
This excerpt from

Foundations of Statistical Natural Language Processing.
Christopher D. Manning and Hinrich Schütze.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

p

i i

6 Statistical Inference: n-gram

Models over Sparse Data

Statistical NLP aims to do statistical inference for the field of natu-
ral language. Statistical inference in general consists of taking some datastatistical

inference (generated in accordance with some unknown probability distribution)
and then making some inferences about this distribution. For example,
we might look at lots of instances of prepositional phrase attachments
in a corpus, and use them to try to predict prepositional phrase attach-
ments for English in general. The discussion in this chapter divides the
problem into three areas (although they tend to overlap considerably): di-
viding the training data into equivalence classes, finding a good statistical
estimator for each equivalence class, and combining multiple estimators.

As a running example of statistical estimation, we will examine the
classic task of language modeling, where the problem is to predict thelanguage modeling

next word given the previous words. This task is fundamental to speech
or optical character recognition, and is also used for spelling correction,
handwriting recognition, and statistical machine translation. This sort of
task is often referred to as a Shannon game following the presentationShannon game

of the task of guessing the next letter in a text in (Shannon 1951). This
problem has been well-studied, and indeed many estimation methods
were first developed for this task. In general, though, the methods we
develop are not specific to this task, and can be directly used for other
tasks like word sense disambiguation or probabilistic parsing. The word
prediction task just provides a clear easily-understood problem for which
the techniques can be developed.

p

i i

192 6 Statistical Inference: n-gram Models over Sparse Data

6.1 Bins: Forming Equivalence Classes

6.1.1 Reliability vs. discrimination

Normally, in order to do inference about one feature, we wish to find
other features of the model that predict it. Here, we are assuming that
past behavior is a good guide to what will happen in the future (that is,
that the model is roughly stationary). This gives us a classification task:
we try to predict the target feature on the basis of various classificatorytarget feature

classificatory

features

features. When doing this, we effectively divide the data into equivalence
classes that share values for certain of the classificatory features, and use
this equivalence classing to help predict the value of the target feature
on new pieces of data. This means that we are tacitly making indepen-independence

assumptions dence assumptions: the data either does not depend on other features, or
the dependence is sufficiently minor that we hope that we can neglect it
without doing too much harm. The more classificatory features (of some
relevance) that we identify, the more finely conditions that determine the
unknown probability distribution of the target feature can potentially be
teased apart. In other words, dividing the data into many bins gives usbins

greater discrimination. Going against this is the problem that if we use a
lot of bins then a particular bin may contain no or a very small number of
training instances, and then we will not be able to do statistically reliablereliability

estimation of the target feature for that bin. Finding equivalence classes
that are a good compromise between these two criteria is our first goal.

6.1.2 n-gram models

The task of predicting the next word can be stated as attempting to esti-
mate the probability function P :

P(wn|w1, . . . , wn−1)(6.1)

In such a stochastic problem, we use a classification of the previous
words, the history, to predict the next word. On the basis of having lookedhistory

at a lot of text, we know which words tend to follow other words.
For this task, we cannot possibly consider each textual history sepa-

rately: most of the time we will be listening to a sentence that we have
never heard before, and so there is no previous identical textual history
on which to base our predictions, and even if we had heard the begin-
ning of the sentence before, it might end differently this time. And so we

p

i i

6.1 Bins: Forming Equivalence Classes 193

need a method of grouping histories that are similar in some way so as
to give reasonable predictions as to which words we can expect to come
next. One possible way to group them is by making a Markov assumptionMarkov assumption

that only the prior local context – the last few words – affects the next
word. If we construct a model where all histories that have the same last
n − 1 words are placed in the same equivalence class, then we have an
(n− 1)th order Markov model or an n-gram word model (the last word of
the n-gram being given by the word we are predicting).

Before continuing with model-building, let us pause for a brief inter-
lude on naming. The cases of n-gram models that people usually use are
for n = 2,3,4, and these alternatives are usually referred to as a bigram,bigram

a trigram, and a four-gram model, respectively. Revealing this will surelytrigram

four-gram be enough to cause any Classicists who are reading this book to stop,
and to leave the field to uneducated engineering sorts: gram is a Greek
root and so should be put together with Greek number prefixes. Shannon
actually did use the term digram, but with the declining levels of educa-digram

tion in recent decades, this usage has not survived. As non-prescriptive
linguists, however, we think that the curious mixture of English, Greek,
and Latin that our colleagues actually use is quite fun. So we will not try
to stamp it out.1

Now in principle, we would like the n of our n-gram models to be fairly
large, because there are sequences of words like:

(6.2) Sue swallowed the large green .

where swallowed is presumably still quite strongly influencing which
word will come next – pill or perhaps frog are likely continuations, but
tree, car or mountain are presumably unlikely, even though they are in
general fairly natural continuations after the large green . However,
there is the problem that if we divide the data into too many bins, then
there are a lot of parameters to estimate. For instance, if we conser-parameters

vatively assume that a speaker is staying within a vocabulary of 20,000
words, then we get the estimates for numbers of parameters shown in
table 6.1.2

1. Rather than four-gram, some people do make an attempt at appearing educated by
saying quadgram, but this is not really correct use of a Latin number prefix (which would
give quadrigram, cf. quadrilateral), let alone correct use of a Greek number prefix, which
would give us “a tetragram model.”
2. Given a certain model space (here word n-gram models), the parameters are the num-
bers that we have to specify to determine a particular model within that model space.

p

i i

194 6 Statistical Inference: n-gram Models over Sparse Data

Model Parameters

1st order (bigram model): 20,000× 19,999 = 400 million
2nd order (trigram model): 20,0002 × 19,999 = 8 trillion
3th order (four-gram model): 20,0003 × 19,999 = 1.6× 1017

Table 6.1 Growth in number of parameters for n-gram models.

So we quickly see that producing a five-gram model, of the sort that
we thought would be useful above, may well not be practical, even if
we have what we think is a very large corpus. For this reason, n-gram
systems currently usually use bigrams or trigrams (and often make do
with a smaller vocabulary).

One way of reducing the number of parameters is to reduce the value
of n, but it is important to realize that n-grams are not the only way
of forming equivalence classes of the history. Among other operations
of equivalencing, we could consider stemming (removing the inflectionalstemming

endings from words) or grouping words into semantic classes (by use
of a pre-existing thesaurus, or by some induced clustering). This is ef-
fectively reducing the vocabulary size over which we form n-grams. But
we do not need to use n-grams at all. There are myriad other ways of
forming equivalence classes of the history – it’s just that they’re all a bit
more complicated than n-grams. The above example suggests that know-
ledge of the predicate in a clause is useful, so we can imagine a model
that predicts the next word based on the previous word and the previ-
ous predicate (no matter how far back it is). But this model is harder to
implement, because we first need a fairly accurate method of identifying
the main predicate of a clause. Therefore we will just use n-gram models
in this chapter, but other techniques are covered in chapters 12 and 14.

For anyone from a linguistics background, the idea that we would
choose to use a model of language structure which predicts the next word
simply by examining the previous two words – with no reference to the
structure of the sentence – seems almost preposterous. But, actually, the

Since we are assuming nothing in particular about the probability distribution, the num-
ber of parameters to be estimated is the number of bins times one less than the number
of values of the target feature (one is subtracted because the probability of the last target
value is automatically given by the stochastic constraint that probabilities should sum to
one).

p

i i

6.1 Bins: Forming Equivalence Classes 195

lexical co-occurrence, semantic, and basic syntactic relationships that ap-
pear in this very local context are a good predictor of the next word,
and such systems work surprisingly well. Indeed, it is difficult to beat a
trigram model on the purely linear task of predicting the next word.

6.1.3 Building n-gram models

In the final part of some sections of this chapter, we will actually build
some models and show the results. The reader should be able to recreate
our results by using the tools and data on the accompanying website. The
text that we will use is Jane Austen’s novels, and is available from the
website. This corpus has two advantages: (i) it is freely available through
the work of Project Gutenberg, and (ii) it is not too large. The small size
of the corpus is, of course, in many ways also a disadvantage. Because of
the huge number of parameters of n-gram models, as discussed above,
n-gram models work best when trained on enormous amounts of data.
However, such training requires a lot of CPU time and diskspace, so a
small corpus is much more appropriate for a textbook example. Even so,
you will want to make sure that you start off with about 40Mb of free
diskspace before attempting to recreate our examples.

As usual, the first step is to preprocess the corpus. The Project Guten-
berg Austen texts are very clean plain ASCII files. But nevertheless, there
are the usual problems of punctuation marks attaching to words and so
on (see chapter 4) that mean that we must do more than simply split on
whitespace. We decided that we could make do with some very simple
search-and-replace patterns that removed all punctuation leaving white-
space separated words (see the website for details). We decided to use
Emma, Mansfield Park, Northanger Abbey, Pride and Prejudice, and Sense
and Sensibility as our corpus for building models, reserving Persuasion
for testing, as discussed below. This gave us a (small) training corpus of
N = 617,091 words of text, containing a vocabulary V of 14,585 word
types.

