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7 Word Sense Disambiguation

This chapter gives an overview of work on word sense disambigua-
tion within Statistical NLP. It introduces a few of the most important
word sense disambiguation algorithms, and describes their resource re-
quirements and performance.

What is the idea of word sense disambiguation? The problem to be
solved is that many words have several meanings or senses. For suchsenses

words given out of context, there is thus ambiguity about how they areambiguity

to be interpreted. As a first example of ambiguity, consider the word
bank and two of the senses that can be found in Webster’s New Collegiate
Dictionary (Woolf 1973):

� the rising ground bordering a lake, river, or sea . . .

� an establishment for the custody, loan exchange, or issue of money,
for the extension of credit, and for facilitating the transmission of
funds

The task of disambiguation is to determine which of the senses of andisambiguation

ambiguous word is invoked in a particular use of the word. This is done
by looking at the context of the word’s use.

This is how the problem has normally been construed in the word sense
disambiguation literature. A word is assumed to have a finite number of
discrete senses, often given by a dictionary, thesaurus, or other reference
source, and the task of the program is to make a forced choice between
these senses for the meaning of each usage of an ambiguous word, based
on the context of use. However, it is important to realize at the outset that
there are a number of reasons to be quite unhappy with such a statement
of the task. The word bank is perhaps the most famous example of an
ambiguous word, but it is really quite atypical. A more typical situation
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is that a word has various somewhat related senses, and it is unclear
whether to and where to draw lines between them. For example, consider
the word title. Some senses that we found in a dictionary were:

� Name/heading of a book, statute, work of art or music, etc.

� Material at the start of a film

� The right of legal ownership (of land)

� The document that is evidence of this right

� An appellation of respect attached to a person’s name

� A written work [by synecdoche, i.e., putting a part for the whole]synecdoche

One approach is simply to define the senses of a word as the meanings
given to it in a particular dictionary. However, this is unsatisfactory from
a scientific viewpoint because dictionaries often differ greatly in the num-
ber and kind of senses they list, not only because comprehensive dictio-
naries can be more complete, but fundamentally in the way word uses
are gathered into senses. And often these groupings seem quite arbi-
trary. For example, the above list of senses distinguishes as two senses
a right of legal title to property and a document that shows that right.
However, this pattern of sense extension between a concept and some-
thing that shows the concept is pervasive and could have been, but was
not, distinguished for other uses. For example the same ambiguity exists
when talking about the title of a painting. For instance, one might remark
in a gallery:

(7.1) This work doesn’t have a title.

That sentence could mean either that the work was not given a title by
the author, or simply that the little placard giving the title, which usually
appears by paintings in a gallery, is missing. It is also somewhat unclear
why books, statutes and works of art or music are grouped together while
films are separated out. The second definition could be seen as a special
case of the first definition. It is quite common in many dictionaries for
senses to be listed that are really special cases of another sense, if this
sense is frequently and distinctively used in texts. These difficulties sug-
gest that, for most words, the usages and hence the sense definitions are
not to be thought of as like five kinds of cheese, among which one must
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choose, but more like a casserole which has some pieces of clearly dis-
tinct identifiable content, but a lot of stuff of uncertain and mixed origin
in between.

Notwithstanding these philosophical objections, the problem of disam-
biguation is of clear importance in many applications of natural language
processing. A system for automatic translation from English to German
needs to translate bank as Ufer for the first sense given above (‘ground
bordering a lake or river’), and as Bank for the second sense (‘financial
institution’). An information retrieval system answering a query about
‘financial banks’ should return only documents that use bank in the sec-
ond sense. Whenever a system’s actions depend on the meaning of the
text being processed, disambiguation is beneficial or even necessary.

There is another kind of ambiguity, where a word can be used as differ-
ent parts of speech. For example, butter may be used as a noun, or as a
verb, as in You should butter your toast. Determining the usage of a word
in terms of part of speech is referred to as tagging, and is discussed intagging

chapter 10. How do these two notions relate? Using a word as a verb
instead of as a noun is clearly a different usage, with a different meaning
involved, and so this could be viewed as a word sense disambiguation
problem. Conversely, differentiating word senses could be viewed as a
tagging problem, but using semantic tags rather than part of speech tags.
In practice, the two topics have been distinguished, partly because of dif-
ferences between the nature of the problem, and partly because of the
methods that have been used to approach them. In general, nearby struc-
tural cues are most useful for determining part of speech (e.g., is the
preceding word a determiner?), but are almost useless for determining
semantic sense within a part of speech. Conversely, quite distant content
words are often very effective for determining a semantic sense, but are
of little use for determining part of speech. Consequently, most part of
speech tagging models simply use local context, while word sense disam-
biguation methods often try to use content words in a broader context.

The nature of ambiguity and disambiguation changes quite a bit de-
pending on what material is available for training a word sense disam-
biguation system. After an initial section about methodology, this chap-
ter has three main sections dealing with different types of training ma-
terial. Section 7.2 describes supervised disambiguation, disambiguation
based on a labeled training set. Section 7.3 describes dictionary-based
disambiguation, disambiguation that is based on lexical resources such
as dictionaries and thesauri. Section 7.4 deals with unsupervised disam-
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biguation, the case in which only unlabeled text corpora are available for
training. We conclude with an in-depth discussion of the notion of sense
and pointers to further reading.

7.1 Methodological Preliminaries

Several important methodological issues come up in the context of word
sense disambiguation. They are of general relevance to NLP, but have
received special attention in this context. These are: supervised vs. unsu-
pervised learning; the use of artificial evaluation data, known in the word
sense disambiguation context as pseudowords; and the development of
upper and lower bounds for the performance of algorithms, so that their
success can be meaningfully interpreted.

7.1.1 Supervised and unsupervised learning

A lot of algorithms are classified as to whether they involve supervised or
unsupervised learning (Duda and Hart 1973: 45). The distinction is that
with supervised learning we know the actual status (here, sense label) forsupervised learning

each piece of data on which we train, whereas with unsupervised learn-unsupervised

learning ing we do not know the classification of the data in the training sample.
Unsupervised learning can thus often be viewed as a clustering task (seeclustering

chapter 14), while supervised learning can usually be seen as a classifica-classification

tion task (see chapter 16), or equivalently as a function-fitting task where
one extrapolates the shape of a function based on some data points.

However, in the Statistical NLP domain, things are often not this sim-
ple. Because the production of labeled training data is expensive, people
will often want to be able to learn from unlabeled data, but will try to give
their algorithms a head start by making use of various knowledge sources,knowledge sources

such as dictionaries, or more richly structured data, such as aligned bilin-
gual texts. In other methods, the system is seeded with labeled training
data, but this data is augmented by further learning from unlabeled data.
Rather than trying to force different methods on to a procrustean bed, it
usually makes most sense to simply give a precise answer to the question:
What knowledge sources are needed for use of this method? As we will see,
sometimes there are alternative combinations of knowledge sources that
can give similar information (e.g., using either aligned bilingual texts, or
monolingual texts and a bilingual dictionary).
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7.1.2 Pseudowords

In order to test the performance of disambiguation algorithms on a nat-
ural ambiguous word, a large number of occurrences has to be disam-
biguated by hand – a time-intensive and laborious task. In cases like this
in which test data are hard to come by, it is often convenient to gener-
ate artificial evaluation data for the comparison and improvement of text
processing algorithms. In the case of word sense disambiguation these
artificial data are called pseudowords.pseudowords

Gale et al. (1992e) and Schütze (1992a) show how pseudowords, i.e.,
artificial ambiguous words, can be created by conflating two or more nat-
ural words. For example, to create the pseudoword banana-door, one
replaces all occurrences of banana and door in a corpus by the artifi-
cial word banana-door. Pseudowords make it easy to create large-scale
training and test sets for disambiguation while obviating the need for
hand-labeling: we regard the text with pseudowords as the ambiguous
source text, and the original as the text with the ambiguous words dis-
ambiguated.

7.1.3 Upper and lower bounds on performance

While it is important to measure the performance of one’s algorithm, nu-
merical evaluation by itself is meaningless without some discussion of
how well the algorithm performs relative to the difficulty of the task. For
example, whereas 90% accuracy is easy to achieve for part-of-speech tag-
ging of English text, it is beyond the capacity of any existing machine
translation system. The estimation of upper and lower bounds for the
performance of an algorithm is a way to make sense of performance fig-
ures (Gale et al. 1992a). It is a good idea for many tasks in NLP, especially
if there are no standardized evaluation sets for comparing systems.

