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Lexical Acquisition

THE TOPIC of chapter 5 was the acquisition of collocations, phrases and
other combinations of words that have a specialized meaning or some
other special behavior important in NLP. In this chapter, we will cast our
net more widely and look at the acquisition of more complex syntactic
and semantic properties of words. The general goal of lexical acquisition
is to develop algorithms and statistical techniques for filling the holes
in existing machine-readable dictionaries by looking at the occurrence
patterns of words in large text corpora. There are many lexical acquisi-
tion problems besides collocations: selectional preferences (for example,
the verb eat usually takes food items as direct objects), subcategorization
frames (for example, the recipient of contribute is expressed as a preposi-
tional phrase with o), and semantic categorization (what is the semantic
category of a new word that is not covered in our dictionary?). While we
discuss simply the ability of computers to learn lexical information from
online texts, rather than in any way attempting to model human language
acquisition, to the extent that such methods are successful, they tend to
undermine the classical Chomskyan arguments for an innate language
faculty based on the perceived poverty of the stimulus.

Most properties of words that are of interest in NLP are not fully cov-
ered in machine-readable dictionaries. This is because of the productivity
of natural language. We constantly invent new words and new uses of old
words. Even if we could compile a dictionary that completely covered the
language of today, it would inevitably become incomplete in a matter of
months. This is the reason why lexical acquisition is so important in
Statistical NLP.

A brief discussion of what we mean by lexical and the lexicon is in
order. Trask (1993: 159) defines the lexicon as:
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That part of the grammar of a language which includes the lexical
entries for all the words and/or morphemes in the language and
which may also include various other information, depending on
the particular theory of grammar.

The first part of the definition (“the lexical entries for all the words”)
suggests that we can think of the lexicon as a kind of expanded diction-
ary that is formatted so that a computer can read it (that is, machine-
readable). The trouble is that traditional dictionaries are written for the
needs of human users, not for the needs of computers. In particular,
quantitative information is completely missing from traditional dictio-
naries since it is not very helpful for the human reader. So one important
task of lexical acquisition for Statistical NLP is to augment traditional
dictionaries with quantitative information.

The second part of the definition (“various other information, depend-
ing on the particular theory of grammar”) draws attention to the fact
that there is no sharp boundary between what is lexical information and
what is non-lexical information. A general syntactic rule like S — NP VP
is definitely non-lexical, but what about ambiguity in the attachment of
prepositional phrases? In a sense, it is a syntactic problem, but it can be
resolved by looking at the lexical properties of the verb and the noun that
compete for the prepositional phrase as the following example shows:

a. The children ate the cake with their hands.
b. The children ate the cake with blue icing.

We can learn from a corpus that eating is something you can do with your
hands and that cakes are objects that have icing as a part. After acquiring
these lexical dependencies between ate and hands and cake and icing, we
can correctly resolve the attachment ambiguities in example (8.1) such
that with their hands attaches to ate and with blue icing attaches to cake.

In a sense, almost all of Statistical NLP involves estimating parameters
tied to word properties, so a lot of statistical NLP work has an element
of lexical acquisition to it. In fact, there are linguistic theories claim-
ing that all linguistic knowledge is knowledge about words (Dependency
Grammar (Mel’ cuk 1988), Categorial Grammar (Wood 1993), Tree Adjoin-
ing Grammar (Schabes et al. 1988; Joshi 1993), ‘Radical Lexicalism’ (Kart-
tunen 1986)) and all there is to know about a language is the lexicon, thus
completely dispensing with grammar as an independent entity. In gen-
eral, those properties that are most easily conceptualized on the level
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of the individual word are covered under the rubric ‘lexical acquisition.’
We have devoted separate chapters to the acquisition of collocations and
word sense disambiguation simply because these are self-contained and
warrant separate treatment as central problems in Statistical NLP. But
they are as much examples of lexical acquisition as the problems covered
in this chapter.

The four main areas covered in this chapter are verb subcategorization
(the syntactic means by which verbs express their arguments), attach-
ment ambiguity (as in example (8.1)), selectional preferences (the seman-
tic characterization of a verb’s arguments such as the fact that things
that get eaten are usually food items), and semantic similarity between
words. However, we first begin by introducing some evaluation measures
which are commonly used to evaluate lexical acquisition methods and
various other Statistical NLP systems, and conclude with a more in-depth
discussion of the significance of lexical acquisition in Statistical NLP and
some further readings.

Evaluation Measures

An important recent development in NLP has been the use of much more
rigorous standards for the evaluation of NLP systems. It is generally
agreed that the ultimate demonstration of success is showing improved
performance at an application task, be that spelling correction, summa-
rizing job advertisements, or whatever. Nevertheless, while developing
systems, it is often convenient to assess components of the system on
some artificial performance score (such as perplexity), improvements in
which one can expect to be reflected in better performance for the whole
system on an application task.