By simply removing all punctuation as we did, our file is literally a long
sequence of words. This isn’t actually what people do most of the time.
It is commonly felt that there are not very strong dependencies between
sentences, while sentences tend to begin in characteristic ways. So people
mark the sentences in the text – most commonly by surrounding them
with the SGML tags <s> and </s>. The probability calculations at the

p

i i

196 6 Statistical Inference: n-gram Models over Sparse Data

start of a sentence are then dependent not on the last words of the pre-
ceding sentence but upon a ‘beginning of sentence’ context. We should
additionally note that we didn’t remove case distinctions, so capitalized
words remain in the data, imperfectly indicating where new sentences
begin.

6.2 Statistical Estimators

Given a certain number of pieces of training data that fall into a certain
bin, the second goal is then finding out how to derive a good probabil-
ity estimate for the target feature based on these data. For our running
example of n-grams, we will be interested in P(w1 · · ·wn) and the predic-
tion task P(wn|w1 · · ·wn−1). Since:

P(wn|w1 · · ·wn−1) = P(w1 · · ·wn)
P(w1 · · ·wn−1)

(6.3)

estimating good conditional probability distributions can be reduced to
having good solutions to simply estimating the unknown probability dis-
tribution of n-grams.3

Let us assume that the training text consists of N words. If we append
n−1 dummy start symbols to the beginning of the text, we can then also
say that the corpus consists of N n-grams, with a uniform amount of
conditioning available for the next word in all cases. Let B be the number
of bins (equivalence classes). This will be Vn−1, where V is the vocabulary
size, for the task of working out the next word and Vn for the task of
estimating the probability of different n-grams. Let C(w1 · · ·wn) be the
frequency of a certain n-gram in the training text, and let us say that
there are Nr n-grams that appeared r times in the training text (i.e., Nr =
|{w1 · · ·wn : C(w1 · · ·wn) = r}|). These frequencies of frequencies are
very commonly used in the estimation methods which we cover below.
This notation is summarized in table 6.2.

3. However, when smoothing, one has a choice of whether to smooth the n-gram proba-
bility estimates, or to smooth the conditional probability distributions directly. For many
methods, these do not give equivalent results since in the latter case one is separately
smoothing a large number of conditional probability distributions (which normally need
to be themselves grouped into classes in some way).

p

i i

6.2 Statistical Estimators 197

N Number of training instances
B Number of bins training instances are divided into
w1n An n-gram w1 · · ·wn in the training text
C(w1 · · ·wn) Frequency of n-gram w1 · · ·wn in training text
r Frequency of an n-gram
f (·) Frequency estimate of a model
Nr Number of bins that have r training instances in them
Tr Total count of n-grams of frequency r in further data
h ‘History’ of preceding words

Table 6.2 Notation for the statistical estimation chapter.

6.2.1 Maximum Likelihood Estimation (MLE)

MLE estimates from relative frequencies

Regardless of how we form equivalence classes, we will end up with bins
that contain a certain number of training instances. Let us assume a
trigram model where we are using the two preceding words of context to
predict the next word, and let us focus in on the bin for the case where
the two preceding words were comes across. In a certain corpus, the
authors found 10 training instances of the words comes across, and of
those, 8 times they were followed by as, once by more and once by a.
The question at this point is what probability estimates we should use
for estimating the next word.

The obvious first answer (at least from a frequentist point of view) is
to suggest using the relative frequency as a probability estimate:relative frequency

P(as) = 0.8

P(more) = 0.1

P(a) = 0.1

P(x) = 0.0 for x not among the above 3 words

This estimate is called the maximum likelihood estimate (MLE):maximum likelihood

estimate

PMLE(w1 · · ·wn) = C(w1 · · ·wn)
N

(6.4)

PMLE(wn|w1 · · ·wn−1) = C(w1 · · ·wn)
C(w1 · · ·wn−1)

(6.5)

p

i i

198 6 Statistical Inference: n-gram Models over Sparse Data

If one fixes the observed data, and then considers the space of all pos-
sible parameter assignments within a certain distribution (here a trigram
model) given the data, then statisticians refer to this as a likelihood func-likelihood

function tion. The maximum likelihood estimate is so called because it is the
choice of parameter values which gives the highest probability to the
training corpus.4 The estimate that does that is the one shown above.
It does not waste any probability mass on events that are not in the train-
ing corpus, but rather it makes the probability of observed events as high
as it can subject to the normal stochastic constraints.

But the MLE is in general unsuitable for statistical inference in NLP.
The problem is the sparseness of our data (even if we are using a large
corpus). While a few words are common, the vast majority of words are
very uncommon – and longer n-grams involving them are thus much rarer
again. The MLE assigns a zero probability to unseen events, and since
the probability of a long string is generally computed by multiplying the
probabilities of subparts, these zeroes will propagate and give us bad
(zero probability) estimates for the probability of sentences when we just
happened not to see certain n-grams in the training text.5 With respect to
the example above, the MLE is not capturing the fact that there are other
words which can follow comes across, for example the and some.

As an example of data sparseness, after training on 1.5 million words
from the IBM Laser Patent Text corpus, Bahl et al. (1983) report that 23%
of the trigram tokens found in further test data drawn from the same
corpus were previously unseen. This corpus is small by modern stan-
dards, and so one might hope that by collecting much more data that the
problem of data sparseness would simply go away. While this may ini-
tially seem hopeful (if we collect a hundred instances of comes across, we
will probably find instances with it followed by the and some), in practice
it is never a general solution to the problem. While there are a limited
number of frequent events in language, there is a seemingly never end-

4. This is given that the occurrence of a certain n-gram is assumed to be a random variable
with a binomial distribution (i.e., each n-gram is independent of the next). This is a quite
untrue (though usable) assumption: firstly, each n-gram overlaps with and hence partly
determines the next, and secondly, content words tend to clump (if you use a word once
in a paper, you are likely to use it again), as we discuss in section 15.3.
5. Another way to state this is to observe that if our probability model assigns zero prob-
ability to any event that turns out to actually occur, then both the cross-entropy and the
KL divergence with respect to (data from) the real probability distribution is infinite. In
other words we have done a maximally bad job at producing a probability function that
is close to the one we are trying to model.

p

i i

6.2 Statistical Estimators 199

ing tail to the probability distribution of rarer and rarer events, and werare events

can never collect enough data to get to the end of the tail.6 For instance
comes across could be followed by any number, and we will never see ev-
ery number. In general, we need to devise better estimators that allow for
the possibility that we will see events that we didn’t see in the training
text.

All such methods effectively work by somewhat decreasing the proba-
bility of previously seen events, so that there is a little bit of probability
mass left over for previously unseen events. Thus these methods are fre-
quently referred to as discounting methods. The process of discounting isdiscounting

often referred to as smoothing, presumably because a distribution with-smoothing

out zeroes is smoother than one with zeroes. We will examine a number
of smoothing methods in the following sections.

Using MLE estimates for n-gram models of Austen

Based on our Austen corpus, we made n-gram models for different values
of n. It is quite straightforward to write one’s own program to do this,
by totalling up the frequencies of n-grams and (n − 1)-grams, and then
dividing to get MLE probability estimates, but there is also software to do
it on the website.

In practical systems, it is usual to not actually calculate n-grams for
all words. Rather, the n-grams are calculated as usual only for the most
common k words, and all other words are regarded as Out-Of-Vocabulary
(OOV) items and mapped to a single token such as <UNK>. Commonly, this
will be done for all words that have been encountered only once in the
training corpus (hapax legomena). A useful variant in some domains is tohapax legomena

notice the obvious semantic and distributional similarity of rare numbers
and to have two out-of-vocabulary tokens, one for numbers and one for
everything else. Because of the Zipfian distribution of words, cutting out
low frequency items will greatly reduce the parameter space (and the
memory requirements of the system being built), while not appreciably
affecting the model quality (hapax legomena often constitute half of the
types, but only a fraction of the tokens).