The upper bound used is usually human performance. In the caseupper bound

of word sense disambiguation, if human judges disagree on the correct
sense assignment for a particular context, then we cannot expect an auto-
matic procedure to do better. Determining upper bounds is particularly
interesting if the disambiguation algorithm uses a limited representation
of contexts, for example just looking at the three words on each side
of the ambiguous word. In such a situation, the reason for poor per-
formance may just be that the contextual representations are not very
informative so that even humans would not be able to disambiguate very
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well based on the same information. We can evaluate this by looking at
human performance when based on the same limited contextual cues.1

An upper bound for word sense disambiguation was established by
Gale et al. (1992a). Gale et al. performed tests with the following task:
Subjects were given pairs of occurrences and had to decide whether they
were instances of the same sense. The task resulted in upper bounds
between 97% and 99%. However, most of the words in Gale et al.’s test
set have few and clearly distinct senses. In contrast, there are many am-
biguous words (in particular, high-frequency ones) that are similar to our
example title, i.e., their senses are interrelated and overlapping. Inter-
judge agreement depends on the type of ambiguity: it is higher for words
with clearly distinct senses (95% and higher) and lower for polysemous
words with many related senses (perhaps as low as 65% to 70%).2 The task
is also easier when viewed as a yes/no decision task than as an arbitrary
clustering task.

This means that we have to look at the properties of an individual am-
biguous word to determine whether a disambiguation algorithm does a
good job for it. For a word like bank we should aim for performance
in the ninety percent range, whereas less stringent criteria should be ap-
plied to fuzzier cases like title, side, and way.

The lower bound or baseline is the performance of the simplest possi-lower bound

baseline ble algorithm, usually the assignment of all contexts to the most frequent
sense. A baseline should always be given because raw performance num-
bers make it impossible to assess how hard disambiguation is for a par-
ticular word. An accuracy of 90% is an excellent result for an ambiguous
word with two equiprobable senses. The same accuracy for a word with
two senses in a 9 to 1 frequency ratio is trivial to achieve – by always
selecting the most frequent sense.
�Upper and lower bounds are most relevant when we are dealing with
a classification task and the evaluation measure is accuracy. Section 8.1
discusses other evaluation measures, in particular, precision and recall.

1. Although, for limited artificial contexts like this, it is of course possible that computers
might be able to be more successful than human beings at extracting useful predictive
information.
2. See (Jorgensen 1990). To be able to correctly compare the extent of inter-judge agree-
ment across tasks, we need to correct for the expected chance agreement (which depends
on the number of senses being distinguished). This is done by the kappa statistic (Siegel
and Castellan 1988; Carletta 1996).
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Symbol Meaning

w an ambiguous word
s1, . . . , sk, . . . , sK senses of the ambiguous word w
c1, . . . , ci, . . . , cI contexts of w in a corpus
v1, . . . , vj , . . . , vJ words used as contextual features for disambiguation

Table 7.1 Notational conventions used in this chapter.

7.2 Supervised Disambiguation

In supervised disambiguation, a disambiguated corpus is available for
training. There is a training set of exemplars where each occurrence of
the ambiguous word w is annotated with a semantic label (usually its
contextually appropriate sense sk). This setting makes supervised disam-
biguation an instance of statistical classification, the topic of chapter 16.
The task is to build a classifier which correctly classifies new cases based
on their context of use ci . This notation, which we will use throughout
the remainder of the chapter, is shown in table 7.1.

We have selected two of the many supervised algorithms that have
been applied to word sense disambiguation that exemplify two impor-
tant theoretical approaches in statistical language processing: Bayesian
classification (the algorithm proposed by Gale et al. (1992b)) and Informa-
tion Theory (the algorithm proposed by Brown et al. (1991b)). They also
demonstrate that very different sources of information can be employed
successfully for disambiguation. The first approach treats the context of
occurrence as a bag of words without structure, but it integrates infor-
mation from many words in the context window. The second approach
looks at only one informative feature in the context, which may be sen-
sitive to text structure. But this feature is carefully selected from a large
number of potential ‘informants.’

7.2.1 Bayesian classification

The idea of the Bayes classifier which we will present for word senses is
that it looks at the words around an ambiguous word in a large context
window. Each content word contributes potentially useful information
about which sense of the ambiguous word is likely to be used with it.
The classifier does no feature selection. Instead it combines the evidence
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from all features. The specific formalization we describe is due to Gale
et al. (1992b). The supervised training of the classifier assumes that we
have a corpus where each use of ambiguous words is labeled with its
correct sense.

A Bayes classifier applies the Bayes decision rule when choosing a class,Bayes classifier

Bayes decision rule the rule that minimizes the probability of error (Duda and Hart 1973: 10–
43):

(7.2) Bayes decision rule
Decide s′ if P(s′|c) > P(sk|c) for sk ≠ s′

The Bayes decision rule is optimal because it minimizes the probability
of error. This is true because for each individual case it chooses the class
(or sense) with the highest conditional probability and hence the smallest
error rate. The error rate for a sequence of decisions (for example, dis-
ambiguating all instances of w in a multi-page text) will therefore also be
as small as possible.

We usually do not know the value of P(sk|c), but we can compute it
using Bayes’ rule as in section 2.1.10:Bayes’ rule

P(sk|c) = P(c|sk)P(c)
P(sk)

P(sk) is the prior probability of sense sk, the probability that we have anprior probability

instance of sk if we do not know anything about the context. P(sk) is
updated with the factor P(c|sk)P(c) which incorporates the evidence which we
have about the context, and results in the posterior probability P(sk|c).posterior

probability If all we want to do is choose the correct class, we can simplify the
classification task by eliminating P(c) (which is a constant for all senses
and hence does not influence what the maximum is). We can also use
logs of probabilities to make the computation simpler. Then, we want to
assign w to the sense s′ where:

s′ = arg max
sk

P(sk|c)(7.3)

= arg max
sk

P(c|sk)
P(c)

P(sk)

= arg max
sk

P(c|sk)P(sk)
= arg max

sk

[
logP(c|sk)+ logP(sk)

]
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Gale et al.’s classifier is an instance of a particular kind of Bayes clas-
sifier, the Naive Bayes classifier. Naive Bayes is widely used in machineNaive Bayes

learning due to its efficiency and its ability to combine evidence from a
large number of features (Mitchell 1997: ch. 6). It is applicable if the state
of the world that we base our classification on is described as a series
of attributes. In our case, we describe the context of w in terms of the
words vj that occur in the context.

The Naive Bayes assumption is that the attributes used for descriptionNaive Bayes

assumption are all conditionally independent:

(7.4) Naive Bayes assumption
P(c|sk) = P({vj |vj in c}|sk) =

∏
vj in c P(vj |sk)

In our case, the Naive Bayes assumption has two consequences. The
first is that all the structure and linear ordering of words within the con-
text is ignored. This is often referred to as a bag of words model.3 Thebag of words

other is that the presence of one word in the bag is independent of an-
other. This is clearly not true. For example, president is more likely to
occur in a context that contains election than in a context that contains
poet. But, as in many other cases, the simplifying assumption makes it
possible to adopt an elegant model that can be quite effective despite
its shortcomings. Obviously, the Naive Bayes assumption is inappropri-
ate if there are strong conditional dependencies between attributes. But
there is a surprisingly large number of cases in which it does well, partly
because the decisions made can still be optimal even if the probability es-
timates are inaccurate due to feature dependence (Domingos and Pazzani
1997).

