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5 Collocations

A collocation is an expression consisting of two or more words that
correspond to some conventional way of saying things. Or in the words
of Firth (1957: 181): “Collocations of a given word are statements of the
habitual or customary places of that word.” Collocations include noun
phrases like strong tea and weapons of mass destruction, phrasal verbs
like to make up, and other stock phrases like the rich and powerful. Par-
ticularly interesting are the subtle and not-easily-explainable patterns of
word usage that native speakers all know: why we say a stiff breeze but
not ??a stiff wind (while either a strong breeze or a strong wind is okay),
or why we speak of broad daylight (but not ?bright daylight or ??narrow
darkness).

Collocations are characterized by limited compositionality. We call acompositionality

natural language expression compositional if the meaning of the expres-
sion can be predicted from the meaning of the parts. Collocations are not
fully compositional in that there is usually an element of meaning added
to the combination. In the case of strong tea, strong has acquired the
meaning rich in some active agent which is closely related, but slightly
different from the basic sense having great physical strength. Idioms are
the most extreme examples of non-compositionality. Idioms like to kick
the bucket or to hear it through the grapevine only have an indirect his-
torical relationship to the meanings of the parts of the expression. We
are not talking about buckets or grapevines literally when we use these
idioms. Most collocations exhibit milder forms of non-compositionality,
like the expression international best practice that we used as an exam-
ple earlier in this book. It is very nearly a systematic composition of its
parts, but still has an element of added meaning. It usually refers to ad-
ministrative efficiency and would, for example, not be used to describe a
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cooking technique although that meaning would be compatible with its
literal meaning.

There is considerable overlap between the concept of collocation and
notions like term, technical term, and terminological phrase. As theseterm

technical term

terminological

phrase

names suggest, the latter three are commonly used when collocations
are extracted from technical domains (in a process called terminology

terminology

extraction

extraction). The reader should be warned, though, that the word term
has a different meaning in information retrieval. There, it refers to both
words and phrases. So it subsumes the more narrow meaning that we
will use in this chapter.

Collocations are important for a number of applications: natural lan-
guage generation (to make sure that the output sounds natural and mis-
takes like powerful tea or to take a decision are avoided), computational
lexicography (to automatically identify the important collocations to be
listed in a dictionary entry), parsing (so that preference can be given to
parses with natural collocations), and corpus linguistic research (for in-
stance, the study of social phenomena like the reinforcement of cultural
stereotypes through language (Stubbs 1996)).

There is much interest in collocations partly because this is an area that
has been neglected in structural linguistic traditions that follow Saussure
and Chomsky. There is, however, a tradition in British linguistics, asso-
ciated with the names of Firth, Halliday, and Sinclair, which pays close
attention to phenomena like collocations. Structural linguistics concen-
trates on general abstractions about the properties of phrases and sen-
tences. In contrast, Firth’s Contextual Theory of Meaning emphasizes theContextual Theory

of Meaning importance of context: the context of the social setting (as opposed to
the idealized speaker), the context of spoken and textual discourse (as
opposed to the isolated sentence), and, important for collocations, the
context of surrounding words (hence Firth’s famous dictum that a word is
characterized by the company it keeps). These contextual features easily
get lost in the abstract treatment that is typical of structural linguistics.

A good example of the type of problem that is seen as important in
this contextual view of language is Halliday’s example of strong vs. pow-
erful tea (Halliday 1966: 150). It is a convention in English to talk about
strong tea, not powerful tea, although any speaker of English would also
understand the latter unconventional expression. Arguably, there are no
interesting structural properties of English that can be gleaned from this
contrast. However, the contrast may tell us something interesting about
attitudes towards different types of substances in our culture (why do we
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use powerful for drugs like heroin, but not for cigarettes, tea and coffee?)
and it is obviously important to teach this contrast to students who want
to learn idiomatically correct English. Social implications of language use
and language teaching are just the type of problem that British linguists
following a Firthian approach are interested in.

In this chapter, we will introduce a number of approaches to finding
collocations: selection of collocations by frequency, selection based on
mean and variance of the distance between focal word and collocating
word, hypothesis testing, and mutual information. We will then return
to the question of what a collocation is and discuss in more depth differ-
ent definitions that have been proposed and tests for deciding whether
a phrase is a collocation or not. The chapter concludes with further
readings and pointers to some of the literature that we were not able
to include.

The reference corpus we will use in examples in this chapter consists
of four months of the New York Times newswire: from August through
November of 1990. This corpus has about 115 megabytes of text and
roughly 14 million words. Each approach will be applied to this corpus
to make comparison easier. For most of the chapter, the New York Times
examples will only be drawn from fixed two-word phrases (or bigrams).
It is important to keep in mind, however, that we chose this pool for
convenience only. In general, both fixed and variable word combinations
can be collocations. Indeed, the section on mean and variance looks at
the more loosely connected type.

5.1 Frequency

Surely the simplest method for finding collocations in a text corpus is
counting. If two words occur together a lot, then that is evidence that
they have a special function that is not simply explained as the function
that results from their combination.

Predictably, just selecting the most frequently occurring bigrams is not
very interesting as is shown in table 5.1. The table shows the bigrams
(sequences of two adjacent words) that are most frequent in the corpus
and their frequency. Except for New York, all the bigrams are pairs of
function words.

There is, however, a very simple heuristic that improves these results
a lot (Justeson and Katz 1995b): pass the candidate phrases through a
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C(w1 w2) w1 w2

80871 of the
58841 in the
26430 to the
21842 on the
21839 for the
18568 and the
16121 that the
15630 at the
15494 to be
13899 in a
13689 of a
13361 by the
13183 with the
12622 from the
11428 New York
10007 he said

9775 as a
9231 is a
8753 has been
8573 for a

Table 5.1 Finding Collocations: Raw Frequency. C(·) is the frequency of some-
thing in the corpus.

Tag Pattern Example

A N linear function
N N regression coefficients
A A N Gaussian random variable
A N N cumulative distribution function
N A N mean squared error
N N N class probability function
N P N degrees of freedom

Table 5.2 Part of speech tag patterns for collocation filtering. These patterns
were used by Justeson and Katz to identify likely collocations among frequently
occurring word sequences.
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C(w1 w2) w1 w2 Tag Pattern
11487 New York A N
7261 United States A N
5412 Los Angeles N N
3301 last year A N
3191 Saudi Arabia N N
2699 last week A N
2514 vice president A N
2378 Persian Gulf A N
2161 San Francisco N N
2106 President Bush N N
2001 Middle East A N
1942 Saddam Hussein N N
1867 Soviet Union A N
1850 White House A N
1633 United Nations A N
1337 York City N N
1328 oil prices N N
1210 next year A N
1074 chief executive A N
1073 real estate A N

Table 5.3 Finding Collocations: Justeson and Katz’ part-of-speech filter.

part-of-speech filter which only lets through those patterns that are likely
to be ‘phrases.’1 Justeson and Katz (1995b: 17) suggest the patterns in
table 5.2. Each is followed by an example from the text that they use as a
test set. In these patterns A refers to an adjective, P to a preposition, and
N to a noun.

Table 5.3 shows the most highly ranked phrases after applying the fil-
ter. The results are surprisingly good. There are only 3 bigrams that we
would not regard as non-compositional phrases: last year, last week, and
first time. York City is an artefact of the way we have implemented the
Justeson and Katz filter. The full implementation would search for the
longest sequence that fits one of the part-of-speech patterns and would
thus find the longer phrase New York City, which contains York City.

The twenty highest ranking phrases containing strong and powerful all

1. Similar ideas can be found in (Ross and Tukey 1975) and (Kupiec et al. 1995).



p

i i

156 5 Collocations

w C(strong, w) w C(powerful, w)
support 50 force 13
safety 22 computers 10
sales 21 position 8
opposition 19 men 8
showing 18 computer 8
sense 18 man 7
message 15 symbol 6
defense 14 military 6
gains 13 machines 6
evidence 13 country 6
criticism 13 weapons 5
possibility 11 post 5
feelings 11 people 5
demand 11 nation 5
challenges 11 forces 5
challenge 11 chip 5
case 11 Germany 5
supporter 10 senators 4
signal 9 neighbor 4
man 9 magnet 4

Table 5.4 The nouns w occurring most often in the patterns ‘strong w ’ and
‘powerful w .’

have the form A N (where A is either strong or powerful). We have listed
them in table 5.4.

Again, given the simplicity of the method, these results are surpris-
ingly accurate. For example, they give evidence that strong challenge and
powerful computers are correct whereas powerful challenge and strong
computers are not. However, we can also see the limits of a frequency-
based method. The nouns man and force are used with both adjectives
(strong force occurs further down the list with a frequency of 4). A more
sophisticated analysis is necessary in such cases.