We used the conditional probabilities calculated from our training cor-
pus to work out the probabilities of each following word for part of a

6. Cf. Zipf’s law – the observation that the relationship between a word’s frequency and
the rank order of its frequency is roughly a reciprocal curve – as discussed in section 1.4.3.

p

i i

200 6 Statistical Inference: n-gram Models over Sparse Data

In
person she was inferior to both sisters

1-gram P(·) P(·) P(·) P(·) P(·) P(·)
1 the 0.034 the 0.034 the 0.034 the 0.034 the 0.034 the 0.034
2 to 0.032 to 0.032 to 0.032 to 0.032 to 0.032 to 0.032
3 and 0.030 and 0.030 and 0.030 and 0.030 and 0.030
4 of 0.029 of 0.029 of 0.029 of 0.029 of 0.029

· · ·
8 was 0.015 was 0.015 was 0.015 was 0.015 was 0.015

· · ·
13 she 0.011 she 0.011 she 0.011 she 0.011
· · ·
254 both 0.0005 both 0.0005 both 0.0005
· · ·
435 sisters 0.0003 sisters 0.0003
· · ·

1701 inferior 0.00005

2-gram P(·|person) P(·|she) P(·|was) P(·|inferior) P(·|to) P(·|both)

1 and 0.099 had 0.141 not 0.065 to 0.212 be 0.111 of 0.066
2 who 0.099 was 0.122 a 0.052 the 0.057 to 0.041
3 to 0.076 the 0.033 her 0.048 in 0.038
4 in 0.045 to 0.031 have 0.027 and 0.025

· · ·
23 she 0.009 Mrs 0.006 she 0.009
· · ·
41 what 0.004 sisters 0.006
· · ·
293 both 0.0004
· · ·
∞ inferior 0

3-gram P(·|In,person) P(·|person,she) P(·|she,was) P(·|was,inf.) P(·|inferior,to) P(·|to,both)

1 Unseen did 0.5 not 0.057 Unseen the 0.286 to 0.222
2 was 0.5 very 0.038 Maria 0.143 Chapter 0.111
3 in 0.030 cherries 0.143 Hour 0.111
4 to 0.026 her 0.143 Twice 0.111

· · ·
∞ inferior 0 both 0 sisters 0

4-gram P(·|u,I,p) P(·|I,p,s) P(·|p,s,w) P(·|s,w,i) P(·|w,i,t) P(·|i,t,b)
1 Unseen Unseen in 1.0 Unseen Unseen Unseen

· · ·
∞ inferior 0

Table 6.3 Probabilities of each successive word for a clause from Persuasion.
The probability distribution for the following word is calculated by Maximum
Likelihood Estimate n-gram models for various values of n. The predicted likeli-
hood rank of different words is shown in the first column. The actual next word
is shown at the top of the table in italics, and in the table in bold.

p

i i

6.2 Statistical Estimators 201

sentence from our test corpus Persuasion. We will cover the issue of test
corpora in more detail later, but it is vital for assessing a model that
we try it on different data – otherwise it isn’t a fair test of how well the
model allows us to predict the patterns of language. Extracts from these
probability distributions – including the actual next word shown in bold
– are shown in table 6.3. The unigram distribution ignores context en-
tirely, and simply uses the overall frequency of different words. But this
is not entirely useless, since, as in this clause, most words in most sen-
tences are common words. The bigram model uses the preceding word
to help predict the next word. In general, this helps enormously, and
gives us a much better model. In some cases the estimated probability
of the word that actually comes next has gone up by about an order of
magnitude (was, to, sisters). However, note that the bigram model is not
guaranteed to increase the probability estimate. The estimate for she has
actually gone down, because she is in general very common in Austen
novels (being mainly books about women), but somewhat unexpected af-
ter the noun person – although quite possible when an adverbial phrase
is being used, such as In person here. The failure to predict inferior after
was shows problems of data sparseness already starting to crop up.

When the trigram model works, it can work brilliantly. For example, it
gives us a probability estimate of 0.5 for was following person she. But in
general it is not usable. Either the preceding bigram was never seen be-
fore, and then there is no probability distribution for the following word,
or a few words have been seen following that bigram, but the data is so
sparse that the resulting estimates are highly unreliable. For example, the
bigram to both was seen 9 times in the training text, twice followed by to,
and once each followed by 7 other words, a few of which are shown in the
table. This is not the kind of density of data on which one can sensibly
build a probabilistic model. The four-gram model is entirely useless. In
general, four-gram models do not become usable until one is training on
several tens of millions of words of data.

Examining the table suggests an obvious strategy: use higher order
n-gram models when one has seen enough data for them to be of some
use, but back off to lower order n-gram models when there isn’t enough
data. This is a widely used strategy, which we will discuss below in the
section on combining estimates, but it isn’t by itself a complete solution
to the problem of n-gram estimates. For instance, we saw quite a lot of
words following was in the training data – 9409 tokens of 1481 types –
but inferior was not one of them. Similarly, although we had seen quite

p

i i

202 6 Statistical Inference: n-gram Models over Sparse Data

a lot of words in our training text overall, there are many words that
did not appear, including perfectly ordinary words like decides or wart.
So regardless of how we combine estimates, we still definitely need a
way to give a non-zero probability estimate to words or n-grams that we
happened not to see in our training text, and so we will work on that
problem first.

6.2.2 Laplace’s law, Lidstone’s law and the Jeffreys-Perks law

Laplace’s law

The manifest failure of maximum likelihood estimation forces us to ex-
amine better estimators. The oldest solution is to employ Laplace’s law
(1814; 1995). According to this law,

PLap(w1 · · ·wn) = C(w1 · · ·wn)+ 1
N + B(6.6)

This process is often informally referred to as adding one, and has theadding one

effect of giving a little bit of the probability space to unseen events.
But rather than simply being an unprincipled move, this is actually the
Bayesian estimator that one derives if one assumes a uniform prior on
events (i.e., that every n-gram was equally likely).

However, note that the estimates which Laplace’s law gives are depen-
dent on the size of the vocabulary. For sparse sets of data over large
vocabularies, such as n-grams, Laplace’s law actually gives far too much
of the probability space to unseen events.

Consider some data discussed by Church and Gale (1991a) in the con-
text of their discussion of various estimators for bigrams. Their corpus
of 44 million words of Associated Press (AP) newswire yielded a vocab-
ulary of 400,653 words (maintaining case distinctions, splitting on hy-
phens, etc.). Note that this vocabulary size means that there is a space
of 1.6 × 1011 possible bigrams, and so a priori barely any of them will
actually occur in the corpus. It also means that in the calculation of PLap,
B is far larger than N, and Laplace’s method is completely unsatisfactory
in such circumstances. Church and Gale used half the corpus (22 million
words) as a training text. Table 6.4 shows the expected frequency esti-expected frequency

estimates mates of various methods that they discuss, and Laplace’s law estimates
that we have calculated. Probability estimates can be derived by divid-
ing the frequency estimates by the number of n-grams, N = 22 million.
For Laplace’s law, the probability estimate for an n-gram seen r times is

p

i i

6.2 Statistical Estimators 203

r = fMLE f empirical f Lap fdel fGT Nr Tr
0 0.000027 0.000137 0.000037 0.000027 74 671 100 000 2 019 187
1 0.448 0.000274 0.396 0.446 2 018 046 903 206
2 1.25 0.000411 1.24 1.26 449 721 564 153
3 2.24 0.000548 2.23 2.24 188 933 424 015
4 3.23 0.000685 3.22 3.24 105 668 341 099
5 4.21 0.000822 4.22 4.22 68 379 287 776
6 5.23 0.000959 5.20 5.19 48 190 251 951
7 6.21 0.00109 6.21 6.21 35 709 221 693
8 7.21 0.00123 7.18 7.24 27 710 199 779
9 8.26 0.00137 8.18 8.25 22 280 183 971

Table 6.4 Estimated frequencies for the AP data from Church and Gale (1991a).
The first five columns show the estimated frequency calculated for a bigram that
actually appeared r times in the training data according to different estimators:
r is the maximum likelihood estimate, f empirical uses validation on the test set,
f Lap is the ‘add one’ method, fdel is deleted interpolation (two-way cross valida-
tion, using the training data), and fGT is the Good-Turing estimate. The last two
columns give the frequencies of frequencies and how often bigrams of a certain
frequency occurred in further text.

(r+1)/(N+B), so the frequency estimate becomes f Lap = (r+1)N/(N+B).
These estimated frequencies are often easier for humans to interpret
than probabilities, as one can more easily see the effect of the discount-
ing.

Although each previously unseen bigram has been given a very low
probability, because there are so many of them, 46.5% of the probability
space has actually been given to unseen bigrams.7 This is far too much,
and it is done at the cost of enormously reducing the probability esti-
mates of more frequent events. How do we know it is far too much? The
second column of the table shows an empirically determined estimate
(which we discuss below) of how often unseen n-grams actually appeared
in further text, and we see that the individual frequency of occurrence
of previously unseen n-grams is much lower than Laplace’s law predicts,
while the frequency of occurrence of previously seen n-grams is much
higher than predicted.8 In particular, the empirical model finds that only
9.2% of the bigrams in further text were previously unseen.

7. This is calculated as N0×PLap(·) = 74,671,100,000×0.000137/22,000,000 = 0.465.
8. It is a bit hard dealing with the astronomical numbers in the table. A smaller example
which illustrates the same point appears in exercise 6.2.

p

i i

204 6 Statistical Inference: n-gram Models over Sparse Data

Lidstone’s law and the Jeffreys-Perks law

Because of this overestimation, a commonly adopted solution to the prob-
lem of multinomial estimation within statistical practice is Lidstone’s law
of succession, where we add not one, but some (normally smaller) posi-
tive value λ:

PLid(w1 · · ·wn) = C(w1 · · ·wn)+ λ
N + Bλ(6.7)

This method was developed by the actuaries Hardy and Lidstone, and
Johnson showed that it can be viewed as a linear interpolation (see below)
between the MLE estimate and a uniform prior. This may be seen by
setting µ = N/(N + Bλ):

PLid(w1 · · ·wn) = µC(w1 · · ·wn)
N

+ (1− µ)1
B

(6.8)

The most widely used value for λ is 1
2 . This choice can be theoretically

justified as being the expectation of the same quantity which is maxi-
mized by MLE and so it has its own names, the Jeffreys-Perks law, or
Expected Likelihood Estimation (ELE) (Box and Tiao 1973: 34–36).Expected Likelihood

Estimation In practice, this often helps. For example, we could avoid the objection
above that two much of the probability space was being given to unseen
events by choosing a small λ. But there are two remaining objections:
(i) we need a good way to guess an appropriate value for λ in advance, and
(ii) discounting using Lidstone’s law always gives probability estimates
linear in the MLE frequency and this is not a good match to the empirical
distribution at low frequencies.