With the Naive Bayes assumption, we get the following modified deci-
sion rule for classification:

(7.5) Decision rule for Naive Bayes
Decide s′ if s′ = arg maxsk[logP(sk)+

∑
vj in c logP(vj |sk)]

P(vj |sk) and P(sk) are computed via Maximum-Likelihood estimation,
perhaps with appropriate smoothing, from the labeled training corpus:

P(vj |sk) = C(vj , sk)C(sk)

3. A bag is like a set, but allows repeated elements (we use ‘ in ’ rather than ‘∈’ in equa-
tion (7.4) because we are treating c as a bag).
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1 comment: Training
2 for all senses sk of w do
3 for all words vj in the vocabulary do

4 P(vj |sk) = C(vj ,sk)
C(vj)

5 end
6 end
7 for all senses sk of w do

8 P(sk) = C(sk)
C(w)

9 end
10 comment: Disambiguation
11 for all senses sk of w do
12 score(sk) = logP(sk)
13 for all words vj in the context window c do
14 score(sk) = score(sk)+ logP(vj |sk)
15 end
16 end
17 choose s′ = arg maxsk score(sk)

Figure 7.1 Bayesian disambiguation.

Sense Clues for sense

medication prices, prescription, patent, increase, consumer, pharmaceutical
illegal substance abuse, paraphernalia, illict, alcohol, cocaine, traffickers

Table 7.2 Clues for two senses of drug used by a Bayesian classifier. Adapted
from (Gale et al. 1992b: 419).

P(sk) = C(sk)C(w)

where C(vj , sk) is the number of occurrences of vj in a context of sense
sk in the training corpus, C(sk) is the number of occurrences of sk in
the training corpus, and C(w) is the total number of occurrences of the
ambiguous word w . Figure 7.1 summarizes the algorithm.

Gale, Church and Yarowsky (1992b; 1992c) report that a disambigua-
tion system based on this algorithm is correct for about 90% of occur-
rences for six ambiguous nouns in the Hansard corpus: duty, drug, land,
language, position, and sentence.

Table 7.2 gives some examples of words that are good clues for two



p

i i

7.2 Supervised Disambiguation 239

Ambiguous word Indicator Examples: value → sense

prendre object mesure → to take
décision → to make

vouloir tense present → to want
conditional → to like

cent word to the left per → %
number → c. [money]

Table 7.3 Highly informative indicators for three ambiguous French words.

senses of drug in the Hansard corpus. For example, prices is a good clue
for the ‘medication’ sense. This means that P(prices|‘medication’) is large
and P(prices|‘illicit substance’) is small and has the effect that a context
of drug containing prices will have a higher score for ‘medication’ and a
lower score for ‘illegal substance’ (as computed on line 14 in figure 7.1).

7.2.2 An information-theoretic approach

The Bayes classifier attempts to use information from all words in the
context window to help in the disambiguation decision, at the cost of a
somewhat unrealistic independence assumption. The information theo-
retic algorithm which we turn to now takes the opposite route. It tries to
find a single contextual feature that reliably indicates which sense of the
ambiguous word is being used. Some of Brown et al.’s (1991b) examples
of indicators for French ambiguous words are listed in table 7.3. For the
verb prendre, its object is a good indicator: prendre une mesure trans-
lates as to take a measure, prendre une décision as to make a decision.
Similarly, the tense of the verb vouloir and the word immediately to the
left of cent are good indicators for these two words as shown in table 7.3.

In order to make good use of an informant, its values need to be cat-
egorized as to which sense they indicate, e.g., mesure indicates to take,
décision indicates to make. Brown et al. use the Flip-Flop algorithm forFlip-Flop algorithm

this purpose. Let t1, . . . , tm be the translations of the ambiguous word,
and x1, . . . , xn the possible values of the indicator. Figure 7.2 shows the
Flip-Flop algorithm for this case. The version of the algorithm described
here only disambiguates between two senses. See Brown et al. (1991a) for
an extension to more than two senses. Recall the definition of mutual
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1 find random partition P = {P1, P2} of {t1, . . . , tm}
2 while (improving) do
3 find partition Q = {Q1,Q2} of {x1, . . . , xn}
4 that maximizes I(P ; Q)
5 find partition P = {P1, P2} of {t1, . . . , tm}
7 that maximizes I(P ; Q)
8 end

Figure 7.2 The Flip-Flop algorithm applied to finding indicators for disam-
biguation.

information from section 2.2.3:

I(X; Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

It can be shown that each iteration of the Flip-Flop algorithm increases
the mutual information I(P ; Q) monotonically, so a natural stopping cri-
terion is that I(P ; Q) does not increase any more or only insignificantly.

As an example, assume we want to translate prendre based on its
object and that we have {t1, . . . , tm} = {take,make, rise, speak} and
{x1, . . . , xn} = {mesure,note, exemple,décision,parole} (cf. (Brown et al.
1991b: 267)). The initial partition P of the senses might be P1 = {take,
rise} and P2 = {make, speak}. Which partition Q of the indicator values
would give us maximum I(P ; Q)? Obviously, the answer depends on
the particular data we are working with. But let us assume that prendre
is translated by take when occurring with the objects mesure, note, and
exemple (corresponding to the phrases take a measure, take notes, and
take an example), and translated by make, speak, and rise when occurring
with décision, and parole (corresponding to the phrases make a decision,
make a speech and rise to speak).

Then the partition that will maximize I(P ; Q) is Q1 = {mesure,note,
exemple} and Q2 = {décision,parole} since this division of the indicator
values gives us the most information for distinguishing the translations
in P1 from the translations in P2. We only make an incorrect decision
when prendre la parole is translated as rise to speak, but this cannot be
avoided since rise and speak are in two different partition groups.

The next two steps of the algorithm then repartition P as P1 = {take}
and P2 = {make, rise, speak} and Q as before. This partition is always
correct for take. We would have to consider more than two ‘senses’ if we
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also wanted to distinguish between the other translations make, rise and
speak.

A simple exhaustive search for the best partition of the French transla-
tions and the best possible indicator values would take exponential time.
The Flip-Flop algorithm is an efficient linear-time algorithm for comput-
ing the best partition of values for a particular indicator, based on the
splitting theorem (Breiman et al. 1984). We run the algorithm for all pos-
sible indicators and then choose the indicator with the highest mutual
information. Brown et al. found that this was the accusative object for
prendre, tense for vouloir and the preceding word for cent as shown in
table 7.3.

Once an indicator and a particular partition of its values has been de-
termined, disambiguation is simple:

1. For the occurrence of the ambiguous word, determine the value xi of
the indicator.

2. If xi is in Q1, assign the occurrence to sense 1, if xi is in Q2, assign the
occurrence to sense 2.

Brown et al. (1991b) report a 20% improvement in the performance of
a machine translation system (from 37 to 45 sentences correct out of
100) when the information-theoretic algorithm is incorporated into the
system.

We call the algorithm supervised because it requires a labeled training
set. However in Brown et al.’s (1991b) work, each occurrence of, say,
French cent is ‘labeled’ not with its sense but by its corresponding English
translation. These class labels are not the senses. For example, some of
the labels of the French word cent are (English) per and the numbers
0, one, 2, and 8. The algorithm groups the labels into two classes, Q1 =
{per} andQ2 = {0,one,2,8} which are then interpreted as the two senses
of cent, corresponding to the English translations % (percent sign) and
cent (with the variants c. and sou). There is thus a many-to-one mapping
from labels to senses.

7.3 Dictionary-Based Disambiguation

If we have no information about the sense categorization of specific in-
stances of a word, we can fall back on a general characterization of the
senses. This section describes disambiguation methods that rely on the
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definition of senses in dictionaries and thesauri. Three different types
of information have been used. Lesk (1986) exploits the sense defini-
tions in the dictionary directly. Yarowsky (1992) shows how to apply
the semantic categorization of words (derived from the categories in Ro-
get’s thesaurus) to the semantic categorization and disambiguation of
contexts. In Dagan and Itai’s method (1994), translations of the different
senses are extracted from a bilingual dictionary and their distribution in
a foreign language corpus is analyzed for disambiguation. Finally, we will
see how a careful examination of the distributional properties of senses
can lead to significant improvements in disambiguation. Commonly, am-
biguous words are only used with one sense in any given discourse and
with any given collocate (the one sense per discourse and one sense per
collocation hypotheses).

7.3.1 Disambiguation based on sense definitions

Lesk (1986) starts from the simple idea that a word’s dictionary defini-
tions are likely to be good indicators for the senses they define.4 Suppose
that two of the definitions of cone are as follows:

1. a mass of ovule-bearing or pollen-bearing scales or bracts in trees of
the pine family or in cycads that are arranged usually on a somewhat
elongated axis,

2. something that resembles a cone in shape: as . . . a crisp cone-shaped
wafer for holding ice cream.

