuracy is 83%. This suggests that the problem is not
linearly separable. See the exercises.

A perceptron in 20 dimensions is hard to visualize, so we reran the
algorithm with just two dimensions, mln and cts. The weight vector and
the linear separator defined by it are shown in figure 16.9.

The perceptron learning algorithm is guaranteed to learn a linearly sep-

p

i i

602 16 Text Categorization

“earnings” “earnings” correct?
assigned? YES NO
YES 1059 521
NO 28 1691

Table 16.11 Classification results for the perceptron in table 16.10 on the test
set. Classification accuracy is 83.3%.

1 2 3 4 5−1

1

2

3

4

−1

−2

−3

cts

mln

~w

S

YES

NO

Figure 16.9 Geometric interpretation of a perceptron. The weight for cts is 5,
the weight for mln is −1, and the threshold is 1. The linear separator S divides
the upper right quadrant into a NO and a YES region. Only documents with many
more occurrences of mln than cts are categorized as not belonging to “earnings.”

pa

i i

16.3 Perceptrons 603

arable problem. There are similar convergence theorems for some other
gradient descent algorithms, but in most cases convergence will only be
to a local optimum, locations in the weight space that are locally opti-local optimum

mal, but inferior to the globally optimal solution. Perceptrons converge
to a global optimum because they select a classifier from a class of sim-global optimum

ple models, the linear separators. There are many important problems
that are not linearly separable, the most famous being the XOR prob-
lem. The XOR (i.e., eXclusive OR) problem involves a classifier with two
features C1 and C2 where the answer should be “yes” if C1 is true and
C2 false or vice versa. A decision tree can easily learn such a problem,
whereas a perceptron cannot. After some initial enthusiasm about per-
ceptrons (Rosenblatt 1962), researchers realized these limitations. As
a consequence, interest in perceptrons and related learning algorithms
faded quickly and remained low for decades. The publication of (Minsky
and Papert 1969) is often seen as the point at which the interest in this
genre of learning algorithms started to wane. See Rumelhart and Zipser
(1985) for a historical summary.

If the perceptron learning algorithm is run on a problem that is not lin-
early separable, the linear separator will sometimes move back and forth
erratically while the algorithm tries in vain to find a perfectly separating
plane. This is in fact what happened when we ran the algorithm on the
“earnings” data. Classification accuracy fluctuated between 72% and 93%.
We picked a state that lies in the middle of this spectrum of accuracy for
tables 16.10 and 16.11. Perceptrons have not been used much in NLP be-
cause most NLP problems are not linearly separable and the perceptron
learning algorithm does not find a good approximate separator in such
cases. However, in cases where a problem is linearly separable, percep-
trons can be an appropriate classification method due to their simplicity
and ease of implementation.

A resurgence of work on gradient descent learning algorithms occurred
in the eighties when several learning algorithms were proposed that over-
came the limitations of perceptrons, most notably the backpropagationbackpropagation

algorithm which is used to train multi-layer perceptrons (MLPs), otherwise
known as neural networks or connectionist models. Backpropagation ap-neural networks

connectionist

models

plied to MLPs can in principle learn any classification function including
XOR. But it converges more slowly than the perceptron learning algo-
rithm and it can get caught in local optima. Pointers to uses of neural
networks in NLP appear in the Further Reading.

p

i i

604 16 Text Categorization

Exercise 16.12 [««]

Build an animated visualization that shows how the perceptron’s decision
boundary moves during training and run it for a two-dimensional classification
problem.

Exercise 16.13 [««]

Select a subset of 10 “earnings” and 10 non-“earnings” documents. Select two
words, one for the x axis, one for the y axis and plot the 20 documents with
class labels. Is the set linearly separable?

Exercise 16.14 [«]

How can one show that a set of data points from two classes is not linearly
separable?

Exercise 16.15 [«]

Show that the “earnings” data set is not linearly separable.

Exercise 16.16 [«]

Suppose a problem is linearly separable and we train a perceptron to conver-
gence. In such a case, classification accuracy will often not be 100%. Why?

Exercise 16.17 [««]

Select one of exercises 16.3 through 16.6 and build a perceptron for the corre-
sponding text categorization task.

16.4 k Nearest Neighbor Classification

The rationale for the nearest neighbor classification rule is remarkablynearest neighbor

classification rule simple. To classify a new object, find the object in the training set that is
most similar. Then assign the category of this nearest neighbor.

The basic idea is that if there is an identical article in the training set
(or at least one with the same representation), then the obvious decision
is to assign the same category. If there is no identical article, then the
most similar one is our best bet.