Applying these methods to Austen

Despite the problems inherent in these methods, we will nevertheless try
applying them, in particular ELE, to our Austen corpus. Recall that up
until now the only probability estimate we have been able to derive for
the test corpus clause she was inferior to both sisters was the unigram
estimate, which (multiplying through the bold probabilities in the top
part of table 6.3) gives as its estimate for the probability of the clause
3.96 × 10−17. For the other models, the probability estimate was either
zero or undefined, because of the sparseness of the data.

Let us now calculate a probability estimate for this clause using a bi-
gram model and ELE. Following the word was, which appeared 9409

p

i i

6.2 Statistical Estimators 205

Rank Word MLE ELE
1 not 0.065 0.036
2 a 0.052 0.030
3 the 0.033 0.019
4 to 0.031 0.017

· · ·
=1482 inferior 0 0.00003

Table 6.5 Expected Likelihood Estimation estimates for the word following was.

times, not appeared 608 times in the training corpus, which overall con-
tained 14589 word types. So our new estimate for P(not|was) is (608 +
0.5)/(9409 + 14589 × 0.5) = 0.036. The estimate for P(not|was) has
thus been discounted (by almost half!). If we do similar calculations for
the other words, then we get the results shown in the last column of ta-
ble 6.5. The ordering of most likely words is naturally unchanged, but
the probability estimates of words that did appear in the training text
are discounted, while non-occurring words, in particular the actual next
word, inferior, are given a non-zero probability of occurrence. Continu-
ing in this way to also estimate the other bigram probabilities, we find
that this language model gives a probability estimate for the clause of
6.89 × 10−20. Unfortunately, this probability estimate is actually lower
than the MLE estimate based on unigram counts – reflecting how greatly
all the MLE probability estimates for seen n-grams are discounted in the
construction of the ELE model. This result substantiates the slogan used
in the titles of (Gale and Church 1990a,b): poor estimates of context are
worse than none. Note, however, that this does not mean that the model
that we have constructed is entirely useless. Although the probability
estimates it gives are extremely low, one can nevertheless use them to
rank alternatives. For example, the model does correctly tell us that she
was inferior to both sisters is a much more likely clause in English than
inferior to was both she sisters, whereas the unigram estimate gives them
both the same probability.

6.2.3 Held out estimation

How do we know that giving 46.5% of the probability space to unseen
events is too much? One way that we can test this is empirically. We

p

i i

206 6 Statistical Inference: n-gram Models over Sparse Data

can take further text (assumed to be from the same source) and see how
often bigrams that appeared r times in the training text tend to turn up
in the further text. The realization of this idea is the held out estimatorheld out estimator

of Jelinek and Mercer (1985).

The held out estimator

For each n-gram, w1 · · ·wn, let:

C1(w1 · · ·wn) = frequency of w1 · · ·wn in training data

C2(w1 · · ·wn) = frequency of w1 · · ·wn in held out data

and recall that Nr is the number of bigrams with frequency r (in the
training text). Now let:

Tr =
∑

{w1···wn:C1(w1···wn)=r}
C2(w1 · · ·wn)(6.9)

That is, Tr is the total number of times that all n-grams that appeared
r times in the training text appeared in the held out data. Then the aver-
age frequency of those n-grams is Tr

Nr and so an estimate for the proba-
bility of one of these n-grams is:

Pho(w1 · · ·wn) = Tr
NrN

where C(w1 · · ·wn) = r(6.10)

Pots of data for developing and testing models

A cardinal sin in Statistical NLP is to test on your training data. But why istraining data

that? The idea of testing is to assess how well a particular model works.
That can only be done if it is a ‘fair test’ on data that has not been seen
before. In general, models induced from a sample of data have a tendency
to be overtrained, that is, to expect future events to be like the events onovertraining

which the model was trained, rather than allowing sufficiently for other
possibilities. (For instance, stock market models sometimes suffer from
this failing.) So it is essential to test on different data. A particular case
of this is for the calculation of cross entropy (section 2.2.6). To calculate
cross entropy, we take a large sample of text and calculate the per-word
entropy of that text according to our model. This gives us a measure
of the quality of our model, and an upper bound for the entropy of the
language that the text was drawn from in general. But all that is only
true if the test data is independent of the training data, and large enoughtest data

p

i i

6.2 Statistical Estimators 207

to be indicative of the complexity of the language at hand. If we test
on the training data, the cross entropy can easily be lower than the real
entropy of the text. In the most blatant case we could build a model
that has memorized the training text and always predicts the next word
with probability 1. Even if we don’t do that, we will find that MLE is an
excellent language model if you are testing on training data, which is not
the right result.

So when starting to work with some data, one should always separate
it immediately into a training portion and a testing portion. The test data
is normally only a small percentage (5–10%) of the total data, but has to
be sufficient for the results to be reliable. You should always eyeball the
training data – you want to use your human pattern-finding abilities to
get hints on how to proceed. You shouldn’t eyeball the test data – that’s
cheating, even if less directly than getting your program to memorize it.

Commonly, however, one wants to divide both the training and test
data into two again, for different reasons. For many Statistical NLP meth-
ods, such as held out estimation of n-grams, one gathers counts from
one lot of training data, and then one smooths these counts or estimates
certain other parameters of the assumed model based on what turns up
in further held out or validation data. The held out data needs to be inde-held out data

validation data pendent of both the primary training data and the test data. Normally the
stage using the held out data involves the estimation of many fewer pa-
rameters than are estimated from counts over the primary training data,
and so it is appropriate for the held out data to be much smaller than the
primary training data (commonly about 10% of the size). Nevertheless, it
is important that there is sufficient data for any additional parameters of
the model to be accurately estimated, or significant performance losses
can occur (as Chen and Goodman (1996: 317) show).

A typical pattern in Statistical NLP research is to write an algorithm,
train it, and test it, note some things that it does wrong, revise it and
then to repeat the process (often many times!). But, if one does that a lot,
not only does one tend to end up seeing aspects of the test set, but just
repeatedly trying out different variant algorithms and looking at their
performance can be viewed as subtly probing the contents of the test set.
This means that testing a succession of variant models can again lead to
overtraining. So the right approach is to have two test sets: a developmentdevelopment test

set test set on which successive variant methods are trialed and a final test
final test set

set which is used to produce the final results that are published about
the performance of the algorithm. One should expect performance on

p

i i

208 6 Statistical Inference: n-gram Models over Sparse Data

the final test set to be slightly lower than on the development test set
(though sometimes one can be lucky).

The discussion so far leaves open exactly how to choose which parts
of the data are to be used as testing data. Actually here opinion divides
into two schools. One school favors selecting bits (sentences or even n-
grams) randomly from throughout the data for the test set and using the
rest of the material for training. The advantage of this method is that
the testing data is as similar as possible (with respect to genre, register,
writer, and vocabulary) to the training data. That is, one is training from
as accurate a sample as possible of the type of language in the test data.
The other possibility is to set aside large contiguous chunks as test data.
The advantage of this is the opposite: in practice, one will end up using
any NLP system on data that varies a little from the training data, as
language use changes a little in topic and structure with the passage of
time. Therefore, some people think it best to simulate that a little by
choosing test data that perhaps isn’t quite stationary with respect to the
training data. At any rate, if using held out estimation of parameters, it is
best to choose the same strategy for setting aside data for held out data
as for test data, as this makes the held out data a better simulation of
the test data. This choice is one of the many reasons why system results
can be hard to compare: all else being equal, one should expect slightly
worse performance results if using the second approach.

While covering testing, let us mention one other issue. In early work, it
was common to just run the system on the test data and present a single
performance figure (for perplexity, percent correct or whatever). But this
isn’t a very good way of testing, as it gives no idea of the variance invariance

the performance of the system. A much better way is to divide the test
data into, say 20, smaller samples, and work out a test result on each of
them. From those results, one can work out a mean performance figure,
as before, but one can also calculate the variance that shows how much
performance tends to vary. If using this method together with continuous
chunks of training data, it is probably best to take the smaller testing
samples from different regions of the data, since the testing lore tends
to be full of stories about certain sections of data sets being “easy,” and
so it is better to have used a range of test data from different sections of
the corpus.