If either tree or ice occur in the same context as cone, then chances are
that the occurrence belongs to the sense whose definition contains that
word: sense 1 for tree, sense 2 for ice.

Let D1, . . . ,DK be the dictionary definitions of the senses s1, . . . , sK of
the ambiguous word w , represented as the bag of words occurring in the
definition, and Evj the dictionary definition of a word vj occurring in the
context of use c of w , represented as the bag of words occurring in the
definition of vj . (If sj1 , . . . , sjL are the senses of vj , then Evj =

⋃
ji Dji . We

simply ignore sense distinctions for the words vj that occur in the context
of w .) Then Lesk’s algorithm can be described as shown in figure 7.3. For
the overlap function, we can just count the number of common words in

4. Lesk credits Margaret Millar and Lawrence Urdang with the original proposal of the
algorithm.
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1 comment: Given: context c
2 for all senses sk of w do
3 score(sk) = overlap(Dk,

⋃
vj in c Evj )

4 end
5 choose s′ s.t. s′ = arg maxsk score(sk)

Figure 7.3 Lesk’s dictionary-based disambiguation algorithm. Dk is the set of
words occurring in the dictionary definition of sense sk. Evj is the set of words
occurring in the dictionary definition of word vj (that is, the union of all the
sense definitions of vj ).

Sense Definition
s1 tree a tree of the olive family
s2 burned stuff the solid residue left when combustible material

is burned

Table 7.4 Two senses of ash.

Scores Context
s1 s2

0 1 This cigar burns slowly and creates a stiff ash.
1 0 The ash is one of the last trees to come into leaf.

Table 7.5 Disambiguation of ash with Lesk’s algorithm. The score is the num-
ber of (stemmed) words that are shared by the sense definition and the context.
The first sentence is disambiguated as ‘burned stuff’ because one word is shared
with the definition of sense s2, burn, and there are no common words for the
other sense. In the second example, the word shared with the definition of s1
(‘tree’) is tree.

the definition Dk of sense sk and the union
⋃
vj in c Evj of the definitions

of the words vj in the context. Or we could use any of the similarity
functions which we present in table 8.7.

One of Lesk’s examples is the word ash with the senses in table 7.4.
The two contexts in table 7.5 are correctly disambiguated when scored
on the number of words common with the different sense definitions.

By itself, information of this sort derived from a dictionary is insuffi-
cient for high quality word sense disambiguation. Lesk reports accuracies
between 50% and 70% when the algorithm is applied to a sample of am-
biguous words. He suggests various optimizations that could improve
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performance. For example, one could run several iterations of the algo-
rithm on a text. Instead of using the union of all words Evj occurring in
the definition of vj , one could only use the words in the definitions of the
contextually appropriate senses as determined in the previous iteration
of the algorithm. One would hope that the iterated algorithm eventually
settles on the correct sense of each word in the text. Pook and Catlett
(1988) suggest another improvement: to expand each word in the context
with a list of synonyms from a thesaurus. Such an algorithm combines
elements of dictionary-based and thesaurus-based disambiguation.

7.3.2 Thesaurus-based disambiguation

Thesaurus-based disambiguation exploits the semantic categorization
provided by a thesaurus like Roget’s (Roget 1946) or a dictionary with
subject categories like Longman’s (Procter 1978). The basic inference in
thesaurus-based disambiguation is that the semantic categories of the
words in a context determine the semantic category of the context as a
whole, and that this category in turn determines which word senses are
used.

The following simple thesaurus-based algorithm was proposed by
Walker (1987: 254). The basic information used is that each word is
assigned one or more subject codes in the dictionary. If the word is as-
signed several subject codes, then we assume that they correspond to the
different senses of the word. Let t(sk) be the subject code of sense sk of
ambiguous word w occurring in context c. Then w can be disambiguated
by counting the number of words for which the thesaurus lists t(sk) as
a possible topic. We then choose the sense with the highest count as
shown in figure 7.4.

Black (1988: 187) achieved only moderate success when applying
Walker’s algorithm to a sample of five ambiguous words: accuracies
around 50%. However, the test words were difficult and highly ambigu-
ous: interest, point, power, state and terms.

One problem with the algorithm is that a general categorization of
words into topics is often inappropriate for a particular domain. For
example, mouse may be listed as both a mammal and an electronic de-
vice in a thesaurus, but in a computer manual it will rarely be evidence
for the thesaurus category ‘mammal.’ A general topic categorization may
also have a problem of coverage. We will not find Navratilova in a the-
saurus from the 1960s (and we may not find any proper nouns). Yet
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1 comment: Given: context c
2 for all senses sk of w do
3 score(sk) =

∑
vj in c δ(t(sk), vj)

4 end
5 choose s′ s.t. s′ = arg maxsk score(sk)

Figure 7.4 Thesaurus-based disambiguation. t(sk) is the subject code of sense
sk and δ(t(sk), vj) = 1 iff t(sk) is one of the subject codes of vj and 0 otherwise.
The score is the number of words that are compatible with the subject code of
sense sk.

the occurrence of Navratilova is an excellent indicator of the category
‘sports.’

The algorithm in figure 7.5 for the adaptation of a topic classification
to a corpus was proposed by Yarowsky (1992). The algorithm adds words
to a category ti if they occur more often than chance in the contexts of ti
in the corpus. For example, Navratilova will occur more often in sports
contexts than in other contexts, so it will be added to the sports category.

Yarowsky’s algorithm in figure 7.5 uses the Bayes classifier introduced
in section 7.2.1 for both adaptation and disambiguation. First we com-
pute a score for each pair of a context ci in the corpus and a thesaurus
category tl . For example, context (7.6) would get a high score for the
thesaurus category ‘sports,’ assuming that the thesaurus lists tennis as a
‘sports’ word. In Yarowsky’s experiments, a context is simply a 100-word
window centered around the ambiguous word.

(7.6) It is amazing that Navratilova, who turned 33 earlier this year, continues
to play great tennis.

Making a Naive Bayes assumption, we can compute this score(ci, tl) as
logP(tl|ci) where P(tl|ci) is computed as follows.

P(tl|ci) = P(ci|tl)
P(ci)

P(tl)(7.7)

=
∏
v in ci P(v|tl)∏
v in ci P(v)

P(tl)

We then use a threshold α in line 7 to determine which thesaurus cat-
egories are salient in a context. A fairly large value for this threshold
should be chosen so that only contexts with good evidence for a category
are assigned.



p

i i

246 7 Word Sense Disambiguation

1 comment: Categorize contexts based on categorization of words
2 for all contexts ci in the corpus do
3 for all thesaurus categories tl do

4 score(ci, tl) = log P(ci |tl )P(ci) P(tl)
5 end
6 end
7 t(ci) = {tl|score(ci, tl) > α}
8 comment: Categorize words based on categorization of contexts
9 for all words vj in the vocabulary do

10 Vj = {c|vj in c}
11 end
12 for all topics tl do
13 Tl = {c|tl ∈ t(c)}
14 end
15 for all words vj , all topics tl do
16 P(vj |tl) = |Vj ∩ Tl|

/∑
j |Vj ∩ Tl|

17 end
18 for all topics tl do
19 P(tl) =

(∑
j |Vj ∩ Tl|

)/(∑
l
∑
j |Vj ∩ Tl|

)
20 end
21 comment: Disambiguation
22 for all senses sk of w occurring in c do
23 score(sk) = logP(t(sk))+

∑
vj in c logP(vj |t(sk))

24 end
25 choose s′ s.t. s′ = arg maxsk score(sk)

Figure 7.5 Adaptive thesaurus-based disambiguation. Yarowsky’s algorithms
for adapting a semantic categorization of words and for thesaurus-based disam-
biguation. P(vj |tl) on line 16 is estimated as the proportion of contexts of topic
tl that contain word vj .