Neither strong tea nor powerful tea occurs in our New York Times cor-
pus. However, searching the larger corpus of the World Wide Web we find
799 examples of strong tea and 17 examples of powerful tea (the latter
mostly in the computational linguistics literature on collocations), which
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indicates that the correct phrase is strong tea.2

Justeson and Katz’ method of collocation discovery is instructive in
that it demonstrates an important point. A simple quantitative technique
(the frequency filter in this case) combined with a small amount of lin-
guistic knowledge (the importance of parts of speech) goes a long way. In
the rest of this chapter, we will use a stop list that excludes words whose
most frequent tag is not a verb, noun or adjective.

Exercise 5.1 [«]

Add part-of-speech patterns useful for collocation discovery to table 5.2, includ-
ing patterns longer than two tags.

Exercise 5.2 [«]

Pick a document in which your name occurs (an email, a university transcript or
a letter). Does Justeson and Katz’s filter identify your name as a collocation?

Exercise 5.3 [«]

We used the World Wide Web as an auxiliary corpus above because neither stong
tea nor powerful tea occurred in the New York Times. Modify Justeson and Katz’s
method so that it uses the World Wide Web as a resource of last resort.

5.2 Mean and Variance

Frequency-based search works well for fixed phrases. But many colloca-
tions consist of two words that stand in a more flexible relationship to
one another. Consider the verb knock and one of its most frequent argu-
ments, door. Here are some examples of knocking on or at a door from
our corpus:

(5.1) a. she knocked on his door

b. they knocked at the door

c. 100 women knocked on Donaldson’s door

d. a man knocked on the metal front door

The words that appear between knocked and door vary and the distance
between the two words is not constant so a fixed phrase approach would
not work here. But there is enough regularity in the patterns to allow
us to determine that knock is the right verb to use in English for this
situation, not hit, beat or rap.

2. This search was performed on AltaVista on March 28, 1998.
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Sentence: Stocks crash as rescue plan teeters

Bigrams: stocks crash stocks as stocks rescue
crash as crash rescue crash plan

as rescue as plan as teeters
rescue plan rescue teeters

plan teeters

Figure 5.1 Using a three word collocational window to capture bigrams at a
distance.

A short note is in order here on collocations that occur as a fixed phrase
versus those that are more variable. To simplify matters we only look
at fixed phrase collocations in most of this chapter, and usually at just
bigrams. But it is easy to see how to extend techniques applicable to
bigrams to bigrams at a distance. We define a collocational window (usu-
ally a window of 3 to 4 words on each side of a word), and we enter every
word pair in there as a collocational bigram, as in figure 5.1. We then
proceed to do our calculations as usual on this larger pool of bigrams.

However, the mean and variance based methods described in this sec-
tion by definition look at the pattern of varying distance between two
words. If that pattern of distances is relatively predictable, then we have
evidence for a collocation like knock . . . door that is not necessarily a
fixed phrase. We will return to this point and a more in-depth discussion
of what a collocation is towards the end of this chapter.

One way of discovering the relationship between knocked and door is to
compute the mean and variance of the offsets (signed distances) betweenmean

variance the two words in the corpus. The mean is simply the average offset. For
the examples in (5.1), we compute the mean offset between knocked and
door as follows:

1
4
(3+ 3+ 5+ 5) = 4.0

(This assumes a tokenization of Donaldson’s as three words Donaldson,
apostrophe, and s, which is what we actually did.) If there was an oc-
currence of door before knocked, then it would be entered as a negative
number. For example, −3 for the door that she knocked on. We restrict
our analysis to positions in a window of size 9 around the focal word
knocked.
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The variance measures how much the individual offsets deviate from
the mean. We estimate it as follows.

s2 =
∑n
i=1(di − d̄)2
n− 1

(5.2)

where n is the number of times the two words co-occur, di is the offset for
co-occurrence i, and d̄ is the sample mean of the offsets. If the offset is
the same in all cases, then the variance is zero. If the offsets are randomly
distributed (which will be the case for two words which occur together by
chance, but not in a particular relationship), then the variance will be
high. As is customary, we use the sample deviation s = √s2, the squaresample deviation

root of the variance, to assess how variable the offset between two words
is. The deviation for the four examples of knocked / door in the above
case is 1.15:

s =
√

1
3

(
(3− 4.0)2 + (3− 4.0)2 + (5− 4.0)2 + (5− 4.0)2

) ≈ 1.15

The mean and deviation characterize the distribution of distances be-
tween two words in a corpus. We can use this information to discover
collocations by looking for pairs with low deviation. A low deviation
means that the two words usually occur at about the same distance. Zero
deviation means that the two words always occur at exactly the same
distance.

We can also explain the information that variance gets at in terms of
peaks in the distribution of one word with respect to another. Figure 5.2
shows the three cases we are interested in. The distribution of strong with
respect to opposition has one clear peak at position −1 (corresponding
to the phrase strong opposition). Therefore the variance of strong with
respect to opposition is small (s = 0.67). The mean of −1.15 indicates that
strong usually occurs at position −1 (disregarding the noise introduced
by one occurrence at −4).

We have restricted positions under consideration to a window of size
9 centered around the word of interest. This is because collocations are
essentially a local phenomenon. Note also that we always get a count of
0 at position 0 when we look at the relationship between two different
words. This is because, for example, strong cannot appear in position 0
in contexts in which that position is already occupied by opposition.

Moving on to the second diagram in figure 5.2, the distribution of
strong with respect to support is drawn out, with several negative po-
sitions having large counts. For example, the count of approximately 20
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50

20

frequency
of strong

Position of strong with respect to opposition (d̄ = −1.15, s = 0.67).

−4 −3 −2 −1 0 1 2 3 4

6

-

50

20

frequency
of strong

Position of strong with respect to support (d̄ = −1.45, s = 1.07).

−4 −3 −2 −1 0 1 2 3 4

6

-

50

20

frequency
of strong

Position of strong with respect to for (d̄ = −1.12, s = 2.15).

−4 −3 −2 −1 0 1 2 3 4

6

-

Figure 5.2 Histograms of the position of strong relative to three words.
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s d̄ Count Word 1 Word 2
0.43 0.97 11657 New York
0.48 1.83 24 previous games
0.15 2.98 46 minus points
0.49 3.87 131 hundreds dollars
4.03 0.44 36 editorial Atlanta
4.03 0.00 78 ring New
3.96 0.19 119 point hundredth
3.96 0.29 106 subscribers by
1.07 1.45 80 strong support
1.13 2.57 7 powerful organizations
1.01 2.00 112 Richard Nixon
1.05 0.00 10 Garrison said

Table 5.5 Finding collocations based on mean and variance. Sample deviation
s and sample mean d̄ of the distances between 12 word pairs.

at position −2 is due to uses like strong leftist support and strong busi-
ness support. Because of this greater variability we get a higher s (1.07)
and a mean that is between positions −1 and −2 (−1.45).

Finally, the occurrences of strong with respect to for are more evenly
distributed. There is tendency for strong to occur before for (hence the
negative mean of −1.12), but it can pretty much occur anywhere around
for. The high deviation of s = 2.15 indicates this randomness. This
indicates that for and strong don’t form interesting collocations.

The word pairs in table 5.5 indicate the types of collocations that can
be found by this approach. If the mean is close to 1.0 and the devia-
tion low, as is the case for New York, then we have the type of phrase
that Justeson and Katz’ frequency-based approach will also discover. If
the mean is much greater than 1.0, then a low deviation indicates an in-
teresting phrase. The pair previous / games (distance 2) corresponds to
phrases like in the previous 10 games or in the previous 15 games; minus
/ points corresponds to phrases like minus 2 percentage points, minus
3 percentage points etc; hundreds / dollars corresponds to hundreds of
billions of dollars and hundreds of millions of dollars.

High deviation indicates that the two words of the pair stand in no
interesting relationship as demonstrated by the four high-variance exam-
ples in table 5.5. Note that means tend to be close to zero here as one
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would expect for a uniform distribution. More interesting are the cases
in between, word pairs that have large counts for several distances in
their collocational distribution. We already saw the example of strong
{ business } support in figure 5.2. The alternations captured in the other
three medium-variance examples are powerful { lobbying } organizations,
Richard { M. } Nixon, and Garrison said / said Garrison (remember that
we tokenize Richard M. Nixon as four tokens: Richard, M, ., Nixon).