If we proceed this way, then one system can score higher on average
than another purely by accident, especially when within-system variance
is high. So just comparing average scores is not enough for meaningful

p

i i

6.2 Statistical Estimators 209

System 1 System 2
scores 71, 61, 55, 60, 68, 49, 42, 55, 75, 45, 54, 51

42, 72, 76, 55, 64 55, 36, 58, 55, 67
total 609 526
n 11 11
mean x̄i 55.4 47.8
s2
i =

∑
(xij − x̄i)2 1,375.4 1,228.8

df 10 10

Pooled s2 = 1375.4+1228.8
10+10 ≈ 130.2

t = x̄1−x̄2√
2s2
n

= 55.4−47.8√
2·130.2

11

≈ 1.56

Table 6.6 Using the t test for comparing the performance of two systems. Since
we calculate the mean for each data set, the denominator in the calculation of
variance and the number of degrees of freedom is (11 − 1) + (11 − 1) = 20.
The data do not provide clear support for the superiority of system 1. Despite
the clear difference in mean scores, the sample variance is too high to draw any
definitive conclusions.

system comparison. Instead, we need to apply a statistical test that takes
into account both mean and variance. Only if the statistical test rejects
the possibility of an accidental difference can we say with confidence that
one system is better than the other.9

An example of using the t test (which we introduced in section 5.3.1)t test

for comparing the performance of two systems is shown in table 6.6
(adapted from (Snedecor and Cochran 1989: 92)). Note that we use a
pooled estimate of the sample variance s2 here under the assumption
that the variance of the two systems is the same (which seems a reason-
able assumption here: 609 and 526 are close enough). Looking up the
t distribution in the appendix, we find that, for rejecting the hypothesis
that the system 1 is better than system 2 at a probability level of α = 0.05,
the critical value is t = 1.725 (using a one-tailed test with 20 degrees of
freedom). Since we have t = 1.56 < 1.725, the data fail the significance
test. Although the averages are fairly distinct, we cannot conclude supe-
riority of system 1 here because of the large variance of scores.

9. Systematic discussion of testing methodology for comparing statistical and machine
learning algorithms can be found in (Dietterich 1998). A good case study, for the example
of word sense disambiguation, is (Mooney 1996).

p

i i

210 6 Statistical Inference: n-gram Models over Sparse Data

Using held out estimation on the test data

So long as the frequency of an n-gram C(w1 · · ·wn) is the only thing that
we are using to predict its future frequency in text, then we can use held
out estimation performed on the test set to provide the correct answer of
what the discounted estimates of probabilities should be in order to max-
imize the probability of the test set data. Doing this empirically measures
how often n-grams that were seen r times in the training data actually do
occur in the test text. The empirical estimates f empirical in table 6.4 were
found by randomly dividing the 44 million bigrams in the whole AP cor-
pus into equal-sized training and test sets, counting frequencies in the
22 million word training set and then doing held out estimation using
the test set. Whereas other estimates are calculated only from the 22
million words of training data, this estimate can be regarded as an em-
pirically determined gold standard, achieved by allowing access to the
test data.

6.2.4 Cross-validation (deleted estimation)

The f empirical estimates discussed immediately above were constructed
by looking at what actually happened in the test data. But the idea of
held out estimation is that we can achieve the same effect by dividing the
training data into two parts. We build initial estimates by doing counts
on one part, and then we use the other pool of held out data to refine
those estimates. The only cost of this approach is that our initial training
data is now less, and so our probability estimates will be less reliable.

Rather than using some of the training data only for frequency counts
and some only for smoothing probability estimates, more efficient
schemes are possible where each part of the training data is used both
as initial training data and as held out data. In general, such methods in
statistics go under the name cross-validation.cross-validation

Jelinek and Mercer (1985) use a form of two-way cross-validation that
they call deleted estimation. Suppose we let Nar be the number of n-gramsdeleted estimation

occurring r times in the ath part of the training data, and Tabr be the total
occurrences of those bigrams from part a in the bth part. Now depending
on which part is viewed as the basic training data, standard held out
estimates would be either:

Pho(w1 · · ·wn) = T 01
r

N0
r N

or
T 10
r

N1
r N

where C(w1 · · ·wn) = r

p

i i

6.2 Statistical Estimators 211

The more efficient deleted interpolation estimate does counts and
smoothing on both halves and then averages the two:

Pdel(w1 · · ·wn) = T 01
r + T 10

r

N(N0
r +N1

r)
where C(w1 · · ·wn) = r(6.11)

On large training corpora, doing deleted estimation on the training data
works better than doing held-out estimation using just the training data,
and indeed table 6.4 shows that it produces results that are quite close
to the empirical gold standard.10 It is nevertheless still some way off for
low frequency events. It overestimates the expected frequency of unseen
objects, while underestimating the expected frequency of objects that
were seen once in the training data. By dividing the text into two parts
like this, one estimates the probability of an object by how many times
it was seen in a sample of size N

2 , assuming that the probability of a

token seen r times in a sample of size N
2 is double that of a token seen r

times in a sample of size N. However, it is generally true that as the size
of the training corpus increases, the percentage of unseen n-grams that
one encounters in held out data, and hence one’s probability estimate
for unseen n-grams, decreases (while never becoming negligible). It is for
this reason that collecting counts on a smaller training corpus has the
effect of overestimating the probability of unseen n-grams.

There are other ways of doing cross-validation. In particular Ney et al.
(1997) explore a method that they call Leaving-One-Out where the pri-Leaving-One-Out

mary training corpus is of size N − 1 tokens, while 1 token is used as
held out data for a sort of simulated testing. This process is repeated N
times so that each piece of data is left out in turn. The advantage of this
training regime is that it explores the effect of how the model changes if
any particular piece of data had not been observed, and Ney et al. show
strong connections between the resulting formulas and the widely-used
Good-Turing method to which we turn next.11

10. Remember that, although the empirical gold standard was derived by held out esti-
mation, it was held out estimation based on looking at the test data! Chen and Goodman
(1998) find in their study that for smaller training corpora, held out estimation outper-
forms deleted estimation.
11. However, Chen and Goodman (1996: 314) suggest that leaving one word out at a
time is problematic, and that using larger deleted chunks in deleted interpolation is to be
preferred.

p

i i

212 6 Statistical Inference: n-gram Models over Sparse Data

6.2.5 Good-Turing estimation

The Good-Turing estimator

Good (1953) attributes to Turing a method for determining frequency or
probability estimates of items, on the assumption that their distribution
is binomial. This method is suitable for large numbers of observations of
data drawn from a large vocabulary, and works well for n-grams, despite
the fact that words and n-grams do not have a binomial distribution. The
probability estimate in Good-Turing estimation is of the form PGT = r*/N
where r* can be thought of as an adjusted frequency. The theorem un-
derlying Good-Turing methods gives that for previously observed items:

r* = (r + 1)
E(Nr+1)
E(Nr)

(6.12)

where E denotes the expectation of a random variable (see (Church and
Gale 1991a; Gale and Sampson 1995) for discussion of the derivation of
this formula). The total probability mass reserved for unseen objects is
then E(N1)/N (see exercise 6.5).

Using our empirical estimates, we can hope to substitute the observed
Nr for E(Nr). However, we cannot do this uniformly, since these empir-
ical estimates will be very unreliable for high values of r . In particular,
the most frequent n-gram would be estimated to have probability zero,
since the number of n-grams with frequency one greater than it is zero!
In practice, one of two solutions is employed. One is to use Good-Turing
reestimation only for frequencies r < k for some constant k (e.g., 10).
Low frequency words are numerous, so substitution of the observed fre-
quency of frequencies for the expectation is quite accurate, while the
MLE estimates of high frequency words will also be quite accurate and so
one doesn’t need to discount them. The other is to fit some function S
through the observed values of (r ,Nr) and to use the smoothed values
S(r) for the expectation (this leads to a family of possibilities depend-
ing on exactly which method of curve fitting is employed – Good (1953)
discusses several smoothing methods). The probability mass N1

N given to
unseen items can either be divided among them uniformly, or by some
more sophisticated method (see under Combining Estimators, below). So
using this method with a uniform estimate for unseen events, we have:

Good-Turing Estimator: If C(w1 · · ·wn) = r > 0,

PGT(w1 · · ·wn) = r*N where r* = (r + 1)S(r + 1)
S(r)

(6.13)

p

i i

6.2 Statistical Estimators 213

If C(w1 · · ·wn) = 0,

PGT(w1 · · ·wn) =
1−∑∞

r=1Nr
r*
N

N0
≈ N1

N0N
(6.14)

Gale and Sampson (1995) present a simple and effective approach, Sim-
ple Good-Turing, which effectively combines these two approaches. As a
smoothing curve they simply use a power curve Nr = arb (with b < −1
to give the appropriate hyperbolic relationship), and estimate A and b
by simple linear regression on the logarithmic form of this equation
logNr = a+b log r (linear regression is covered in section 15.4.1, or in all
introductory statistics books). However, they suggest that such a simple
curve is probably only appropriate for high values of r . For low values of
r , they use the measured Nr directly. Working up through frequencies,
these direct estimates are used until for one of them there isn’t a signifi-
cant difference between r* values calculated directly or via the smoothing
function, and then smoothed estimates are used for all higher frequen-
cies.12 Simple Good-Turing can give exceedingly good estimators, as can
be seen by comparing the Good-Turing column fGT in table 6.4 with the
empirical gold standard.

Under any of these approaches, it is necessary to renormalize all therenormalization

estimates to ensure that a proper probability distribution results. This
can be done either by adjusting the amount of probability mass given to
unseen items (as in equation (6.14)), or, perhaps better, by keeping the
estimate of the probability mass for unseen items as N1

N and renormal-
izing all the estimates for previously seen items (as Gale and Sampson
(1995) propose).