Now we can adjust the semantic categorization in the thesaurus to our
corpus (represented as the set of contexts {ci}). On line 16, we estimate
P(vj |tl) as the proportion of contexts of vj that are in category tl . If vj
is covered in the thesaurus, then this will adapt vj ’s semantic categories
to the corpus (for example, stylus may get a high score as a computer
term even though the thesaurus only lists it in the category ‘writing’). If
vj is not covered, then it will be added to the appropriate categories (the
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Word Sense Roget category Accuracy

bass musical senses music 99%
fish animal, insect 100%

star space object universe 96%
celebrity entertainer 95%
star shaped object insignia 82%

interest curiosity reasoning 88%
advantage injustice 34%
financial debt 90%
share property 38%

Table 7.6 Some results of thesaurus-based disambiguation. The table shows
the senses of three ambiguous words, the Roget categories they correspond to,
and the accuracy of the algorithm in figure 7.5. Adapted from (Yarowsky 1992).

case of Navratilova). The prior probability of tl is simply computed as its
relative frequency, adjusted for the fact that some contexts will have no
semantic categories and others more than one (line 19).

The values P(vj |tl) computed on line 16 are then used for disambigua-
tion in analogy to the Bayesian algorithm we discussed earlier (see fig-
ure 7.1). Yarowsky (1992) recommends smoothing for some of the maxi-
mum likelihood estimates (see chapter 6).

Table 7.6 shows some results from (Yarowsky 1992). The method
achieves high accuracy when thesaurus categories and senses align well
with topics as in the case of bass and star. When a sense is spread
out over several topics, the algorithm fails. Yarowsky calls these topic-topic-independent

distinctions independent distinctions between senses. For example, the sense ‘advan-
tage’ of interest (as in self-interest) is not topic-specific. Self-interest can
occur in music, entertainment, space exploration, finance, etc. Therefore,
a topic-based classification does not do well on this sense.

7.3.3 Disambiguation based on translations in a second-language
corpus

The third dictionary-based algorithm makes use of word corresponden-
ces in a bilingual dictionary (Dagan et al. 1991; Dagan and Itai 1994).
We will refer to the language of application (the one for which we want
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Sense 1 Sense 2

Definition legal share attention, concern
Translation Beteiligung Interesse
English collocation acquire an interest show interest
Translation Beteiligung erwerben Interesse zeigen

Table 7.7 How to disambiguate interest using a second-language corpus.

to do disambiguation) as the first language and the target language in
the bilingual dictionary as the second language. For example, if we want
to disambiguate English based on a German corpus, then English is the
first language, German is the second language, and we need an English-
German dictionary (one with English headwords and German entries).

The basic idea of Dagan and Itai’s algorithm is best explained with the
example in table 7.7. English interest has two senses with two different
translations in German. Sense 1 translates as Beteiligung (legal share, as
in “a 50% interest in the company”) and Sense 2 translates as Interesse
(attention, concern, as in “her interest in mathematics”). (There are other
senses of interest which we will ignore here.) In order to disambiguate an
occurrence of interest in English, we identify the phrase it occurs in and
search a German corpus for instances of the phrase. If the phrase occurs
with only one of the translations of interest in German, then we assign
the corresponding sense whenever interest is used in this phrase.

As an example, suppose interest is used in the phrase showed interest.
The German translation of show, ‘zeigen,’ will only occur with Interesse
since “legal shares” are usually not shown. We can conclude that interest
in the phrase to show interest belongs to the sense attention, concern. On
the other hand, the only frequently occurring translation of the phrase
acquired an interest is erwarb eine Beteiligung, since interest in the sense
‘attention, concern’ is not usually acquired. This tells us that a use of
interest as the object of acquire corresponds to the second sense, “legal
share.”

A simple implementation of this idea is shown in figure 7.6. For the
above example the relation R is ‘is-object-of’ and the goal would be to dis-
ambiguate interest in R(interest, show). To do this, we count the number
of times that translations of the two senses of interest occur with trans-
lations of show in the second language corpus. The count of R(Interesse,
zeigen) would be higher than the count of R(Beteiligung, zeigen), so we



p

i i

7.3 Dictionary-Based Disambiguation 249

1 comment: Given: a context c in which w occurs in relation R(w, v)
2 for all senses sk of w do
3 score(sk) = |{c ∈ S|∃w ′ ∈ T(sk), v′ ∈ T(v) : R(w ′, v′) ∈ c}|
4 end
5 choose s′ = arg maxsk score(sk)

Figure 7.6 Disambiguation based on a second-language corpus. S is the
second-language corpus, T(sk) is the set of possible translations of sense sk,
and T(v) is the set of possible translations of v. The score of a sense is the
number of times that one of its translations occurs with translations of v in the
second-language corpus.

would choose the sense ‘attention, concern,’ corresponding to Interesse.
The algorithm used by Dagan and Itai is more complex: it disam-

biguates only if a decision can be made reliably. Consider the example of
Hebrew ro‘sh which has two possible English translations, top and head.
Dagan and Itai found 10 examples of the relation stand at head and 5
examples of the relation stand at top in their English second-language
corpus. This suggests that stand at head is more likely to translate the
Hebrew phrase ’amad be-ro‘sh correctly. However, we can expect “stand
at head” to be incorrect in a large proportion of the translations (approxi-
mately 5

5+10 ≈ 0.33). In many cases, it is better to avoid a decision than to
make an error with high probability. In a large system in which each com-
ponent has a certain error rate, an accuracy of about 0.67 as in the above
example is unacceptable. If a sentence passes through five components,
each with an error rate of 0.33, then overall system accuracy could be as
low as 14%: (1− 0.33)5 ≈ 0.14. Dagan and Itai show how the probability
of error can be estimated. They then make decisions only when the level
of confidence is 90% or higher.

7.3.4 One sense per discourse, one sense per collocation

The dictionary-based algorithms we have looked at so far process each
occurrence separately. But there are constraints between different occur-
rences that can be exploited for disambiguation. This section discusses
work by Yarowsky (1995) which has focussed on two such constraints:

� One sense per discourse. The sense of a target word is highly consis-
tent within any given document.
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Discourse Initial label Context

d1 living the existence of plant and animal life
living classified as either plant or animal
? Although bacterial and plant cells are enclosed

d2 living contains a varied plant and animal life
living the most common plant life
living slight within Arctic plant species
factory are protected by plant parts remaining from

Table 7.8 Examples of the one sense per discourse constraint. The table shows
contexts from two different documents, d1 and d2. One context in d1 lacks suffi-
cient local information for disambiguation (“?”). Local information is misleading
for the last context in d2. The one sense per discourse constraint can be used
to counteract lacking or misleading information in such cases. It will correctly
assign the unclassified and the misclassified contexts to ‘living.’ Adapted from
(Yarowsky 1995).

� One sense per collocation. Nearby words provide strong and con-
sistent clues to the sense of a target word, conditional on relative
distance, order and syntactic relationship.

As an example for the first constraint consider the word plant. The
constraint captures the intuition that if the first occurrence of plant is a
use of the sense ‘living being,’ then later occurrences are likely to refer
to living beings too. Table 7.8 shows two examples. This constraint is
especially usable when the material to be disambiguated is a collection
of small documents, or can be divided into short ‘discourses’ by the kind
of method discussed in section 15.5. Then, this simple property of word
senses can be used quite effectively as we will see below.

The second constraint makes explicit the basic assumption that most
work on statistical disambiguation relies on: that word senses are
strongly correlated with certain contextual features like other words in
the same phrasal unit. Yarowsky’s (1995) approach is similar to Brown
et al.’s (1991b) information-theoretic method, which we introduced in
section 7.2.2, in that he selects the strongest collocational feature for a
particular context and disambiguates based only on this feature. Collo-
cational features are ranked according to the following ratio:

P(sk1|f )
P(sk2|f )

(7.8)
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which basically is the ratio of the number of occurrences of sense sk1 with
collocation f divided by the number of occurrences of sense sk2 with col-
location f (again, smoothing is important if the collocation and/or senses
occur infrequently, see Yarowsky (1994)).

Relying on only the strongest feature has the advantage that no inte-
gration of different sources of evidence is necessary. Many statistical
methods, such as the Naive Bayes method used in section 7.2.1 or the
dictionary-based methods presented earlier in this section, assume inde-
pendence when evidence is combined. Since independence rarely holds, it
is sometimes better to avoid the need for combining evidence altogether,
and to rely on just one reliable piece of evidence. The more complex
alternative is to accurately model the dependencies between sources of
evidence (see chapter 16).