The method of variance-based collocation discovery that we have in-
troduced in this section is due to Smadja. We have simplified things
somewhat. In particular, Smadja (1993) uses an additional constraint
that filters out ‘flat’ peaks in the position histogram, that is, peaks that
are not surrounded by deep valleys (an example is at −2 for the combi-
nation strong / for in figure 5.2). Smadja (1993) shows that the method
is quite successful at terminological extraction (with an estimated accu-
racy of 80%) and at determining appropriate phrases for natural language
generation (Smadja and McKeown 1990).

Smadja’s notion of collocation is less strict than many others’. The
combination knocked / door is probably not a collocation we want to
classify as terminology – although it may be very useful to identify for
the purpose of text generation. Variance-based collocation discovery is
the appropriate method if we want to find this type of word combination,
combinations of words that are in a looser relationship than fixed phrases
and that are variable with respect to intervening material and relative
position.

5.3 Hypothesis Testing

One difficulty that we have glossed over so far is that high frequency and
low variance can be accidental. If the two constituent words of a frequent
bigram like new companies are frequently occurring words (as new and
companies are), then we expect the two words to co-occur a lot just by
chance, even if they do not form a collocation.

What we really want to know is whether two words occur together more
often than chance. Assessing whether or not something is a chance event
is one of the classical problems of statistics. It is usually couched in terms
of hypothesis testing. We formulate a null hypothesis H0 that there is nonull hypothesis

association between the words beyond chance occurrences, compute the
probability p that the event would occur if H0 were true, and then reject
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H0 if p is too low (typically if beneath a significance level of p < 0.05,significance level

0.01, 0.005, or 0.001) and retain H0 as possible otherwise.3

It is important to note that this is a mode of data analysis where we
look at two things at the same time. As before, we are looking for partic-
ular patterns in the data. But we are also taking into account how much
data we have seen. Even if there is a remarkable pattern, we will discount
it if we haven’t seen enough data to be certain that it couldn’t be due to
chance.

How can we apply the methodology of hypothesis testing to the prob-
lem of finding collocations? We first need to formulate a null hypothesis
which states what should be true if two words do not form a colloca-
tion. For such a free combination of two words we will assume that each
of the words w1 and w2 is generated completely independently of the
other, and so their chance of coming together is simply given by:

P(w1w2) = P(w1)P(w2)

The model implies that the probability of co-occurrence is just the prod-
uct of the probabilities of the individual words. As we discuss at the
end of this section, this is a rather simplistic model, and not empirically
accurate, but for now we adopt independence as our null hypothesis.

5.3.1 The t test

Next we need a statistical test that tells us how probable or improbable it
is that a certain constellation will occur. A test that has been widely used
for collocation discovery is the t test. The t test looks at the mean and
variance of a sample of measurements, where the null hypothesis is that
the sample is drawn from a distribution with mean µ. The test looks at
the difference between the observed and expected means, scaled by the
variance of the data, and tells us how likely one is to get a sample of that
mean and variance (or a more extreme mean and variance) assuming that
the sample is drawn from a normal distribution with mean µ. To deter-
mine the probability of getting our sample (or a more extreme sample),
we compute the t statistic:

t = x̄− µ√
s2

N

(5.3)

3. Significance at a level of 0.05 is the weakest evidence that is normally accepted in the
experimental sciences. The large amounts of data commonly available for Statistical NLP

tasks means the we can often expect to achieve greater levels of significance.
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where x̄ is the sample mean, s2 is the sample variance, N is the sample
size, and µ is the mean of the distribution. If the t statistic is large enough
we can reject the null hypothesis. We can find out exactly how large it has
to be by looking up the table of the t distribution we have compiled in
the appendix (or by using the better tables in a statistical reference book,
or by using appropriate computer software).

Here’s an example of applying the t test. Our null hypothesis is that
the mean height of a population of men is 158cm. We are given a sample
of 200 men with x̄ = 169 and s2 = 2600 and want to know whether this
sample is from the general population (the null hypothesis) or whether it
is from a different population of smaller men. This gives us the following
t according to the above formula:

t = 169− 158√
2600
200

≈ 3.05

If you look up the value of t that corresponds to a confidence level of
α = 0.005, you will find 2.576.4 Since the t we got is larger than 2.576,
we can reject the null hypothesis with 99.5% confidence. So we can say
that the sample is not drawn from a population with mean 158cm, and
our probability of error is less than 0.5%.

To see how to use the t test for finding collocations, let us compute the
t value for new companies. What is the sample that we are measuring the
mean and variance of? There is a standard way of extending the t test
for use with proportions or counts. We think of the text corpus as a
long sequence of N bigrams, and the samples are then indicator random
variables that take on the value 1 when the bigram of interest occurs, and
are 0 otherwise.

Using maximum likelihood estimates, we can compute the probabilities
of new and companies as follows. In our corpus, new occurs 15,828
times, companies 4,675 times, and there are 14,307,668 tokens overall.

P(new) = 15828
14307668

P(companies) = 4675
14307668

4. A sample of 200 means 199 degress of freedom, which corresponds to about the same
t as ∞ degrees of freedom. This is the row of the table where we looked up 2.576.
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The null hypothesis is that occurrences of new and companies are inde-
pendent.

H0 : P(new companies) = P(new)P(companies)

= 15828
14307668

× 4675
14307668

≈ 3.615× 10−7

If the null hypothesis is true, then the process of randomly generating
bigrams of words and assigning 1 to the outcome new companies and
0 to any other outcome is in effect a Bernoulli trial with p = 3.615 ×
10−7 for the probability of new company turning up. The mean for this
distribution is µ = 3.615 × 10−7 and the variance is σ2 = p(1 − p) (see
section 2.1.9), which is approximately p. The approximation σ2 = p(1−
p) ≈ p holds since for most bigrams p is small.

It turns out that there are actually 8 occurrences of new companies
among the 14,307,668 bigrams in our corpus. So, for the sample, we
have that the sample mean is: x̄ = 8

14307668 ≈ 5.591× 10−7. Now we have
everything we need to apply the t test:

t = x̄− µ√
s2

N

≈ 5.59110−7 − 3.61510−7√
5.59110−7

14307668

≈ 0.999932

This t value of 0.999932 is not larger than 2.576, the critical value for
α = 0.005. So we cannot reject the null hypothesis that new and compa-
nies occur independently and do not form a collocation. That seems the
right result here: the phrase new companies is completely compositional
and there is no element of added meaning here that would justify elevat-
ing it to the status of collocation. (The t value is suspiciously close to 1.0,
but that is a coincidence. See exercise 5.5.)

Table 5.6 shows t values for ten bigrams that occur exactly 20 times in
the corpus. For the top five bigrams, we can reject the null hypothesis
that the component words occur independently for α = 0.005, so these
are good candidates for collocations. The bottom five bigrams fail the
test for significance, so we will not regard them as good candidates for
collocations.

Note that a frequency-based method would not be able to rank the ten
bigrams since they occur with exactly the same frequency. Looking at the
counts in table 5.6, we can see that the t test takes into account the num-
ber of co-occurrences of the bigram (C(w1 w2)) relative to the frequencies
of the component words. If a high proportion of the occurrences of both
words (Ayatollah Ruhollah, videocassette recorder) or at least a very high
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t C(w1) C(w2) C(w1 w2) w1 w2

4.4721 42 20 20 Ayatollah Ruhollah
4.4721 41 27 20 Bette Midler
4.4720 30 117 20 Agatha Christie
4.4720 77 59 20 videocassette recorder
4.4720 24 320 20 unsalted butter
2.3714 14907 9017 20 first made
2.2446 13484 10570 20 over many
1.3685 14734 13478 20 into them
1.2176 14093 14776 20 like people
0.8036 15019 15629 20 time last

Table 5.6 Finding collocations: The t test applied to 10 bigrams that occur with
frequency 20.

proportion of the occurrences of one of the words (unsalted) occurs in
the bigram, then its t value is high. This criterion makes intuitive sense.

Unlike most of this chapter, the analysis in table 5.6 includes some
stop words – without stop words, it is actually hard to find examples that
fail significance. It turns out that most bigrams attested in a corpus occur
significantly more often than chance. For 824 out of the 831 bigrams that
occurred 20 times in our corpus the null hypothesis of independence can
be rejected. But we would only classify a fraction as true collocations.
The reason for this surprisingly high proportion of possibly dependent
bigrams (824

831 ≈ 0.99) is that language – if compared with a random word
generator – is very regular so that few completely unpredictable events
happen. Indeed, this is the basis of our ability to perform tasks like
word sense disambiguation and probabilistic parsing that we discuss in
other chapters. The t test and other statistical tests are most useful as
a method for ranking collocations. The level of significance itself is less
useful. In fact, in most publications that we cite in this chapter, the level
of significance is never looked at. All that is used is the scores and the
resulting ranking.