Frequencies of frequencies in Austen

To do Good-Turing, the first step is to calculate the frequencies of differ-
ent frequencies (also known as count-counts). Table 6.7 shows extractscount-counts

from the resulting list of frequencies of frequencies for bigrams and
trigrams. (The numbers are reminiscent of the Zipfian distributions of

12. An estimate of r* is deemed significantly different if the difference exceeds 1.65 times
the standard deviation of the Good-Turing estimate, which is given by:√
(r + 1)2

Nr+1

N2
r

(
1+ Nr+1

Nr

)

p

i i

214 6 Statistical Inference: n-gram Models over Sparse Data

Bigrams Trigrams
r Nr r Nr r Nr r Nr
1 138741 28 90 1 404211 28 35
2 25413 29 120 2 32514 29 32
3 10531 30 86 3 10056 30 25
4 5997 31 98 4 4780 31 18
5 3565 32 99 5 2491 32 19
6 2486 · · · 6 1571 · · ·
7 1754 1264 1 7 1088 189 1
8 1342 1366 1 8 749 202 1
9 1106 1917 1 9 582 214 1

10 896 2233 1 10 432 366 1
· · · 2507 1 · · · 378 1

Table 6.7 Extracts from the frequencies of frequencies distribution for bigrams
and trigrams in the Austen corpus.

section 1.4.3 but different in the details of construction, and more exag-
gerated because they count sequences of words.) Table 6.8 then shows
the reestimated counts r* and corresponding probabilities for bigrams.

For the bigrams, the mass reserved for unseen bigrams, N1/N =
138741/617091 = 0.2248. The space of bigrams is the vocabulary
squared, and we saw 199,252 bigrams, so using uniform estimates,
the probability estimate for each unseen bigram is: 0.2248/(145852 −
199252) = 1.058 × 10−9. If we now wish to work out conditional prob-
ability estimates for a bigram model by using Good-Turing estimates for
bigram probability estimates, and MLE estimates directly for unigrams,
then we begin as follows:

P(she|person) = fGT(person she)
C(person)

= 1.228
223

= 0.0055

Continuing in this way gives the results in table 6.9, which can be com-
pared with the bigram estimates in table 6.3. The estimates in general
seem quite reasonable. Multiplying these numbers, we come up with a
probability estimate for the clause of 1.278×10−17. This is at least much
higher than the ELE estimate, but still suffers from assuming a uniform
distribution over unseen bigrams.

p

i i

6.2 Statistical Estimators 215

r r* PGT(·)
0 0.0007 1.058× 10−9

1 0.3663 5.982× 10−7

2 1.228 2.004× 10−6

3 2.122 3.465× 10−6

4 3.058 4.993× 10−6

5 4.015 6.555× 10−6

6 4.984 8.138× 10−6

7 5.96 9.733× 10−6

8 6.942 1.134× 10−5

9 7.928 1.294× 10−5

10 8.916 1.456× 10−5

· · ·
28 26.84 4.383× 10−5

29 27.84 4.546× 10−5

30 28.84 4.709× 10−5

31 29.84 4.872× 10−5

32 30.84 5.035× 10−5

· · ·
1264 1263 0.002062
1366 1365 0.002228
1917 1916 0.003128
2233 2232 0.003644
2507 2506 0.004092

Table 6.8 Good-Turing estimates for bigrams: Adjusted frequencies and prob-
abilities.

P(she|person) 0.0055
P(was|she) 0.1217
P(inferior|was) 6.9× 10−8

P(to|inferior) 0.1806
P(both|to) 0.0003956
P(sisters|both) 0.003874

Table 6.9 Good-Turing bigram frequency estimates for the clause from Persua-
sion.

p

i i

216 6 Statistical Inference: n-gram Models over Sparse Data

6.2.6 Briefly noted

Ney and Essen (1993) and Ney et al. (1994) propose two discounting mod-
els: in the absolute discounting model, all non-zero MLE frequencies are
discounted by a small constant amount δ and the frequency so gained is
uniformly distributed over unseen events:

Absolute discounting: If C(w1 · · ·wn) = r ,

Pabs(w1 · · ·wn) =
{
(r − δ)/N if r > 0
(B−N0)δ
N0N otherwise

(6.15)

(Recall that B is the number of bins.) In the linear discounting method,
the non-zero MLE frequencies are scaled by a constant slightly less than
one, and the remaining probability mass is again distributed across novel
events:

Linear discounting: If C(w1 · · ·wn) = r ,

P(w1 · · ·wn) =
{
(1−α)r/N if r > 0
α/N0 otherwise

(6.16)

These estimates are equivalent to the frequent engineering move of mak-
ing the probability of unseen events some small number ε instead of
zero and then rescaling the other probabilities so that they still sum to
one – the choice between them depending on whether the other proba-
bilities are scaled by subtracting or multiplying by a constant. Looking
again at the figures in table 6.4 indicates that absolute discounting seems
like it could provide a good estimate. Examining the f empirical figures
there, it seems that a discount of δ ≈ 0.77 would work well except for
bigrams that have only been seen once previously (which would be un-
derestimated). In general, we could use held out data to estimate a good
value for δ. Extensions of the absolute discounting approach are very
successful, as we discuss below. It is hard to justify linear discounting.
In general, the higher the frequency of an item in the training text, the
more accurate an unadjusted MLE estimate is, but the linear discounting
method does not even approximate this observation.

A shortcoming of Lidstone’s law is that it depends on the number of
bins in the model. While some empty bins result from sparse data prob-
lems, many more may be principled gaps. Good-Turing estimation is one

p

i i

6.3 Combining Estimators 217

method where the estimates of previously seen items do not depend on
the number of bins. Ristad (1995) explores the hypothesis that natu-
ral sequences use only a subset of the possible bins. He derives various
forms for a Natural Law of Succession, including the following probabilityNatural Law of

Succession estimate for an n-gram with observed frequency C(w1 · · ·wn) = r :

PNLS(w1 · · ·wn) =

r+1
N+B if N0 = 0

(r+1)(N+1+N0−B)
N2+N+2(B−N0) if N0 > 0 and r > 0

(B−N0)(B−N0+1)
N0(N2+N+2(B−N0)) otherwise

(6.17)

The central features of this law are: (i) it reduces to Laplace’s law if some-
thing has been seen in every bin, (ii) the amount of probability mass
assigned to unseen events decreases quadratically in the number N of
trials, and (iii) the total probability mass assigned to unseen events is
independent of the number of bins B, so there is no penalty for large
vocabularies.

6.3 Combining Estimators

So far the methods we have considered have all made use of nothing but
the raw frequency r of an n-gram and have tried to produce the best es-
timate of its probability in future text from that. But rather than giving
the same estimate for all n-grams that never appeared or appeared only
rarely, we could hope to produce better estimates by looking at the fre-
quency of the (n − 1)-grams found in the n-gram. If these (n − 1)-grams
are themselves rare, then we give a low estimate to the n-gram. If the
(n−1)-grams are of moderate frequency, then we give a higher probabil-
ity estimate for the n-gram.13 Church and Gale (1991a) present a detailed
study of this idea, showing how probability estimates for unseen bigrams
can be estimated in terms of the probabilities of the unigrams that com-
pose them. For unseen bigrams, they calculate the joint-if-independent
probability P(w1)P(w2), and then group the bigrams into bins based on
this quantity. Good-Turing estimation is then performed on each bin to
give corrected counts that are normalized to yield probabilities.

13. But if the (n − 1)-grams are of very high frequency, then we may actually want to
lower the estimate again, because the non-appearance of the n-gram is then presumably
indicative of a principled gap.

p

i i

218 6 Statistical Inference: n-gram Models over Sparse Data

But in this section we consider the more general problem of how to
combine multiple probability estimates from various different models. If
we have several models of how the history predicts what comes next, then
we might wish to combine them in the hope of producing an even better
model. The idea behind wanting to do this may either be smoothing, or
simply combining different information sources.

For n-gram models, suitably combining various models of different or-
ders is in general the secret to success. Simply combining MLE n-gram
estimates of various orders (with some allowance for unseen words) us-
ing the simple linear interpolation technique presented below results in
a quite good language model (Chen and Goodman 1996). One can do bet-
ter, but not by simply using the methods presented above. Rather one
needs to combine the methods presented above with the methods for
combining estimators presented below.

6.3.1 Simple linear interpolation

One way of solving the sparseness in a trigram model is to mix that model
with bigram and unigram models that suffer less from data sparseness.
In any case where there are multiple probability estimates, we can make
a linear combination of them, providing only that we weight the contri-
bution of each so that the result is another probability function. Inside
Statistical NLP, this is usually called linear interpolation, but elsewherelinear

interpolation the name (finite) mixture models is more common. When the functions
mixture models

being interpolated all use a subset of the conditioning information of
the most discriminating function (as in the combination of trigram, bi-
gram and unigram models), this method is often referred to as deleteddeleted

interpolation interpolation. For interpolating n-gram language models, such as deleted
interpolation from a trigram model, the most basic way to do this is:

P li(wn|wn−2, wn−1) = λ1P1(wn)+ λ2P2(wn|wn−1)+ λ3P3(wn|wn−1, wn−2)(6.18)

where 0 ≤ λi ≤ 1 and
∑
i λi = 1.