Figure 7.7 is a schematic description of an algorithm proposed by
Yarowsky that combines both constraints. The algorithm iterates build-
ing two interdependent sets for each sense sk. Fk contains characteristic
collocations. Ek is the set of contexts of the ambiguous word w that are
currently assigned to sk.

On line 3, Fk is initialized from the dictionary definition of sk or from
another source (for example, a set of collocations entered manually by a
lexicographer or a set of collocations from a small hand-labeled training
set). Ek is initially empty.

The iteration begins by assigning all contexts with a characteristic col-
location from Fk to Ek (line 11). For example, all contexts of interest
in which interest is the object of the verb show would be assigned to
E‘attention, concern’ if “is the object of show” is one of the collocations in
F ‘attention, concern’. The set of characteristic collocations is then recomputed
by selecting those collocations that are most characteristic of the just up-
dated Ek (line 14).

After this part of the algorithm has been completed, the constraint
“one sense per discourse” is applied. All instances of the ambiguous
word w are assigned to the majority sense in a document or discourse
(line 20). Table 7.8 gave two examples of this process.

Yarowsky demonstrates that this algorithm is highly effective. Differ-
ent versions achieve between 90.6% and 96.5% accuracy. The error rate is
reduced by 27% when the discourse constraint (lines 18–21) is incorpo-
rated. This is a surprisingly good performance given that the algorithm
does not need a labeled set of training examples.
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1 comment: Initialization
2 for all senses sk of w do
3 Fk = the set of collocations in sk’s dictionary definition
4 end
5 for all senses sk of w do
6 Ek = ∅
7 end
8 comment: One sense per collocation
9 while (at least one Ek changed in the last iteration) do

10 for all senses sk of w do
11 Ek = {ci|∃fm : fm ∈ ci ∧ fm ∈ Fk}
12 end
13 for all senses sk of w do

14 Fk = {fm|∀n ≠ kP(sk|fm)P(sn|fm) > α}
15 end
16 end
17 comment: One sense per discourse
18 for all documents dm do
19 determine the majority sense sk of w in dm
20 assign all occurrences of w in dm to sk
21 end

Figure 7.7 Disambiguation based on “one sense per collocation” and “one sense
per discourse.”

7.4 Unsupervised Disambiguation

All that the methods discussed in the last section require for disambigua-
tion are basic lexical resources, a small training set, or a few collocation
seeds. Although this seems little to ask for, there are situations in which
even such a small amount of information is not available. In particular,
this is often the case when dealing with information from specialized
domains, for which there may be no available lexical resources.5 For
example, information retrieval systems must be able to deal with text
collections from any subject area. General dictionaries are less useful
for domain-specific collections. A data base of chemical abstracts mostly

5. However, there are specialized dictionaries in some fields, such as for medical and
scientific terms.
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contains documents that belong to the category “chemistry” in a generic
semantic classification. A generic thesaurus-based disambiguation algo-
rithm would therefore be of little use. One cannot expect the user of an
information retrieval system to define the senses of ambiguous words or
to provide a training set for a new text collection. With the surge in on-
line material in recent years, there is an increasing number of scenarios
where outside sources of information are not available for disambigua-
tion.

Strictly speaking, completely unsupervised disambiguation is not pos-
sible if we mean sense tagging: an algorithm that labels occurrences assense tagging

belonging to one sense or another. Sense tagging requires that some
characterization of the senses be provided. However, sense discrimina-
tion can be performed in a completely unsupervised fashion: one can
cluster the contexts of an ambiguous word into a number of groups and
discriminate between these groups without labeling them. Several such
sense discrimination algorithms have been proposed. We will describe
one of them here, context-group discrimination, largely following Schützecontext-group

discrimination (1998).6 Note also the similarity to Brown et al.’s approach described in
section 7.2.2. Brown et al. (1991b) cluster translations of an ambiguous
word, which can be thought of as a type of prelabeling of the occurrences
of the ambiguous word w . Here, we will look at a completely unsuper-
vised algorithm that clusters unlabeled occurrences.

The probabilistic model is the same as that developed by Gale et al.
(section 7.2.1). For an ambiguous word w with senses s1, . . . , sk, . . . , sK ,
we estimate the conditional probability of each word vj occurring in a
context where w is being used in a particular sense sk, that is, P(vj |sk).

In contrast to Gale et al.’s Bayes classifier, parameter estimation in un-
supervised disambiguation is not based on a labeled training set. Instead,
we start with a random initialization of the parameters P(vj |sk). The
P(vj |sk) are then reestimated by the EM algorithm (see section 14.2.2).
After the random initialization, we compute for each context ci of w the
probability P(ci|sk) that it was generated by sense sk. We can use this
preliminary categorization of the contexts as our training data and then
reestimate the parameters P(vj |sk) so as to maximize the likelihood of
the data given the model. The algorithm is developed in figure 7.8.

The EM algorithm is guaranteed to increase the log likelihood of the

6. For consistency we reuse the probabilistic model introduced in section 7.2.1 and sec-
tion 7.3.2, instead of Schütze’s.
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1. Initialize the parameters of the model µ randomly. The parameters
are P(vj |sk), 1 ≤ j ≤ J,1 ≤ k ≤ K, and P(sk), 1 ≤ k ≤ K.

Compute the log of the likelihood of the corpus C given the model µ
as the product of the probabilities P(ci) of the individual contexts ci
(where P(ci) =

∑K
k=1 P(ci|sk)P(sk)):

l(C|µ) = log
I∏
i=1

K∑
k=1

P(ci|sk)P(sk) =
I∑
i=1

log
K∑
k=1

P(ci|sk)P(sk)

2. While l(C|µ) is improving repeat:

(a) E-step. For 1 ≤ k ≤ K,1 ≤ i ≤ I estimate hik, the posterior probabil-
ity that sk generated ci , as follows:

hik = P(ci|sk)∑K
k=1 P(ci|sk)

To compute P(ci|sk), we make the by now familiar Naive Bayes as-
sumption:

P(ci|sk) =
∏
vj∈ci

P(vj |sk)

(b) M-step. Re-estimate the parameters P(vj |sk) and P(sk) by way of
maximum likelihood estimation:

P(vj |sk) =
∑I
i=1

∑
{ci :vj∈ci} hik
Zj

where
∑
{ci :vj∈ci} sums over all contexts in which vj occurs and Zj =∑K

k=1

∑I
i=1

∑
{ci :vj∈ci} hik is a normalizing constant.

Recompute the probabilities of the senses as follows:

P(sk) =
∑I
i=1 hik∑K

k=1

∑I
i=1 hik

=
∑I
i=1 hik
I

Figure 7.8 An EM algorithm for learning a word sense clustering. K is the num-
ber of desired senses; c1, . . . , ci , . . . , cI are the contexts of the ambiguous word
in the corpus; and v1, . . . , vj , . . . , vJ are the words being used as disambiguating
features.
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model given the data in each step. Therefore, the stopping criterion for
the algorithm is to stop when the likelihood (computed in step 1) is no
longer increasing significantly.

Once the parameters of the model have been estimated, we can disam-
biguate contexts of w by computing the probability of each of the senses
based on the words vj occurring in the context. Again, we make the Naive
Bayes assumption and use the Bayes decision rule (7.5):

Decide s′ if s′ = arg max
sk

[
logP(sk)+

∑
vj∈c

logP(vj |sk)
]

The granularity of the sense classification of an ambiguous word can be
chosen by running the algorithm for a range of values for K, the number
of senses. The more senses there are, the more structure the model has,
and therefore it will be able to explain the data better. As a result the best
possible log likelihood of the model given the data will be higher with
each new sense added. However, one can examine by how much the log
likelihood increases with each new sense. If it increases strongly because
the new sense explains an important part of the data, then this suggests
that the new number of senses is justified. If the log likelihood increases
only moderately, then the new sense only picks up random variation in
the data and it is probably not justified.7

A simpler way to determine the number of senses is to make it de-
pendent on how much training material is available. This approach is
justified for an information retrieval application by Schütze and Pedersen
(1995).