A generalization of the nearest neighbor rule is k nearest neighbor ork nearest neighbor

KNN classification. Instead of using only one nearest neighbor as the
basis for our decision, we consult k nearest neighbors. KNN for k > 1 is
more robust than the ‘1 nearest neighbor’ method.

The complexity of KNN is in finding a good measure of similarity. As
an example of what can go wrong consider the task of deciding whether
there is an eagle in an image. If we have a drawing of an eagle that
we want to classify and all exemplars in the database are photographs of

p

i i

16.4 k Nearest Neighbor Classification 605

eagles, then KNN will classify the drawing as non-eagle because according
to any low-level similarity metric based on image features drawings and
photographs will come out as very different no matter what their content
(and how to implement high-level similarity is an unsolved problem). If
one doesn’t have a good similarity metric, one can’t use KNN.

Fortunately, many NLP tasks have simple similarity metrics that are
quite effective. For the “earnings” data, we implemented cosine similarity
(see section 8.5.1), and chose k = 1. This ‘1NN algorithm’ for binary
categorization can be stated as follows.

� Goal: categorize ~y based on the training set X.

� Determine the largest similarity with any element in the training set:
simmax(~y) = max~x∈X sim(~x, ~y)

� Collect the subset of X that has highest similarity with ~y :

A = {~x ∈ X|sim(~x, ~y) = simmax(~y)
}

� Let n1 and n2 be the number of elements in A that belong to the two
classes c1 and c2, respectively. Then we estimate the conditional prob-
abilities of membership as follows:

P(c1|~y) = n1

n1 + n2
P(c2|~y) = n2

n1 + n2
(16.13)

� Decide c1 if P(c1|~y) > P(c2|~y), c2 otherwise.

This version deals with the case where there is a single nearest neighbor
(in which case we simply adopt its category) as well as with cases of ties.
For the Reuters data, 2310 of the 3299 articles in the test set have one
nearest neighbor. The other 989 have 1NN neighborhoods with more
than 1 element (the largest neighborhood has 247 articles with identical
representation). Also, 697 articles of the 3299 have a nearest neighbor
with identical representation. The reason is not that there are that many
duplicates in the test set. Rather, this is a consequence of the feature
representation which can give identical representations to two different
documents.

It should be obvious how this algorithm generalizes for the case k > 1:
one simply chooses the k nearest neighbors, again with suitable provi-
sions for ties, and decides based on the majority class of these k neigh-
bors. It is often desirable to weight neighbors according to their similar-
ity, so that the nearest neighbor gets more weight than the farthest.

p

i i

606 16 Text Categorization

“earnings” “earnings” correct?
assigned? YES NO
YES 1022 91
NO 65 2121

Table 16.12 Classification results for an 1NN categorizer for the “earnings”
category. Classification accuracy is 95.3%.

One can show that for large enough training sets, the error rate of KNN

approaches twice the Bayes error rate. The Bayes error rate is the optimalBayes error rate

error rate that is achieved if the true distribution of the data is known and
we use the decision rule “c1 if P(c1|~y) > P(c2|~y), otherwise c2” (Duda and
Hart 1973: 98).

The results of applying 1NN to the “earnings” category in Reuters are
shown in table 16.12. Overall accuracy is 95.3%.

As alluded to above, the main difficulty with KNN is that its perfor-
mance is very dependent on the right similarity metric. Much work in
implementing KNN for a problem often goes into tuning the similarity
metric (and to a lesser extent k, the number of nearest neighbors used).
Another potential problem is efficiency. Computing similarity with all
training exemplars takes more time than computing a linear classification
function or determining the appropriate path of a decision tree.

However, there are ways of implementing KNN search efficiently, and
often there is an obvious choice for a similarity metric (as in our case). In
such cases, KNN is a robust and conceptually simple method that often
performs remarkably well.

Exercise 16.18 [«]

Two of the classifiers we have introduced in this chapter have a linear decision
boundary. Which?

Exercise 16.19 [«]

If a classifier’s decision boundary is linear, then it cannot achieve perfect ac-
curacy on a problem that is not linearly separable. Does this necessarily mean
that it will perform worse on a classification task than a classifier with a more
complex decision boundary? Why not? (See Roth (1998) for discussion.)

Exercise 16.20 [««]

Select one of exercises 16.3 through 16.6 and build a nearest neighbors classifier
for the corresponding text categorization task.

p

i i

16.5 Further Reading 607

16.5 Further Reading

The purpose of this chapter is to give the student interested in classifi-
cation for NLP some orientation points. A recent in-depth introduction
to machine learning is (Mitchell 1997). Comparisons of several learning
algorithms applied to text categorization can be found in (Yang 1998),
(Lewis et al. 1996), and (Schütze et al. 1995).

The features and the data representation based on the features used in
this chapter can be downloaded from the book’s website.