5.3.2 Hypothesis testing of differences

The t test can also be used for a slightly different collocation discovery
problem: to find words whose co-occurrence patterns best distinguish
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t C(w) C(strong w ) C(powerful w ) Word
3.1622 933 0 10 computers
2.8284 2337 0 8 computer
2.4494 289 0 6 symbol
2.4494 588 0 6 machines
2.2360 2266 0 5 Germany
2.2360 3745 0 5 nation
2.2360 395 0 5 chip
2.1828 3418 4 13 force
2.0000 1403 0 4 friends
2.0000 267 0 4 neighbor
7.0710 3685 50 0 support
6.3257 3616 58 7 enough
4.6904 986 22 0 safety
4.5825 3741 21 0 sales
4.0249 1093 19 1 opposition
3.9000 802 18 1 showing
3.9000 1641 18 1 sense
3.7416 2501 14 0 defense
3.6055 851 13 0 gains
3.6055 832 13 0 criticism

Table 5.7 Words that occur significantly more often with powerful (the first ten
words) and strong (the last ten words).

between two words. For example, in computational lexicography we may
want to find the words that best differentiate the meanings of strong and
powerful. This use of the t test was suggested by Church and Hanks
(1989). Table 5.7 shows the ten words that occur most significantly more
often with powerful than with strong (first ten words) and most signif-
icantly more often with strong than with powerful (second set of ten
words).

The t scores are computed using the following extension of the t test
to the comparison of the means of two normal populations:

t = x̄1 − x̄2√
s12

n1
+ s22

n2

(5.4)

Here the null hypothesis is that the average difference is 0 (µ = 0), so we
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have x̄−µ = x̄ = 1
N
∑
(x1i − x2i ) = x̄1 − x̄2. In the denominator we add the

variances of the two populations since the variance of the difference of
two random variables is the sum of their individual variances.

Now we can explain table 5.7. The t values in the table were computed
assuming a Bernoulli distribution (as we did for the basic version of the
t test that we introduced first). If w is the collocate of interest (e.g.,
computers or symbol) and v1 and v2 are the words we are comparing (e.g.,
powerful and strong), then we have x̄1 = s2

1 = P(v1w), x̄2 = s2
2 = P(v2w).

We again use the approximation s2 = p − p2 ≈ p:

t ≈ P(v
1w)− P(v2w)√
P(v1w)+P(v2w)

N

We can simplify this as follows.

t ≈
C(v1w)
N − C(v2w)

N√
C(v1w)+C(v2w)

N2

(5.5)

= C(v1w)− C(v2w)√
C(v1w)+ C(v2w)

where C(x) is the number of times x occurs in the corpus.
The application suggested by Church and Hanks (1989) for this form

of the t test was lexicography. The data in table 5.7 are useful to a lex-
icographer who wants to write precise dictionary entries that bring out
the difference between strong and powerful. Based on significant collo-
cates, Church and Hanks analyze the difference as a matter of intrinsic
vs. extrinsic quality. For example, strong support from a demographic
group means that the group is very committed to the cause in question,
but the group may not have any power. So strong describes an intrinsic
quality. Conversely, a powerful supporter is somebody who actually has
the power to move things. Many of the collocates we found in our cor-
pus support Church and Hanks’ analysis. But there is more complexity to
the difference in meaning between the two words since what is extrinsic
and intrinsic can depend on subtle matters like cultural attitudes. For ex-
ample, we talk about strong tea on the one hand and powerful drugs on
the other, a difference that tells us more about our attitude towards tea
and drugs than about the semantics of the two adjectives (Church et al.
1991: 133).
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w1 = new w1 ≠ new
w2 = companies 8 4667

(new companies) (e.g., old companies)
w2 ≠ companies 15820 14287181

(e.g., new machines) (e.g., old machines)

Table 5.8 A 2-by-2 table showing the dependence of occurrences of new and
companies. There are 8 occurrences of new companies in the corpus, 4,667 bi-
grams where the second word is companies, but the first word is not new, 15,820
bigrams with the first word new and a second word different from companies,
and 14,287,181 bigrams that contain neither word in the appropriate position.

5.3.3 Pearson’s chi-square test

Use of the t test has been criticized because it assumes that probabili-
ties are approximately normally distributed, which is not true in general
(Church and Mercer 1993: 20). An alternative test for dependence which
does not assume normally distributed probabilities is the χ2 test (pro-
nounced ‘chi-square test’). In the simplest case, the χ2 test is applied to
2-by-2 tables like table 5.8. The essence of the test is to compare the
observed frequencies in the table with the frequencies expected for inde-
pendence. If the difference between observed and expected frequencies
is large, then we can reject the null hypothesis of independence.

Table 5.8 shows the distribution of new and companies in the refer-
ence corpus that we introduced earlier. Recall that C(new) = 15,828,
C(companies) = 4,675, C(new companies) = 8, and that there are
14,307,668 tokens in the corpus. That means that the number of bi-
grams wiwi+1 with the first token not being new and the second token
being companies is 4667 = 4675− 8. The two cells in the bottom row are
computed in a similar way.

The χ2 statistic sums the differences between observed and expected
values in all squares of the table, scaled by the magnitude of the expected
values, as follows:

X2 =
∑
i,j

(Oij − Eij)2
Eij

(5.6)

where i ranges over rows of the table, j ranges over columns, Oij is the
observed value for cell (i, j) and Eij is the expected value.

One can show that the quantity X2 is asymptotically χ2 distributed. In
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other words, if the numbers are large, then X2 has a χ2 distribution. We
will return to the issue of how good this approximation is later.

The expected frequencies Eij are computed from the marginal proba-
bilities, that is, from the totals of the rows and columns converted into
proportions. For example, the expected frequency for cell (1,1) (new
companies) would be the marginal probability of new occurring as the
first part of a bigram times the marginal probability of companies occur-
ring as the second part of a bigram (multiplied by the number of bigrams
in the corpus):

8+ 4667
N

× 8+ 15820
N

×N ≈ 5.2

That is, if new and companies occurred completely independently of each
other we would expect 5.2 occurrences of new companies on average for
a text of the size of our corpus.

The χ2 test can be applied to tables of any size, but it has a simpler
form for 2-by-2 tables: (see exercise 5.9)

χ2 = N(O11O22 −O12O21)2

(O11 +O12)(O11 +O21)(O12 +O22)(O21 +O22)
(5.7)

This formula gives the following χ2 value for table 5.8:

14307668(8× 14287181− 4667× 15820)2

(8+ 4667)(8+ 15820)(4667+ 14287181)(15820+ 14287181)
≈ 1.55

Looking up the χ2 distribution in the appendix, we find that at a proba-
bility level of α = 0.05 the critical value is χ2 = 3.841 (the statistic has
one degree of freedom for a 2-by-2 table). So we cannot reject the null
hypothesis that new and companies occur independently of each other.
Thus new companies is not a good candidate for a collocation.

This result is the same as we got with the t statistic. In general, for the
problem of finding collocations, the differences between the t statistic
and the χ2 statistic do not seem to be large. For example, the 20 bigrams
with the highest t scores in our corpus are also the 20 bigrams with the
highest χ2 scores.

However, the χ2 test is also appropriate for large probabilities, for
which the normality assumption of the t test fails. This is perhaps the
reason that the χ2 test has been applied to a wider range of problems in
collocation discovery.

One of the early uses of the χ2 test in Statistical NLP was the identifi-
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cow ¬ cow
vache 59 6
¬ vache 8 570934

Table 5.9 Correspondence of vache and cow in an aligned corpus. By applying
the χ2 test to this table one can determine whether vache and cow are transla-
tions of each other.

corpus 1 corpus 2
word 1 60 9
word 2 500 76
word 3 124 20

. . .

Table 5.10 Testing for the independence of words in different corpora using χ2.
This test can be used as a metric for corpus similarity.

cation of translation pairs in aligned corpora (Church and Gale 1991b).5

The data in table 5.9 (from a hypothetical aligned corpus) strongly sug-
gest that vache is the French translation of English cow. Here, 59 is the
number of aligned sentence pairs which have cow in the English sentence
and vache in the French sentence etc. The χ2 value is very high here:
χ2 = 456400. So we can reject the null hypothesis that cow and vache
occur independently of each other with high confidence. This pair is a
good candidate for a translation pair.