An advantage of unsupervised disambiguation is that it can be eas-
ily adapted to produce distinctions between usage types that are more
fine-grained than would be found in a dictionary. Again, information re-
trieval is an application for which this is useful. The distinction between
physical banks in the context of bank robberies and banks as abstract
corporations in the context of corporate mergers can be highly relevant
even if it is not reflected in dictionaries.

If the unsupervised algorithm is run for a large number of senses, say
K = 20, then it will split dictionary senses into fine-grained contextual
variants. For example, the sense ‘lawsuit’ of suit could be split into ‘civil
suit,’ ‘criminal suit,’ etc. Usually, the induced clusters do not line up
well with dictionary senses. Infrequent senses and senses that have few

7. One could choose the optimal number of senses automatically by testing on validation
data, as discussed in chapter 6.
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Word Sense Accuracy
µ σ

suit lawsuit 95 0
the suit you wear 96 0

motion physical movement 85 1
proposal for action 88 13

train line of railroad cars 79 19
to teach 55 31

Table 7.9 Some results of unsupervised disambiguation. The table shows
the mean µ and standard deviation σ for ten experiments with different initial
conditions for the EM algorithm. Data are from (Schütze 1998: 110).

collocations are hard to isolate in unsupervised disambiguation. Senses
like the use of suit in the sense ‘to be appropriate for’ as in This suits me
fine are unlikely to be discovered. However, such hard to identify senses
often carry less content than senses that are tied to a particular subject
area. For an information retrieval system, it is probably more important
to make the distinction between usage types like ‘civil suit’ vs. ‘criminal
suit’ than to isolate the verbal sense ‘to suit.’

Some results of unsupervised disambiguation are shown in table 7.9.
We need to take into account the variability that is due to different ini-
tializations here (Step 1 in figure 7.8). The table shows both the average
accuracy and the standard deviation over ten trials. For senses with a
clear correspondence to a particular topic, the algorithm works well and
variability is low. The word suit is an example. But the algorithm fails for
words whose senses are topic-independent such as ‘to teach’ for train –
this failure is not unlike other methods that work with topic information
only. In addition to the low average performance, variability is also quite
high for topic-independent senses. In general, performance is 5% to 10%
lower than that of some of the dictionary-based algorithms as one would
expect given that no lexical resources for training or defining senses are
used.

7.5 What Is a Word Sense?

Now that we have looked at a wide range of different approaches to word
sense disambiguation, let us revisit the question of what precisely a word
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sense is. It would seem natural to define senses as the mental representa-
tions of different meanings of a word. But given how little is known about
the mental representation of meaning, it is hard to design experiments
that determine how senses are represented by a subject. Some studies
ask subjects to cluster contexts. The subject is given a pile of index
cards, each with a sentence containing the ambiguous word, and instruc-
tions to sort the pile into coherent subgroups. While these experiments
have provided many insights (for example, for research on the notion of
semantic similarity, see Miller and Charles (1991)), it is not clear how well
they model the use of words and senses in actual language comprehen-
sion and production. Determining linguistic similarity is not a task that
people are confronted with in natural situations. Agreement between
clusterings performed by different subjects is low (Jorgensen 1990).

Another problem with many psychological experiments on ambiguity is
that they rely on introspection and whatever folk meaning a subject as-
sumes for the word ‘sense.’ It is not clear that introspection is a valid
methodology for getting at the true mental representations of senses
since it fails to elucidate many other phenomena. For example, peo-
ple tend to rationalize non-rational economic decisions (Kahneman et al.
1982).

The most frequently used methodology is to adopt the sense defini-
tions in a dictionary and then to ask subjects to label instances in a cor-
pus based on these definitions. There are different opinions on how well
this technique works. Some researchers have reported high agreement
between judges (Gale et al. 1992a) as we discussed above. High average
agreement is likely if there are many ambiguous words with a skewedskewed distribution

distribution, that is, one sense that is used in most of the occurrences.
Sanderson and van Rijsbergen (1998) argue that such skewed distribu-
tions are typical of ambiguous words.

However, randomly selecting ambiguous words as was done in (Gale
et al. 1992a) introduces a bias which means that their figures may not
reflect actual inter-judge agreement. Many ambiguous words with the
highest disagreement rates are high-frequency words. So on a per-token
basis inter-judge disagreement can be high even if it is lower on a per-
type basis. In a recent experiment, Jean Véronis (p.c., 1998) found that
there was not a single instance of the frequent French words correct,
historique, économie, and comprendre with complete agreement among
judges. The main reasons Véronis found for inter-judge disagreement
were vague dictionary definitions and true ambiguity in the corpus.
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Can we write dictionaries that are less vague? Fillmore and Atkins
(1994) discuss such issues from a lexicographic perspective. Some au-
thors argue that it is an inherent property of word meaning that several
senses of a word can be used simultaneously or co-activated (Kilgarriffco-activation

1993; Schütze 1997; Kilgarriff 1997), which entails high rates of inter-
judge disagreement. Of course, there are puns like (7.9) in which multiple
senses are used in a way that seems so special that it would be acceptable
for an NLP system to fail:

(7.9) In AI, much of the I is in the beholder.

But Kilgarriff (1993) argues that such simultaneous uses of senses are
quite frequent in ordinary language. An example is (7.10) where arguably
two senses of competition are invoked: ‘the act of competing’ and ‘the
competitors.’

(7.10) For better or for worse, this would bring competition to the licensed
trade.

Many cases of ‘coactivation’ are cases of systematic polysemy, lexico-systematic

polysemy semantic rules that apply to a class of words and systematically change or
extend their meaning. (See (Apresjan 1974), (Pustejovsky 1991), (Lakoff
1987), (Ostler and Atkins 1992), (Nunberg and Zaenen 1992), and (Copes-
take and Briscoe 1995) for theoretical work on systematic polysemy and
(Buitelaar 1998) for a recent computational study.) The word competi-
tion is a case in point. A large number of English words have the same
meaning alternation between ‘the act of X’ vs. ‘the people doing X’. For
example, organization, administration, and formation also exhibit it.

A different type of systematic ambiguity that cannot be neglected in
practice is that almost all words can also be used as proper nouns, some
of them frequently. Examples are Brown, Bush, and Army.

One response to low inter-judge agreement and the low performance
of disambiguation algorithms for highly ambiguous words is to only con-
sider coarse-grained distinctions, for example only those that manifest
themselves across languages (Resnik and Yarowsky 1998). Systematic
polysemy is likely to be similar in many languages, so we would not dis-
tinguish the two related senses of competition (‘the act of competing’ and
‘the competitors’) even if a monolingual dictionary lists them as differ-
ent. This strategy is similar to ones used in other areas of NLP, such as
parsing, where one defines an easier problem, shallow parsing, and does
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not attempt to solve the hardest problem, the resolution of attachment
ambiguities.

Clustering approaches to word sense disambiguation (such as context-
group disambiguation) adopt the same strategy. By definition, automatic
clustering will only find groups of usages that can be successfully distin-
guished. This amounts to a restriction to a subpart of the problem that
can be solved. Such solutions with a limited scope can be quite useful.
Many translation ambiguities are coarse, so that a system restricted to
coarse sense distinctions is sufficient. Context-group disambiguation has
been successfully applied to information retrieval (Schütze and Pedersen
1995).

Such application-oriented notions of sense have the advantage that it
is easy to evaluate them as long as the application that disambiguation
is embedded in can be evaluated (for example, translation accuracy for
machine translation, the measures of recall and precision – introduced in
chapter 8 – for information retrieval). Direct evaluation of disambigua-
tion accuracy and comparison of different algorithms is more difficult,
but will be easier in the future with the development of standard evalu-
ation sets. See Mooney (1996) for a comparative evaluation of a number
of machine learning algorithms and Towell and Voorhees (1998) for the
evaluation of a disambiguator for three highly ambiguous words (hard,
serve, and line). A systematic evaluation of algorithms was undertaken
as part of the Senseval project (unfortunately, after the writing of thisSenseval

chapter). See the website.
Another factor that influences what notion of sense is assumed, al-

beit implicitly, is the type of information that is used in disambiguation:
co-occurrence (the bag-of-words model), relational information (subject,
object, etc.), other grammatical information (such as part-of-speech), col-
locations (one sense per collocation) and discourse (one sense per dis-
course). For example, if only co-occurrence information is used, then
only ‘topical’ sense distinctions are recognized, senses that are associ-
ated with different domains. The inadequacy of the bag-of-words model
for many sense distinctions has been emphasized by Justeson and Katz
(1995a). Leacock et al. (1998) look at the combination of topical and col-
locational information and achieve optimal results when both are used.
Choueka and Lusignan (1985) show that humans do surprisingly well at
sense discrimination if only a few words of adjacent context are shown
– giving more context contributes little to human disambiguation perfor-
mance. However, that does not necessarily mean that wider context is
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useless for the computer. Gale et al. (1992b) show that there is addi-
tional useful information in the context out to about 50 words on either
side of the ambiguous word (using their algorithm), and that there is de-
tectable information about sense distinctions out to a very large distance
(thousands of words).