While the weights may be set by hand, in general one wants to find the
combination of weights that works best. This can be done automatically
by a simple application of the Expectation Maximization (EM) algorithm,
as is discussed in section 9.2.1, or by other numerical algorithms. For
instance, Chen and Goodman (1996) use Powell’s algorithm, as presented
in (Press et al. 1988). Chen and Goodman (1996) show that this simple

p

i i

6.3 Combining Estimators 219

model (with just slight complications to deal with previously unseen his-
tories and to reserve some probability mass for out of vocabulary items)
works quite well. They use it as the baseline model (see section 7.1.3) in
their experiments.

6.3.2 Katz’s backing-off

In back-off models, different models are consulted in order dependingback-off models

on their specificity. The most detailed model that is deemed to provide
sufficiently reliable information about the current context is used. Again,
back-off may be used to smooth or to combine information sources.

Back-off n-gram models were proposed by Katz (1987). The estimate
for an n-gram is allowed to back off through progressively shorter histo-
ries:

Pbo(wi|wi−n+1 · · ·wi−1) =

(1− dwi−n+1···wi−1)

C(wi−n+1···wi)
C(wi−n+1···wi−1)

if C(wi−n+1 · · ·wi) > k
αwi−n+1···wi−1Pbo(wi|wi−n+2 · · ·wi−1)

otherwise

(6.19)

If the n-gram of concern has appeared more than k times (k is normally
set to 0 or 1), then an n-gram estimate is used, as in the first line. But the
MLE estimate is discounted a certain amount (represented by the function
d) so that some probability mass is reserved for unseen n-grams whose
probability will be estimated by backing off. The MLE estimates need to
be discounted in some manner, or else there would be no probability
mass to distribute to the lower order models. One possibility for calcu-
lating the discount is the Good-Turing estimates discussed above, and
this is what Katz actually used. If the n-gram did not appear or appeared
k times or less in the training data, then we will use an estimate from a
shorter n-gram. However, this back-off probability has to be multiplied
by a normalizing factor α so that only the probability mass left over in
the discounting process is distributed among n-grams that are estimated
by backing off. Note that in the particular case where the (n− 1)-gram in
the immediately preceding history was unseen, the first line is inapplica-
ble for any choice of wi , and the back-off factor α takes on the value 1. If
the second line is chosen, estimation is done recursively via an (n − 1)-
gram estimate. This recursion can continue down, so that one can start

p

i i

220 6 Statistical Inference: n-gram Models over Sparse Data

with a four-gram model and end up estimating the next word based on
unigram frequencies.

While backing off in the absence of much data is generally reasonable,
it can actually work badly in some circumstances. If we have seen the bi-
gramwiwj many times, andwk is a common word, but we have never seen
the trigram wiwjwk, then at some point we should actually conclude that
this is significant, and perhaps represents a ‘grammatical zero,’ rather
than routinely backing off and estimating P(wk|h) via the bigram esti-
mate P(wk|wj). Rosenfeld and Huang (1992) suggest a more complex
back-off model that attempts to correct for this.

Back-off models are sometimes criticized because their probability es-
timates can change suddenly on adding more data when the back-off al-
gorithm selects a different order of n-gram model on which to base the
estimate. Nevertheless, they are simple and in practice work well.

6.3.3 General linear interpolation

In simple linear interpolation, the weights were just a single number, but
one can define a more general and powerful model where the weights are
a function of the history. For k probability functions Pk the general form
for a linear interpolation model is:

P li(w |h) =
k∑
i=1

λi(h)Pi(w |h)(6.20)

where ∀h, 0 ≤ λi(h) ≤ 1 and
∑
i λi(h) = 1.

Linear interpolation is commonly used because it is a very general way
to combine models. Randomly adding in dubious models to a linear in-
terpolation need not do harm providing one finds a good weighting of
the models using the EM algorithm. But linear interpolation can make
bad use of component models, especially if there is not a careful par-
titioning of the histories with different weights used for different sorts
of histories. For instance, if the λi are just constants in an interpola-
tion of n-gram models, the unigram estimate is always combined in with
the same weight regardless of whether the trigram estimate is very good
(because there is a lot of data) or very poor.

In general the weights are not set according to individual histories.
Training a distinct λw(i−n+1)(i−1) for each w(i−n+1)(i−1) is not in general fe-
licitous, because it would worsen the sparse data problem. Rather one

p

i i

6.3 Combining Estimators 221

wants to use some sort of equivalence classing of the histories. Bahl et al.
(1983) suggest partitioning the λ into bins according to C(w(i−n+1)(i−1)),
and tying the parameters for all histories with the same frequency.

Chen and Goodman (1996) show that rather than this method of put-
ting the λ parameters into bins, a better way is to group them according
to the average number of counts per non-zero element:

C(w(i−n+1)(i−1))
|wi : C(w(i−n+1)i) > 0|(6.21)

That is, we take the average count over non-zero counts for n-grams
wi−n+1 · · ·wi−1wx. We presume that the reason this works is that, be-
cause of the syntax of language, there are strong structural constraints
on which words are possible or normal after certain other words. While
it is central to most Statistical NLP language models that any word is al-
lowed after any other – and this lets us deal with all possible disfluencies
– nevertheless in many situations there are strong constraints on what
can normally be expected due to the constraints of grammar. While some
n-grams have just not been seen, others are ‘grammatical zeroes,’ to coin
a phrase, because they do not fit with the grammatical rules of the lan-
guage. For instance, in our Austen training corpus, both of the bigrams
great deal and of that occur 178 times. But of that is followed in the
corpus by 115 different words, giving an average count of 1.55, reflecting
the fact that any adverb, adjective, or noun can felicitously follow within
a noun phrase, and any capitalized word starting a new sentence is also
a possibility. There are thus fairly few grammatical zeroes (mainly just
verbs and prepositions). On the other hand, great deal is followed by
only 36 words giving an average count of 4.94. While a new sentence
start is again a possibility, grammatical possibilities are otherwise pretty
much limited to conjunctions, prepositions, and the comparative form of
adjectives. In particular, the preposition of follows 38% of the time. The
higher average count reflects the far greater number of grammatical ze-
roes following this bigram, and so it is correct to give new unseen words
a much lower estimate of occurrence in this context.

Finally, note that back-off models are actually a special case of the gen-
eral linear interpolation model. In back-off models, the functions λi(h)
are chosen so that their value is 0 for a history h except for the coefficient
of the model that would have been chosen using a back-off model, which
has the value 1.

p

i i

222 6 Statistical Inference: n-gram Models over Sparse Data

6.3.4 Briefly noted

Bell et al. (1990) and Witten and Bell (1991) introduce a number of
smoothing algorithms for the goal of improving text compression. Their
“Method C” is normally referred to as Witten-Bell smoothing and has beenWitten-Bell

smoothing used for smoothing speech language models. The idea is to model the
probability of a previously unseen event by estimating the probability of
seeing such a new (previously unseen) event at each point as one proceeds
through the training corpus. In particular, this probability is worked out
relative to a certain history. So to calculate the probability of seeing a
new word after, say, sat in one is calculating from the training data how
often one saw a new word after sat in, which is just the count of the num-
ber of trigram types seen which begin with sat in. It is thus an instance
of generalized linear interpolation:

PWB(wi|w(i−n+1)(i−1)) = λw(i−n+1)(i−1)PMLE(wi|w(i−n+1)(i−1))(6.22)

+(1− λw(i−n+1)(i−1))PWB(wi|w(i−n+2)(i−1))

where the probability mass given to new n-grams is given by:

(1− λw(i−n+1)(i−1)) =
|{wi : C(wi−n+1 · · ·wi) > 0}|

|{wi : C(wi−n+1 · · ·wi) > 0}| +∑wi C(wi−n+1 · · ·wi)(6.23)

However, Chen and Goodman’s (1998) results suggest that this method
is not as good a smoothing technique for language models as others that
we discuss in this section (performing particularly poorly when used on
small training sets).

Samuelsson (1996) develops Linear Successive Abstraction, a method ofLinear Successive

Abstraction determining the parameters of deleted interpolation style models without
the need for their empirical determination on held out data. Samuels-
son’s results suggest similar performance within a part-of-speech tagger
to that resulting from conventional deleted interpolation; we are unaware
of any evaluation of this technique on word n-gram models.

Another simple but quite successful smoothing method examined by
Chen and Goodman (1996) is the following. MacKay and Peto (1990) argue
for a smoothed distribution of the form:

PMP(wi|wi−n+1 · · ·wi−1) = C(wi−n+1 · · ·wi)+αPMP(wi|wi−n+2 · · ·wi−1)
C(wi−n+1 · · ·wi−1)+α(6.24)

where α represents the number of counts added, in the spirit of Lid-
stone’s law, but distributed according to the lower order distribution.

p

i i

6.3 Combining Estimators 223

Model Cross-entropy Perplexity

Bigram 7.98 bits 252.3
Trigram 7.90 bits 239.1
Fourgram 7.95 bits 247.0

Table 6.10 Back-off language models with Good-Turing estimation tested on
Persuasion.