An interesting application of χ2 is as a metric for corpus similarity
(Kilgarriff and Rose 1998). Here we compile an n-by-two table for a large
n, for example n = 500. The two columns correspond to the two corpora.
Each row corresponds to a particular word. This is schematically shown
in table 5.10. If the ratio of the counts are about the same (as is the case
in table 5.10, each word occurs roughly 6 times more often in corpus 1
than in corpus 2), then we cannot reject the null hypothesis that both
corpora are drawn from the same underlying source. We can interpret
this as a high degree of similarity. On the other hand, if the ratios vary
wildly, then the X2 score will be high and we have evidence for a high
degree of dissimilarity.

5. They actually use a measure they call φ2, which is X2 multiplied by N . They do this
since they are only interested in ranking translation pairs, so that assessment of signifi-
cance is not important.
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H1 H2

P(w2|w1) p = c2
N p1 = c12

c1
P(w2|¬w1) p = c2

N p2 = c2−c12
N−c1

c12 out of c1 bigrams are w1w2 b(c12; c1, p) b(c12; c1, p1)
c2 − c12 out of N − c1 bigrams are ¬w1w2 b(c2 − c12; N − c1, p) b(c2 − c12; N − c1, p2)

Table 5.11 How to compute Dunning’s likelihood ratio test. For example, the
likelihood of hypothesis H2 is the product of the last two lines in the rightmost
column.

Just as application of the t test is problematic because of the under-
lying normality assumption, so is application of χ2 in cases where the
numbers in the 2-by-2 table are small. Snedecor and Cochran (1989: 127)
advise against using χ2 if the total sample size is smaller than 20 or if it
is between 20 and 40 and the expected value in any of the cells is 5 or
less.

5.3.4 Likelihood ratios

Likelihood ratios are another approach to hypothesis testing. We will see
below that they are more appropriate for sparse data than the χ2 test.
But they also have the advantage that the statistic we are computing, a
likelihood ratio, is more interpretable than the X2 statistic. It is simplylikelihood ratio

a number that tells us how much more likely one hypothesis is than the
other.

In applying the likelihood ratio test to collocation discovery, we ex-
amine the following two alternative explanations for the occurrence fre-
quency of a bigram w1w2 (Dunning 1993):

� Hypothesis 1. P(w2|w1) = p = P(w2|¬w1)

� Hypothesis 2. P(w2|w1) = p1 ≠ p2 = P(w2|¬w1)

Hypothesis 1 is a formalization of independence (the occurrence of w2 is
independent of the previous occurrence of w1), Hypothesis 2 is a formal-
ization of dependence which is good evidence for an interesting colloca-
tion.6

6. We assume that p1 � p2 if Hypothesis 2 is true. The case p1 � p2 is rare and we will
ignore it here.
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We use the usual maximum likelihood estimates for p, p1 and p2 and
write c1, c2, and c12 for the number of occurrences of w1, w2 and w1w2

in the corpus:

p = c2
N

p1 = c12
c1 p2 = c2 − c12

N − c1(5.8)

Assuming a binomial distribution:

b(k; n, x) =
(
n
k

)
xk(1− x)(n−k)(5.9)

the likelihood of getting the counts for w1, w2 and w1w2 that we actually
observed is then L(H1) = b(c12; c1, p)b(c2 − c12; N − c1, p) for Hypothe-
sis 1 and L(H2) = b(c12; c1, p1)b(c2−c12; N−c1, p2) for Hypothesis 2. Ta-
ble 5.11 summarizes this discussion. One obtains the likelihoods L(H1)
and L(H2) just given by multiplying the last two lines, the likelihoods of
the specified number of occurrences of w1w2 and ¬w1w2, respectively.

The log of the likelihood ratio λ is then as follows:

logλ = log
L(H1)
L(H2)

(5.10)

= log
b(c12, c1, p)b(c2 − c12, N − c1, p)
b(c12, c1, p1)b(c2 − c12, N − c1, p2)

= logL(c12, c1, p)+ logL(c2 − c12, N − c1, p)
− logL(c12, c1, p1)− logL(c2 − c12, N − c1, p2)

where L(k, n, x) = xk(1− x)n−k.
Table 5.12 shows the twenty bigrams of powerful which are highest

ranked according to the likelihood ratio when the test is applied to the
New York Times corpus. We will explain below why we show the quantity
−2 logλ instead of λ. We consider all occurring bigrams here, including
rare ones that occur less than six times, since this test works well for
rare bigrams. For example, powerful cudgels, which occurs 2 times, is
identified as a possible collocation.

One advantage of likelihood ratios is that they have a clear intuitive in-
terpretation. For example, the bigram powerful computers is e0.5×82.96 ≈
1.3×1018 times more likely under the hypothesis that computers is more
likely to follow powerful than its base rate of occurrence would suggest.
This number is easier to interpret than the scores of the t test or the
χ2 test which we have to look up in a table.
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−2 logλ C(w1) C(w2) C(w1w2) w1 w2

1291.42 12593 932 150 most powerful
99.31 379 932 10 politically powerful
82.96 932 934 10 powerful computers
80.39 932 3424 13 powerful force
57.27 932 291 6 powerful symbol
51.66 932 40 4 powerful lobbies
51.52 171 932 5 economically powerful
51.05 932 43 4 powerful magnet
50.83 4458 932 10 less powerful
50.75 6252 932 11 very powerful
49.36 932 2064 8 powerful position
48.78 932 591 6 powerful machines
47.42 932 2339 8 powerful computer
43.23 932 16 3 powerful magnets
43.10 932 396 5 powerful chip
40.45 932 3694 8 powerful men
36.36 932 47 3 powerful 486
36.15 932 268 4 powerful neighbor
35.24 932 5245 8 powerful political
34.15 932 3 2 powerful cudgels

Table 5.12 Bigrams of powerful with the highest scores according to Dunning’s
likelihood ratio test.

But the likelihood ratio test also has the advantage that it can be more
appropriate for sparse data than the χ2 test. How do we use the likeli-
hood ratio for hypothesis testing? If λ is a likelihood ratio of a particular
form, then the quantity −2 logλ is asymptotically χ2 distributed (Mood
et al. 1974: 440). So we can use the values in table 5.12 to test the null
hypothesisH1 against the alternative hypothesisH2. For example, we can
look up the value of 34.15 for powerful cudgels in the table and reject H1

for this bigram on a confidence level of α = 0.005. (The critical value (for
one degree of freedom) is 7.88. See the table of the χ2 distribution in the
appendix.)

The particular form of the likelihood ratio that is required here is that
of a ratio between the maximum likelihood estimate over a subpart of
the parameter space and the maximum likelihood estimate over the en-
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tire parameter space. For the likelihood ratio in (5.11), the entire space
is the space of pairs (p1, p2) for the probability of w2 occurring when w1

preceded (p1) and w2 occurring when a different word preceded (p2). We
get the maximum likelihood for the data we observed if we assume the
maximum likelihood estimates that we computed in (5.8). The subspace
is the subset of cases for which p1 = p2. Again, the estimate in (5.8)
gives us the maximum likelihood over the subspace given the data we ob-
served. It can be shown that if λ is a ratio of two likelihoods of this type
(one being the maximum likelihood over the subspace, the other over the
entire space), then −2 logλ is asymptotically χ2 distributed. ‘Asymptot-
ically’ roughly means ‘if the numbers are large enough’. Whether or not
the numbers are large enough in a particular case is hard to determine,
but Dunning has shown that for small counts the approximation to χ2

is better for the likelihood ratio in (5.11) than, for example, for the X2

statistic in (5.6). Therefore, the likelihood ratio test is in general more
appropriate than Pearson’s χ2 test for collocation discovery.7

Relative frequency ratios. So far we have looked at evidence for collo-
cations within one corpus. Ratios of relative frequencies between two orrelative

frequencies more different corpora can be used to discover collocations that are char-
acteristic of a corpus when compared to other corpora (Damerau 1993).
Although ratios of relative frequencies do not fit well into the hypothe-
sis testing paradigm, we treat them here since they can be interpreted as
likelihood ratios.