Some important classification techniques which we have not covered
are: logistic regression and linear discriminant analysis (Schütze et al.
1995); decision lists, where an ordered list of rules that change the clas-
sification is learned (Yarowsky 1994); winnow, a mistake-driven online
linear threshold learning algorithm (Dagan et al. 1997a); and the Rocchio
algorithm (Rocchio 1971; Schapire et al. 1998).

Another important classification technique, Naive Bayes, was intro-Naive Bayes

duced in section 7.2.1. See (Domingos and Pazzani 1997) for a discussion
of its properties, in particular the fact that it often does surprisingly well
even when the feature independence assumed by Naive Bayes does not
hold.

Other examples of the application of decision trees to NLP tasks are
parsing (Magerman 1994) and tagging (Schmid 1994). The idea of using
held out training data to train a linear interpolation over all the distri-
butions between a leaf node and the root was used both by Magerman
(1994) and earlier work at IBM. Rather than simply using cross-validation
to determine an optimal tree size, an alternative is to grow multiple de-
cision trees and then to average the judgements of the individual trees.
Such techniques go under names like bagging and boosting, and have re-bagging

boosting cently been widely explored and found to be quite successful (Breiman
1994; Quinlan 1996). One of the first papers to apply decision trees to
text categorization is (Lewis and Ringuette 1994).

Jelinek (1997: ch. 13–14) provides an in-depth introduction to maxi-maximum entropy

modeling mum entropy modeling. See also (Lau 1994) and (Ratnaparkhi 1997b).
Darroch and Ratcliff (1972) introduced the generalized iterative scaling
procedure, and showed its convergence properties. Feature selection
algorithms are described by Berger et al. (1996) and Della Pietra et al.
(1997).

Maximum entropy modeling has been used for tagging (Ratnaparkhi
1996), text segmentation (Reynar and Ratnaparkhi 1997), prepositional

p

i i

608 16 Text Categorization

phrase attachment (Ratnaparkhi 1998), sentence boundary detection
(Mikheev 1998), determining coreference (Kehler 1997), named entity
recognition (Borthwick et al. 1998) and partial parsing (Skut and Brants
1998). Another important application is language modeling for speech
recognition (Lau et al. 1993; Rosenfeld 1994, 1996). Iterative proportional
fitting, a technique related to generalized iterative scaling, was used by
Franz (1996, 1997) to fit loglinear models for tagging and prepositional
phrase attachment.

Neural networks or multi-layer perceptrons were one of the statisticalneural networks

techniques that revived interest in Statistical NLP in the eighties based
on work by Rumelhart and McClelland (1986) on learning the past tense
of English verbs and Elman’s (1990) paper “Finding Structure in Time,”
an attempt to come up with an alternative framework for the conceptu-
alization and acquisition of hierarchical structure in language. Introduc-
tions to neural networks and backpropagation are (Rumelhart et al. 1986),
(McClelland et al. 1986), and (Hertz et al. 1991). Other neural network re-
search on NLP problems includes tagging (Benello et al. 1989; Schütze
1993), sentence boundary detection (Palmer and Hearst 1997), and pars-
ing (Henderson and Lane 1998). Examples of neural networks used for
text categorization are (Wiener et al. 1995) and (Schütze et al. 1995). Mi-
ikkulainen (1993) develops a general neural network framework for NLP.

The Perceptron Learning Algorithm in figure 16.7 is adapted from (Lit-
tlestone 1995). A proof of the perceptron convergence theorem appears
in (Minsky and Papert 1988) and (Duda and Hart 1973: 142).

KNN, or memory-based learning as it is sometimes called, has also been
applied to a wide range of different NLP problems, including pronuncia-
tion (Daelemans and van den Bosch 1996), tagging (Daelemans et al. 1996;
van Halteren et al. 1998), prepositional phrase attachment (Zavrel et al.
1997), shallow parsing (Argamon et al. 1998), word sense disambigua-
tion (Ng and Lee 1996) and smoothing of estimates (Zavrel and Daele-
mans 1997). For KNN-based text categorization see (Yang 1994), (Yang
1995), (Stanfill and Waltz 1986; Masand et al. 1992), and (Hull et al. 1996).
Yang (1994, 1995) suggests methods for weighting neighbors according
to their similarity. We used cosine as the similarity measure. Other com-
mon metrics are Euclidean distance (which is different only if vectors are
not normalized, as discussed in section 8.5.1) and the Value Difference
Metric (Stanfill and Waltz 1986).

This excerpt from

Foundations of Statistical Natural Language Processing.
Christopher D. Manning and Hinrich Schütze.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

	Foundations of Statistical Natural Language Processing: Chap16 - Text Categorization
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34

	Copyright notice