Chen and Goodman (1996) suggest that the number of added counts
should be proportional to the number of words seen exactly once, and
suggest taking:

α = γ(N1(wi−n+1 · · ·wi−1)+ β
)

(6.25)

where N1(wi−n+1 · · ·wi−1) = |{wi : C(wi−n+1 · · ·wi) = 1}|, and then opti-
mizing β and γ on held out data.

Kneser and Ney (1995) develop a back-off model based on an exten-
sion of absolute discounting which provides a new more accurate way of
estimating the distribution to which one backs off. Chen and Goodman
(1998) find that both this method and an extension of it that they propose
provide excellent smoothing performance.

6.3.5 Language models for Austen

With the introduction of interpolation and back-off, we are at last at the
point where we can build first-rate language models for our Austen cor-
pus. Using the CMU-Cambridge Statistical Language Modeling Toolkit
(see the website) we built back-off language models using Good-Turing
estimates, following basically the approach of Katz (1987).14 We then
calculated the cross-entropy (and perplexity) of these language models
on our test set, Persuasion. The results appear in table 6.10. The esti-
mated probabilities for each following word, and the n-gram size used to
estimate it for our sample clause is then shown in table 6.11. Our prob-
ability estimates are at last pleasingly higher than the unigram estimate
with which we began!

While overall the trigram model outperforms the bigram model on the
test data, note that on our example clause, the bigram model actually as-

14. The version of Good-Turing smoothing that the package implements only discounts
low frequencies – words that occurred fewer than 7 times.

p

i i

224 6 Statistical Inference: n-gram Models over Sparse Data

P(she|h) P(was|h) P(inferior|h) P(to|h) P(both|h) P(sisters|h) Product
Unigram 0.011 0.015 0.00005 0.032 0.0005 0.0003 3.96× 10−17

Bigram 0.00529 0.1219 0.0000159 0.183 0.000449 0.00372 3.14× 10−15

n used 2 2 1 2 2 2
Trigram 0.00529 0.0741 0.0000162 0.183 0.000384 0.00323 1.44× 10−15

n used 2 3 1 2 2 2

Table 6.11 Probability estimates of the test clause according to various lan-
guage models. The unigram estimate is our previous MLE unigram estimate. The
other two estimates are back-off language models. The last column gives the
overall probability estimate given to the clause by the model.

signs a higher probability. Overall, the fourgram model performs slightly
worse than the trigram model. This is expected given the small amount
of training data. Back-off models are in general not perfectly successful
at simply ignoring inappropriately long contexts, and the models tend to
deteriorate if too large n-grams are chosen for model building relative to
the amount of data available.

6.4 Conclusions

A number of smoothing methods are available which often offer similar
and good performance figures. Using Good-Turing estimation and linear
interpolation or back-off to circumvent the problems of sparse data rep-
resent good current practice. Chen and Goodman (1996, 1998) present
extensive evaluations of different smoothing algorithms. The conclusions
of (Chen and Goodman 1998) are that a variant of Kneser-Ney back-
off smoothing that they develop normally gives the best performance.
It is outperformed by the Good-Turing smoothing method explored by
Church and Gale (1991a) when training bigram models on more than 2
million words of text, and one might hypothesize that the same would
be true of trigram models trained on a couple of orders of magnitude
more text. But in all other circumstances, it seems to perform as well or
better than other methods. While simple smoothing methods may be ap-
propriate for exploratory studies, they are best avoided if one is hoping
to produce systems with optimal performance. Active research continues
on better ways of combining probability models and dealing with sparse
data.

pa

i i

6.5 Further Reading 225

6.5 Further Reading

Important research studies on statistical estimation in the context of lan-
guage modeling include (Katz 1987), (Jelinek 1990), (Church and Gale
1991a), (Ney and Essen 1993), and (Ristad 1995). Other discussions of es-
timation techniques can be found in (Jelinek 1997) and (Ney et al. 1997).
Gale and Church (1994) provide detailed coverage of the problems with
“adding one.” An approachable account of Good-Turing estimation can
be found in (Gale and Sampson 1995). The extensive empirical compar-
ison of various smoothing methods in (Chen and Goodman 1996, 1998)
are particularly recommended.

The notion of maximum likelihood across the values of a parameter
was first defined in (Fisher 1922). See (Ney et al. 1997) for a proof that
the relative frequency really is the maximum likelihood estimate.

Recently, there has been increasing use of maximum entropy methods
for combining models. We defer coverage of maximum entropy models
until chapter 16. See Lau et al. (1993) and Rosenfeld (1994, 1996) for
applications to language models.

The early work cited in section 6.2.2 appears in: (Lidstone 1920), (John-
son 1932), and (Jeffreys 1948). See (Ristad 1995) for discussion. Good
(1979: 395–396) covers Turing’s initial development of the idea of Good-
Turing smoothing. This article is reprinted with amplification in (Britton
1992).

6.6 Exercises

Exercise 6.1 [««]

Explore figures for the percentage of unseen n-grams in test data (that differs
from the training data). Explore varying some or all of: (i) the order of the model
(i.e., n), (ii) the size of the training data, (iii) the genre of the training data, and
(iv) how similar in genre, domain, and year the test data is to the training data.

Exercise 6.2 [«]

As a smaller example of the problems with Laplace’s law, work out probability
estimates using Laplace’s law given that 100 samples have been seen from a
potential vocabulary of 1000 items, and in that sample 9 items were seen 10
times, 2 items were seen 5 times and the remaining 989 items were unseen.

pa

i i

226 6 Statistical Inference: n-gram Models over Sparse Data

Exercise 6.3 [«]

Show that using ELE yields a probability function, in particular that∑
w1···wn

PELE(w1 · · ·wn) = 1

Exercise 6.4 [«]

Using the word and bigram frequencies within the Austen test corpus given be-
low, confirm the ELE estimate for the test clause she was inferior to both sisters
given in section 6.2.2 (using the fact that the word before she in the corpus was
person).

w C(w) w1w2 C(w1w2)

person 223 person she 2
she 6,917 she was 843
was 9,409 was inferior 0
inferior 33 inferior to 7
to 20,042 to both 9
both 317 both sisters 2

Exercise 6.5 [«]

Show that Good-Turing estimation is well-founded. I.e., you want to show:

∑
w1···wn

PGT(w1 · · ·wn) = fGT(w1 · · ·wn)
N

= 1

Exercise 6.6 [«]

We calculated a Good-Turing probability estimate for she was inferior to both
sisters using a bigram model with a uniform estimate of unseen bigrams. Make
sure you can recreate these results, and then try doing the same thing using a
trigram model. How well does it work?

Exercise 6.7 [««]

Build language models for a corpus using the software pointed to on the web-
site (or perhaps build your own). Experiment with what options give the best
language model, as measured by cross-entropy.

Exercise 6.8 [««]

Get two corpora drawn from different domains, and divide each into a training
and a test set. Build language models based on the training data for each domain.
Then calculate the cross-entropy figures for the test sets using both the language
model trained on that domain, and the other language model. How much do the
cross-entropy estimates differ?

p

i i

6.6 Exercises 227

Exercise 6.9 [««]

Write a program that learns word n-gram models of some text (perhaps doing
smoothing, but it is not really necessary for this exercise). Train separate models
on articles from several Usenet newsgroups or other text from different genres
and then generate some random text based on the models. How intelligible is
the output for different values of n? Is the different character of the various
newsgroups clearly preserved in the generated text?

Exercise 6.10 [««]

Write a program that tries to identify the language in which a short segment of
text is written, based on training itself on text written in known languages. For
instance, each of the following lines is text in a different language:

doen is ondubbelzinnig uit
prétendre à un emploi
uscirono fuori solo alcune
look into any little problem

If you know a little about European languages, you can probably identify what
language each sample is from. This is a classification task, in which you should
usefully be able to use some of the language modeling techniques discussed
in this chapter. (Hint: consider letter n-grams vs. word n-grams.) (This is a
problem that has been investigated by others; see in particular (Dunning 1994).
The website contains pointers to a number of existing language identification
systems – including one that was originally done as a solution to this exercise!)

p

i i

“The primary implication is that a task-independent set of word
senses for a language is not a coherent concept. Word senses
are simply undefined unless there is some underlying rationale
for clustering, some context which classifies some distinctions as
worth making and others as not worth making. For people,
homonyms like ‘pike’ are a limiting case: in almost any
situation where a person considers it worth their while
attending to a sentence containing ‘pike,’ it is also worth their
while making the fish/weapon distinction.”

(Kilgarriff 1997: 19)

This excerpt from

Foundations of Statistical Natural Language Processing.
Christopher D. Manning and Hinrich Schütze.
© 1999 The MIT Press.

is provided in screen-viewable form for personal use only by members
of MIT CogNet.

Unauthorized use or dissemination of this information is expressly
forbidden.

If you have any questions about this material, please contact
cognetadmin@cognet.mit.edu.

	Foundations of Statistical Natural Language Processing: Chap6 - Statistical Inference: <var>n</var>-gram Models over Sparse Data
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38

	Copyright notice