Table 5.13 shows ten bigrams that occur exactly twice in our reference
corpus (the 1990 New York Times corpus). The bigrams are ranked ac-
cording to the ratio of their relative frequencies in our 1990 reference
corpus versus their frequencies in a 1989 corpus (again drawn from the
months August through November). For example, Karim Obeid occurs 68
times in the 1989 corpus. So the relative frequency ratio r is:

r =
2

14307668
68

11731564

≈ 0.024116

The bigrams in table 5.13 are mostly associated with news items that
were more prevalent in 1989 than in 1990: The Muslim cleric Sheik Abdul

7. However, even −2 logλ is not approximated well by χ2 if the expected values in the
2-by-2 contingency table are less than 1.0 (Read and Cressie 1988; Pedersen 1996).
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Ratio 1990 1989 w1 w2

0.0241 2 68 Karim Obeid
0.0372 2 44 East Berliners
0.0372 2 44 Miss Manners
0.0399 2 41 17 earthquake
0.0409 2 40 HUD officials
0.0482 2 34 EAST GERMANS
0.0496 2 33 Muslim cleric
0.0496 2 33 John Le
0.0512 2 32 Prague Spring
0.0529 2 31 Among individual

Table 5.13 Damerau’s frequency ratio test. Ten bigrams that occurred twice
in the 1990 New York Times corpus, ranked according to the (inverted) ratio of
relative frequencies in 1989 and 1990.

Karim Obeid (who was abducted in 1989), the disintegration of commu-
nist Eastern Europe (East Berliners, EAST GERMANS, Prague Spring), the
novel The Russia House by John Le Carre, a scandal in the Department of
Housing and Urban Development (HUD), and the October 17 earthquake
in the San Francisco Bay Area. But we also find artefacts like Miss Manners
(whose column the New York Times newswire stopped carrying in 1990)
and Among individual. The reporter Phillip H. Wiggins liked to use the
latter phrase for his stock market reports (Among individual Big Board
issues . . . ), but he stopped writing for the Times in 1990.

The examples show that frequency ratios are mainly useful to find
subject-specific collocations. The application proposed by Damerau is to
compare a general text with a subject-specific text. Those words and
phrases that on a relative basis occur most often in the subject-specific
text are likely to be part of the vocabulary that is specific to the domain.

Exercise 5.4 [««]

Identify the most significantly non-independent bigrams according to the t test
in a corpus of your choice.

Exercise 5.5 [«]

It is a coincidence that the t value for new companies is close to 1.0. Show this by
computing the t value of new companies for a corpus with the following counts.
C(new) = 30,000, C(companies) = 9,000, C(new companies) = 20, and corpus
size N = 15,000,000.
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Exercise 5.6 [«]

We can improve on the method in section 5.2 by taking into account variance. In
fact, Smadja does this and the algorithm described in (Smadja 1993) therefore
bears some similarity to the t test.

Compute the t statistic in equation (5.3) for possible collocations by substituting
mean and variance as computed in section 5.2 for x̄ and s2 and (a) assuming
µ = 0, and (b) assuming µ = round(x̄), that is, the closest integer. Note that we
are not testing for bigrams here, but for collocations of word pairs that occur at
any fixed small distance.

Exercise 5.7 [««]

As we pointed out above, almost all bigrams occur significantly more often than
chance if a stop list is used for prefiltering. Verify that there is a large proportion
of bigrams that occur less often than chance if we do not filter out function
words.

Exercise 5.8 [««]

Apply the t test of differences to a corpus of your choice. Work with the follow-
ing word pairs or with word pairs that are appropriate for your corpus: man /
woman, blue / green, lawyer / doctor.

Exercise 5.9 [«]

Derive equation (5.7) from equation (5.6).

Exercise 5.10 [««]

Find terms that distinguish best between the first and second part of a corpus
of your choice.

Exercise 5.11 [««]

Repeat the above exercise with random selection. Now you should find that
fewer terms are significant. But some still are. Why? Shouldn’t there be no
differences between corpora drawn from the same source? Do this exercise for
different significance levels.

Exercise 5.12 [««]

Compute a measure of corpus similarity between two corpora of your choice.

Exercise 5.13 [««]

Kilgarriff and Rose’s corpus similarity measure can also be used for assessing
corpus homogeneity. This is done by constructing a series of random divisions
of the corpus into a pair of subcorpora. The test is then applied to each pair. If
most of the tests indicated similarity, then it is a homogeneous corpus. Apply
this test to a corpus of your choice.
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I(w1, w2) C(w1) C(w2) C(w1 w2) w1 w2

18.38 42 20 20 Ayatollah Ruhollah
17.98 41 27 20 Bette Midler
16.31 30 117 20 Agatha Christie
15.94 77 59 20 videocassette recorder
15.19 24 320 20 unsalted butter
1.09 14907 9017 20 first made
1.01 13484 10570 20 over many
0.53 14734 13478 20 into them
0.46 14093 14776 20 like people
0.29 15019 15629 20 time last

Table 5.14 Finding collocations: Ten bigrams that occur with frequency 20,
ranked according to mutual information.

5.4 Mutual Information

An information-theoretically motivated measure for discovering inter-
esting collocations is pointwise mutual information (Church et al. 1991;pointwise mutual

information Church and Hanks 1989; Hindle 1990). Fano (1961: 27–28) originally de-
fined mutual information between particular events x′ and y ′, in our case
the occurrence of particular words, as follows:

I(x′, y ′) = log2
P(x′y ′)
P(x′)P(y′)

(5.11)

= log2
P(x′|y ′)
P(x′)

(5.12)

= log2
P(y′|x′)
P(y′)

(5.13)

This type of mutual information, which we introduced in section 2.2.3,
is roughly a measure of how much one word tells us about the other, a
notion that we will make more precise shortly.

In information theory, mutual information is more often defined as
holding between random variables, not values of random variables as we
have defined it here (see the standard definition in section 2.2.3). We will
see below that these two types of mutual information are quite different
creatures.

When we apply this definition to the 10 collocations from table 5.6, we
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chambre ¬ chambre
house 31,950 12,004

¬ house 4793 848,330

MI

4.1

χ2

553610
communes ¬ communes

house 4974 38,980
¬ house 441 852,682 4.2 88405

Table 5.15 Correspondence of chambre and house and communes and house
in the aligned Hansard corpus. Mutual information gives a higher score to (com-
munes,house), while the χ2 test gives a higher score to the correct translation
pair (chambre,house).

get the same ranking as with the t test (see table 5.14). As usual, we use
maximum likelihood estimates to compute the probabilities, for example:

I(Ayatollah,Ruhollah) = log2

20
14307668

42
14307668 × 20

14307668

≈ 18.38

So what exactly is (pointwise) mutual information, I(x′, y ′), a measure of?
Fano writes about definition (5.12):

The amount of information provided by the occurrence of the event
represented by [y′] about the occurrence of the event represented
by [x′] is defined as [(5.12)].

For example, the mutual information measure tells us that the amount
of information we have about the occurrence of Ayatollah at position i in
the corpus increases by 18.38 bits if we are told that Ruhollah occurs at
position i + 1. Or, since (5.12) and (5.13) are equivalent, it also tells us
that the amount of information we have about the occurrence of Ruhollah
at position i + 1 in the corpus increases by 18.38 bits if we are told that
Ayatollah occurs at position i. We could also say that our uncertainty is
reduced by 18.38 bits. In other words, we can be much more certain that
Ruhollah will occur next if we are told that Ayatollah is the current word.

Unfortunately, this measure of ‘increased information’ is in many cases
not a good measure of what an interesting correspondence between two
events is, as has been pointed out by many authors. (We base our dis-
cussion here mainly on (Church and Gale 1991b) and (Maxwell 1992).)
Consider the two examples in table 5.15 of counts of word correspon-
dences between French and English sentences in the Hansard corpus, an
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aligned corpus of debates of the Canadian parliament (the table is simi-
lar to table 5.9). The reason that house frequently appears in translations
of French sentences containing chambre and communes is that the most
common use of house in the Hansard is the phrase House of Commons
which corresponds to Chambre de communes in French. But it is easy
to see that communes is a worse match for house than chambre since
most occurrences of house occur without communes on the French side.
As shown in the table, the χ2 test is able to infer the correct correspon-
dence whereas mutual information gives preference to the incorrect pair
(communes,house).

We can explain the difference between the two measures easily if we
look at definition (5.12) of mutual information and compare the quanti-
ties I(chambre,house) and I(communes,house):

log
P(house|chambre)

P(house)
= log

31950
31950+4793

P(house)
≈ log

0.87
P(house)

< log
0.92

P(house)
≈ log

4974
4974+441

P(house)
= log

P(house|communes)
P(house)

The word communes in the French makes it more likely that house oc-
curred in the English than chambre does. The higher mutual information
value for communes reflects the fact that communes causes a larger de-
crease in uncertainty here. But as the example shows decrease in uncer-
tainty does not correspond well to what we want to measure. In contrast,
the χ2 is a direct test of probabilistic dependence, which in this context
we can interpret as the degree of association between two words and
hence as a measure of their quality as translation pairs and collocations.