Different types of information may be appropriate to different degrees
for different parts of speech. Verbs are best disambiguated by their ar-
guments (subjects and objects), which implies the importance of local
information. Many nouns have topically distinct word senses (like suit
and bank) so that a wider context is more likely to be helpful.

Much research remains to be done on word sense disambiguation. In
particular, it will become necessary to evaluate algorithms on a represen-
tative sample of ambiguous words, an effort few researchers have made
so far. Only with more thorough evaluation will it be possible to fully un-
derstand the strengths and weaknesses of the disambiguation algorithms
introduced in this chapter.

7.6 Further Reading

An excellent recent discussion of both statistical and non-statistical work
on word sense disambiguation is (Ide and Véronis 1998). See also (Guthrie
et al. 1996). An interesting variation of word sense disambiguation is sen-sentence boundary

identification tence boundary identification (section 4.2.4). The problem is that periods
in text can be used either to mark an abbreviation or to mark the end
of a sentence. Palmer and Hearst (1997) show how the problem can be
cast as the task of disambiguating two ‘senses’ of the period: ending an
abbreviation vs. ending a sentence or both.

The common thread in this chapter has been the amount and type
of lexical resources used by different approaches. In these remarks, we
will first mention a few other methods that fit under the rubrics of su-
pervised, dictionary-based, and unsupervised disambiguation, and then
work that did not fit well into our organization of the chapter.

Two important supervised disambiguation methods are k nearest
neighbors (kNN), also called memory-based learning (see page 295) and
loglinear models. A nearest neighbor disambiguator is introduced in
(Dagan et al. 1994, 1997b). The authors stress the benefits of kNN ap-
proaches for sparse data. See also (Ng and Lee 1996) and (Zavrel and
Daelemans 1997). Decomposable models, a type of loglinear model, can
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be viewed as a generalization of Naive Bayes. Instead of treating all
features as independent, features are grouped into mutually dependent
subsets. Independence is then assumed only between features in dif-
ferent subsets, not for all pairs of features as is the case in the Naive
Bayes classifier. Bruce and Wiebe (1994) apply decomposable models to
disambiguation with good results.

Other disambiguation algorithms that rely on lexical resources are
(Karov and Edelman 1998), (Guthrie et al. 1991), and (Dini et al. 1998).
Karov and Edelman (1998) present a formalism that takes advantage of
evidence both from a corpus and a dictionary, with good disambigua-
tion results. Guthrie et al. (1991) use the subject field codes in (Procter
1978) in a way similar to the thesaurus classes in (Yarowsky 1992). Dini
et al. (1998) apply transformation-based learning (see section 10.4.1) to
tag ambiguous words with thesaurus categories.

Papers that use clustering include (Pereira et al. 1993; Zernik 1991b;
Dolan 1994; Pedersen and Bruce 1997; Chen and Chang 1998). Pereira
et al. (1993) cluster contexts of words in a way similar to Schütze (1998),
but based on a different formalization of clustering. They do not di-
rectly describe a disambiguation algorithm based on the clustering result,
but since in this type of unsupervised method assignment to clusters is
equivalent to disambiguation, this would be a straightforward extension.
See section 14.1.4 for the clustering algorithm they use. Chen and Chang
(1998) and Dolan (1994) are concerned with constructing representations
for senses by combining several subsenses into one ‘supersense.’ This
type of clustering of subsenses is useful for constructing senses that are
coarser than those a dictionary may provide and for relating sense defi-
nitions between two dictionaries.

An important issue that comes up in many different approaches to
disambiguation is how to combine different types of evidence (McRoy
1992). See (Cottrell 1989; Hearst 1991; Alshawi and Carter 1994; Wilks
and Stevenson 1998) for different proposals.

Although we only cover statistical approaches here, work on word
sense disambiguation has a long tradition in Artificial Intelligence and
Computational Linguistics. Two often-cited contributions are (Kelly and
Stone 1975), a hand-constructed rule-based disambiguator, and (Hirst
1987), who exploits selectional restrictions for disambiguation. An ex-
cellent overview of non-statistical work on disambiguation can be found
in the above-mentioned (Ide and Véronis 1998).
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7.7 Exercises

Exercise 7.1 [«]

The lower bound of disambiguation accuracy depends on how much information
is available. Describe a situation in which the lower bound could be lower than
the performance that results from classifying all occurrences of a word as in-
stances of its most frequent sense. (Hint: What knowledge is needed to calculate
that lower bound?)

Exercise 7.2 [««]

Supervised word sense disambiguation algorithms are quite easy to devise and
train. Either implement one of the models discussed above, or design your own
and implement it. How good is the performance? Training data are available
from the Linguistic Data Consortium (the DSO corpus) and from the WordNet
project (semcor). See the website for links to both.

Exercise 7.3 [««]

Create an artificial training and test set using pseudowords. Evaluate one of the
supervised algorithms on it.

Exercise 7.4 [««]

Download a version of Roget’s thesaurus from the web (see the website), and
implement and evaluate a thesaurus-based algorithm.

Exercise 7.5 [««]

The two supervised methods differ on two different dimensions: the number
of features used (one vs. many) and the mathematical methodology (informa-
tion theory vs. Bayesian classification). How would one design a Bayes classifier
that uses only one feature and an information-theoretic method that uses many
features?

Exercise 7.6 [««]

In light of the discussion on closely related and ‘co-activated’ senses, discuss to
what extent pseudowords model ambiguity well.

Exercise 7.7 [««]

Lesk’s algorithm counts how many words are shared between sense definition
and context. This is not optimal since reliance on “non-descript” or stop words
like try or especially can result in misclassifications. Try to come up with refine-
ments of Lesk’s algorithm that would weight words according to their expected
value in discrimination.

Exercise 7.8 [«]

Two approaches use only one feature: information-theoretic disambiguation and
Yarowsky’s (1995) algorithm. Discuss differences and other similarities between
the two approaches.
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Exercise 7.9 [«]

Discuss the validity of the “one sense per discourse” constraint for different
types of ambiguity (types of usages, homonyms etc.). Construct examples where
the constraint is expected to do well and examples where it is expected to do
poorly.

Exercise 7.10 [««]

Evaluate the one sense per discourse constraint on a corpus. Find sections or
articles with multiple uses of an ambiguous word, and work out how often they
have different senses.

Exercise 7.11 [«]

The section on unsupervised disambiguation describes criteria for determining
the number of senses of an ambiguous word. Can you think of other criteria?
Assume (a) that a dictionary is available (but the word is not listed in it); (b) that
a thesaurus is available (but the word is not listed in it).

Exercise 7.12 [«]

For a pair of languages that you are familiar with, find three cases of an ambigu-
ous word in the first language for which the senses translate into different words
and three cases of an ambiguous words for which at least two senses translate
to the same word.

Exercise 7.13 [«]

Is it important to evaluate unsupervised disambiguation on a separate test set or
does the unsupervised nature of the method make a distinction between training
and test set unnecessary? (Hint: It can be important to have a separate test set.
Why? See (Schütze 1998: 108).)

Exercise 7.14 [«]

Several of the senses of title discussed in the beginning of the chapter are related
by systematic polysemy. Find other words with the same systematic polysemy.

Exercise 7.15 [««]

Pick one of the disambiguation algorithms and apply it to sentence boundary
identification.
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“There is one, yt is called in the Malaca tongue Durion, and is so
good that . . . it doth exceede in savour all others that euer they
had seene, or tasted.”

(Parke tr. Mendoza’s Hist. China 393, 1588)
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