Table 5.16 shows a second problem with using mutual information for
finding collocations. We show ten bigrams that occur exactly once in
the first 1000 documents of the reference corpus and their mutual infor-
mation score based on the 1000 documents. The right half of the table
shows the mutual information score based on the entire reference corpus
(about 23,000 documents).

The larger corpus of 23,000 documents makes some better estimates
possible, which in turn leads to a slightly better ranking. The bigrams
marijuana growing and new converts (arguably collocations) have moved
up and Reds survived (definitely not a collocation) has moved down. How-
ever, what is striking is that even after going to a 10 times larger corpus
6 of the bigrams still only occur once and, as a consequence, have in-
accurate maximum likelihood estimates and artificially inflated mutual
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I1000 w1 w2 w1w2 Bigram I23000 w1 w2 w1w2 Bigram
16.95 5 1 1 Schwartz eschews 14.46 106 6 1 Schwartz eschews
15.02 1 19 1 fewest visits 13.06 76 22 1 FIND GARDEN
13.78 5 9 1 FIND GARDEN 11.25 22 267 1 fewest visits
12.00 5 31 1 Indonesian pieces 8.97 43 663 1 Indonesian pieces
9.82 26 27 1 Reds survived 8.04 170 1917 6 marijuana growing
9.21 13 82 1 marijuana growing 5.73 15828 51 3 new converts
7.37 24 159 1 doubt whether 5.26 680 3846 7 doubt whether
6.68 687 9 1 new converts 4.76 739 713 1 Reds survived
6.00 661 15 1 like offensive 1.95 3549 6276 6 must think
3.81 159 283 1 must think 0.41 14093 762 1 like offensive

Table 5.16 Problems for Mutual Information from data sparseness. The table
shows ten bigrams that occurred once in the first 1000 documents in the ref-
erence corpus ranked according to mutual information score in the first 1000
documents (left half of the table) and ranked according to mutual information
score in the entire corpus (right half of the table). These examples illustrate that
a large proportion of bigrams are not well characterized by corpus data (even for
large corpora) and that mutual information is particularly sensitive to estimates
that are inaccurate due to sparseness.

information scores. All 6 are not collocations and we would prefer a
measure which ranks them accordingly.

None of the measures we have seen works very well for low-frequency
events. But there is evidence that sparseness is a particularly difficult
problem for mutual information. To see why, notice that mutual infor-
mation is a log likelihood ratio of the probability of the bigram P(w1w2)
and the product of the probabilities of the individual words P(w1)P(w2).
Consider two extreme cases: perfect dependence of the occurrences of
the two words (they only occur together) and perfect independence (the
occurrence of one does not give us any information about the occurrence
of the other). For perfect dependence we have:

I(x, y) = log
P(xy)
P(x)P(y)

= log
P(x)

P(x)P(y)
= log

1
P(y)

That is, among perfectly dependent bigrams, as they get rarer, their mu-
tual information increases.

For perfect independence we have:

I(x, y) = log
P(xy)
P(x)P(y)

= log
P(x)P(y)
P(x)P(y)

= log 1 = 0
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Symbol Definition Current use Fano

I(x, y) log p(x,y)
p(x)p(y) pointwise mutual information mutual information

I(X; Y) E log p(X,Y)
p(X)p(Y) mutual information average MI/expectation of MI

Table 5.17 Different definitions of mutual information in (Cover and Thomas
1991) and (Fano 1961).

We can say that mutual information is a good measure of independence.
Values close to 0 indicate independence (independent of frequency). But
it is a bad measure of dependence because for dependence the score
depends on the frequency of the individual words. Other things being
equal, bigrams composed of low-frequency words will receive a higher
score than bigrams composed of high-frequency words. That is the oppo-
site of what we would want a good measure to do since higher frequency
means more evidence and we would prefer a higher rank for bigrams for
whose interestingness we have more evidence. One solution that has been
proposed for this is to use a cutoff and to only look at words with a fre-
quency of at least 3. However, such a move does not solve the underlying
problem, but only ameliorates its effects.

Since pointwise mutual information does not capture the intuitive no-
tion of an interesting collocation very well, it is often not used when it is
made available in practical applications (Fontenelle et al. 1994: 81) or it is
redefined as C(w1w2)I(w1, w2) to compensate for the bias of the origi-
nal definition in favor of low-frequency events (Fontenelle et al. 1994: 72,
Hodges et al. 1996).

As we mentioned earlier, the definition of mutual information used
here is common in corpus linguistic studies, but is less common in Infor-
mation Theory. Mutual information in Information Theory refers to the
expectation of the quantity that we have used in this section:expectation

I(X; Y) = Ep(x,y) log
p(X, Y)

p(X)p(Y)

The definition we have used in this chapter is an older one, termed point-
wise mutual information (see section 2.2.3, Fano 1961: 28, and Gallager
1968). Table 5.17 summarizes the older and newer naming conventions.
One quantity is the expectation of the other, so the two types of mutual
information are quite different.

The example of mutual information demonstrates what should be self-
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evident: it is important to check what a mathematical concept is a for-
malization of. The notion of pointwise mutual information that we have

used here
(
log p(w1w2)

p(w1)p(w2)
)

measures the reduction of uncertainty about
the occurrence of one word when we are told about the occurrence of the
other. As we have seen, such a measure is of limited utility for acquiring
the types of linguistic properties we have looked at in this section.

Exercise 5.14 [««]

Justeson and Katz’s part-of-speech filter in section 5.1 can be applied to any of
the other methods of collocation discovery in this chapter. Pick one and modify
it to incorporate a part-of-speech filter. What advantages does the modified
method have?

Exercise 5.15 [«««]

Design and implement a collocation discovery tool for a translator’s workbench.
Pick either one method or a combination of methods that the translator can
choose from.

Exercise 5.16 [«««]

Design and implement a collocation discovery tool for a lexicographer’s work-
bench. Pick either one method or a combination of methods that the lexicogra-
pher can choose from.

Exercise 5.17 [«««]

Many news services tag references to companies in their news stories. For ex-
ample, all references to the General Electric Company would be tagged with the
same tag regardless of which variant of the name is used (e.g., GE, General Elec-
tric, or General Electric Company). Design and implement a collocation discovery
tool for finding company names. How could one partially automate the process
of identifying variants?

5.5 The Notion of Collocation

The notion of collocation may be confusing to readers without a back-
ground in linguistics. We will devote this section to discussing in more
detail what a collocation is.

There are actually different definitions of the notion of collocation.
Some authors in the computational and statistical literature define a col-
location as two or more consecutive words with a special behavior, for
example Choueka (1988):

[A collocation is defined as] a sequence of two or more consecutive
words, that has characteristics of a syntactic and semantic unit,
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and whose exact and unambiguous meaning or connotation cannot
be derived directly from the meaning or connotation of its compo-
nents.

Most of the examples we have presented in this chapter also assumed
adjacency of words. But in most linguistically oriented research, a phrase
can be a collocation even if it is not consecutive (as in the example knock
. . . door). The following criteria are typical of linguistic treatments of
collocations (see for example Benson (1989) and Brundage et al. (1992)),
non-compositionality being the main one we have relied on here.

� Non-compositionality. The meaning of a collocation is not a straight-
forward composition of the meanings of its parts. Either the meaning
is completely different from the free combination (as in the case of id-
ioms like kick the bucket) or there is a connotation or added element of
meaning that cannot be predicted from the parts. For example, white
wine, white hair and white woman all refer to slightly different colors,
so we can regard them as collocations.

� Non-substitutability. We cannot substitute other words for for the
components of a collocation even if, in context, they have the same
meaning. For example, we can’t say yellow wine instead of white wine
even though yellow is as good a description of the color of white wine
as white is (it is kind of a yellowish white).

� Non-modifiability. Many collocations cannot be freely modified with
additional lexical material or through grammatical transformations.
This is especially true for frozen expressions like idioms. For example,
we can’t modify frog in to get a frog in one’s throat into to get an ugly
frog in one’s throat although usually nouns like frog can be modified
by adjectives like ugly. Similarly, going from singular to plural can
make an idiom ill-formed, for example in people as poor as church
mice.

A nice way to test whether a combination is a collocation is to translate
it into another language. If we cannot translate the combination word by
word, then that is evidence that we are dealing with a collocation. For
example, translating make a decision into French one word at a time we
get faire une décision which is incorrect. In French we have to say prendre
une décision. So that is evidence that make a decision is a collocation in
English.
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strength power
to build up ~ to assume ~
to find ~ emergency ~
to save ~ discretionary ~
to sap somebody’s ~ ~ over [several provinces]
brute ~ supernatural ~
tensile ~ to turn off the ~
the ~ to [do X] the ~ to [do X]
[our staff was] at full ~ the balance of ~
on the ~ of [your recommendation] fire ~

Table 5.18 Collocations in the BBI Combinatory Dictionary of English for the
words strength and power.

Some authors have generalized the notion of collocation even further
and included cases of words that are strongly associated with each other,
but do not necessarily occur in a common grammatical unit and with a
particular order, cases like doctor – nurse or plane – airport. It is prob-
ably best to restrict collocations to the narrower sense of grammatically
bound elements that occur in a particular order and use the terms associ-association

ation and co-occurrence for the more general phenomenon of words thatco-occurrence

are likely to be used in the same context.
It is instructive to look at the types of collocations that a purely lin-

guistic analysis of text will discover if plenty of time and person power
is available so that the limitations of statistical analysis and computer
technology need be of no concern. An example of such a purely linguistic
analysis is the BBI Combinatory Dictionary of English (Benson et al. 1993).
In table 5.18, we show some of the collocations (or combinations as the
dictionary prefers to call them) of strength and power that the diction-
ary lists.8 We can see immediately that a wider variety of grammatical
patterns is considered here (in particular patterns involving prepositions
and particles). Naturally, the quality of the collocations is also higher
than computer-generated lists – as we would expect from a manually
produced compilation.

We conclude our discussion of the concept of collocation by going
through some subclasses of collocations that deserve special mention.

8. We cannot show collocations of strong and powerful because these adjectives are not
listed as entries in the dictionary.
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Verbs with little semantic content like make, take and do are called lightlight verbs

verbs in collocations like make a decision or do a favor. There is hardly
anything about the meaning of make, take or do that would explain why
we have to say make a decision instead of take a decision and do a fa-
vor instead of make a favor, but for many computational purposes the
correct light verb for combination with a particular noun must be deter-
mined and thus acquired from corpora if this information is not available
in machine-readable dictionaries. Dras and Johnson (1996) examine one
approach to this problem.

Verb particle constructions or phrasal verbs are an especially importantverb particle

constructions

phrasal verbs

part of the lexicon of English. Many verbs in English like to tell off and
to go down consist of a combination of a main verb and a particle. These
verbs often correspond to a single lexeme in other languages (répriman-
der, descendre in French). This type of construction is a good example of
a collocation with often non-adjacent words.

Proper nouns (also called proper names) are usually included in theproper names

category of collocations in computational work although they are quite
different from lexical collocations. They are most amenable to ap-
proaches that look for fixed phrases that reappear in exactly the same
form throughout a text.

Terminological expressions or phrases refer to concepts and objects interminological

expressions technical domains. Although they are often fairly compositional (e.g., hy-
draulic oil filter), it is still important to identify them to make sure that
they are treated consistently throughout a technical text. For example,
when translating a manual, we have to make sure that all instances of
hydraulic oil filter are translated by the same term. If two different trans-
lations are used (even if they have the same meaning in some sense), the
reader of the translated manual could get confused and think that two
different entities are being described.

As a final example of the wide range of phenomena that the term col-
location is applied to, let us point to the many different degrees of in-
variability that a collocation can show. At one extreme of the spectrum
we have usage notes in dictionaries that describe subtle differences in us-
age between near-synonyms like answer and reply (diplomatic answer vs.
stinging reply). This type of collocation is important for generating text
that sounds natural, but getting a collocation wrong here is less likely
to lead to a fatal error. The other extreme are completely frozen ex-
pressions like proper names and idioms. Here there is just one way of
saying things and any deviation will completely change the meaning of
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what is said. Luckily, the less compositional and the more important a
collocation, the easier it is to acquire it automatically.

5.6 Further Reading

See (Stubbs 1996) for an in-depth discussion of the British tradition of
‘empiricist’ linguistics.

The t test is covered in most general statistics books. Standard ref-
erences are (Snedecor and Cochran 1989: 53) and (Moore and McCabe
1989: 541). Weinberg and Goldberg (1990: 306) and Ramsey and Schafer
(1997) are more accessible for students with less mathematical back-
ground. These books also cover the χ2 test, but not some of the other
more specialized tests that we discuss here.

One of the first publications on the discovery of collocations was
(Church and Hanks 1989), later expanded to (Church et al. 1991). The au-
thors drew attention to an emerging type of corpus-based dictionary (Sin-
clair 1995) and developed a program of computational lexicography that
combines corpus evidence, computational methods and human judge-
ment to build more comprehensive dictionaries that better reflect actual
language use.

There are a number of ways lexicographers can benefit from automated
processing of corpus data. A lexicographer writes a dictionary entry after
looking at a potentially large number of examples of a word. If the ex-
amples are automatically presorted according to collocations and other
criteria (for example, the topic of the text), then this process can be made
much more efficient. For example, phrasal verbs are sometimes neglected
in dictionaries because they are not separate words. A corpus-based ap-
proach will make their importance evident to the lexicographer. In addi-
tion, a balanced corpus will reveal which of the uses are most frequent
and hence most important for the likely user of a dictionary. Difference
tests like the t test are useful for writing usage notes and for writing ac-
curate definitions that reflect differences in usage between words. Some
of these techniques are being used for the next generation of dictionaries
(Fontenelle et al. 1994).

Eventually, a new form of dictionary could emerge from this work,
a kind of dictionary-cum-corpus in which dictionary entry and corpus
evidence support each other and are organized in a coherent whole. The
COBUILD dictionary already has some of these characteristics (Sinclair
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1995). Since space is less of an issue with electronic dictionaries plenty
of corpus examples can be integrated into a dictionary entry for the in-
terested user.

What we have said about the value of statistical corpus analysis for
monolingual dictionaries applies equally to bilingual dictionaries, at least
if an aligned corpus is available (Smadja et al. 1996).

Another important application of collocations is Information Retrieval
(IR). Accuracy of retrieval can be improved if the similarity between a
user query and a document is determined based on common collocations
(or phrases) instead of common words (Fagan 1989; Evans et al. 1991;
Strzalkowski 1995; Mitra et al. 1997). See Lewis and Jones (1996) and
Krovetz (1991) for further discussion of the question of using colloca-
tion discovery and NLP in Information Retrieval and Nevill-Manning et al.
(1997) for an alternative non-statistical approach to using phrases in IR.
Steier and Belew (1993) present an interesting study of how the treat-
ment of phrases (for example, for phrase weighting) should change as
we move from a subdomain to a general domain. For example, invasive
procedure is completely compositional and a less interesting collocation
in the subdomain of medical articles, but becomes interesting and non-
compositional when ‘exported’ to a general collection that is a mixture of
many specialized domains.

Two other important applications of collocations, which we will just
mention, are natural language generation (Smadja 1993) and cross-
language information retrieval (Hull and Grefenstette 1998).

An important area that we haven’t been able to cover is the discovery
of proper nouns, which can be regarded as a kind of collocation. Proper
nouns cannot be exhaustively covered in dictionaries since new people,
places, and other entities come into existence and are named all the
time. Proper nouns also present their own set of challenges: co-reference
(How can we tell that IBM and International Bureau Machines refer to the
same entity?), disambiguation (When does AMEX refer to the American Ex-
change, when to American Express?), and classification (Is this new entity
that the text refers to the name of a person, a location or a company?).
One of the earliest studies on this topic is (Coates-Stephens 1993). Mc-
Donald (1995) focuses on lexicosemantic patterns that can be used as
cues for proper noun detection and classification. Mani and MacMillan
(1995) and Paik et al. (1995) propose ways of classifying proper nouns
according to type.

One frequently used measure for interestingness of collocations that
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we did not cover is the z score, a close relative of the t test. It is used inz score

several software packages and workbenches for text analysis (Fontenelle
et al. 1994; Hawthorne 1994). The z score should only be applied when
the variance is known, which arguably is not the case in most Statistical
NLP applications.

Fisher’s exact test is another statistical test that can be used for judging
how unexpected a set of observations is. In contrast to the t test and the
χ2 test, it is appropriate even for very small counts. However, it is hard
to compute, and it is not clear whether the results obtained in practice
are much different from, for example, the χ2 test (Pedersen 1996).

Yet another approach to discovering collocations is to search for points
in the word stream with either low or high uncertainty as to what the next
(or previous) word will be. Points with high uncertainty are likely to be
phrase boundaries, which in turn are candidates for points where a col-
location may start or end, whereas points with low uncertainty are likely
to be located within a collocation. See (Evans and Zhai 1996) and (Shimo-
hata et al. 1997) for two approaches that use this type of information for
finding phrases and collocations.
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