Evaluation in Information Retrieval (IR) makes frequent use of the no-
tions of precision and recall, and their use has crossed over into work
on evaluating Statistical NLP models, such as a number of the systems
discussed in this chapter. For many problems, we have a set of targets
(for example, targeted relevant documents, or sentences in which a word
has a certain sense) contained within a larger collection. Our system then
decides on a selected set (documents that it thinks are relevant, or sen-
tences that it thinks contain a certain sense of a word, etc.). This situation
is shown in figure 8.1. The selected and target groupings can be thought
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Figure 8.1 A diagram motivating the measures of precision and recall. The
areas counted by the figures for true and false positives and true and false
negatives are shown in terms of the target set and the selected set. Precision
is tp/|selected|, the proportion of target (or correct) items in the selected (or
retrieved) set. Recall is tp/|target|, the proportion of target items that were
selected. In turn, |selected| = tp + fp, and |target| = tp + fn).

of as indicator random variables, and the joint distribution of the two
variables can be expressed as a 2x2 contingency matrix:

Actual
System | target — target
selected tp fp
—selected ’ fn tn

The numbers in each box show the frequency or count of the number of
items in each region of the space. The cases accounted for by tp (true
positives) and tn (true negatives) are the cases our system got right. The
wrongly selected cases in fp are called false positives, false acceptances
or Type II errors. The cases in fn that failed to be selected are called false
negatives, false rejections or Type I errors.

Precision is defined as a measure of the proportion of selected items
that the system got right:

_
th+fp

Recall is defined as the proportion of the target items that the system

precision =
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selected:

tp
tp+fn

In applications like IR, one can generally trade off precision and re-
call (one can select every document in the collection and get 100% recall
but very low precision, etc.). This tradeoff can be plotted in a precision-
recall curve, as we illustrate in section 15.1.2. Sometimes such a tradeoff
doesn’t make as much sense in NLP applications, but in any situation
where there are some items that one is more sure of than others (such as
in subcategorization frame learning in section 8.2), the same opportuni-
ties for trading off precision vs. recall exist.

For this reason it can be convenient to combine precision and recall into
a single measure of overall performance. One way to do this is the F mea-
sure, a variant of the E measure introduced by van Rijsbergen (1979: 174),
where F = 1 — E. The F measure is defined as follows:

1

1 1
O(ﬁ-i-(l—()()ﬁ

recall =

where P is precision, R is recall and « is a factor which determines the
weighting of precision and recall. A value of & = 0.5 is often chosen for
equal weighting of P and R. With this « value, the F measure simplifies
to 2PR/(R + P).

A good question to ask is: “Wait a minute, in the table in (8.2), tp + tn
is the number of things I got right, and fp + fn is the number of things
I got wrong. Why don’t we just report the percentage of things right or
the percentage of things wrong?” One can do that, and these measures
are known as accuracy and error. But it turns out that these often aren’t
good measures to use because in most of the kinds of problems we look
at tn, the number of non-target, non-selected things, is huge, and dwarfs
all the other numbers. In such contexts, use of precision and recall has
three advantages:

m Accuracy figures are not very sensitive to the small, but interesting
numbers tp, fp, and fn, whereas precision and recall are. One can get
extremely high accuracy results by simply selecting nothing.

= Other things being equal, the F measure prefers results with more true
positives, whereas accuracy is sensitive only to the number of errors.
This bias normally reflects our intuitions: We are interested in finding
things, even at the cost of also returning some junk.
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tpy fp fn tn Prec Rec F Acc

@ 25 0 125 99,850 1.000 0.167 0.286 0.9988
50 100 100 99,750 0.333 0.333 0.333 0.9980

75 150 75 99,700 0.333 0.500 0.400 0.9978

125 225 25 99,625 0.357 0.833 0.500 0.9975

150 275 0 99,575 0.353 1.000 0.522 0.9973

(b)y 50 0 100 99,850 1.000 0.333 0.500 0.9990
75 25 75 99,825 0.750 0.500 0.600 0.9990

100 50 50 99,800 0.667 0.667 0.667 0.9990

150 100 0 99,750 0.600 1.000 0.750 0.9990

Table 8.1 The F measure and accuracy are different objective functions. The
table shows precision, recall, F measure (with &« = 0.5) and accuracy scores for
certain selections of some number of items from out of a collection of 100,000
items of which 150 are genuine targets. The upper series (a) shows increasing
F measure values, but decreasing accuracy. The lower series (b) shows identical
accuracy scores, but again increasing F measure values. The bias of the F mea-
sure is towards maximizing the true positives, while accuracy is sensitive only
to the number of classification errors.

m Using precision and recall, one can give a different cost to missing
target items versus selecting junk.

Table 8.1 provides some examples which illustrate how accuracy and the
F measure (with « = 0.5) evaluate results differently.

A less frequently used measure is fallout, the proportion of non-
targeted items that were mistakenly selected.

fp

fallout =
fp+tn

Fallout is sometimes used as a measure of how hard it is to build a sys-
tem that produces few false positives. If the number of non-targeted
items is very large, then low precision due to large fp may be unavoid-
able because with a large background population of non-targeted items,
it is unavoidable that some will be miscategorized.

In some fields of engineering recall-fallout trade-offs are more com-
mon than precision-recall trade-offs. One uses a so-called ROC curve (for
receiver operating characteristic) to show how different levels of fallout
(false positives as a proportion of all non-targeted events) influence recall
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Functions Verb Example

subject, object greet She greeted me.

subject, clause hope She hopes he will attend.
subject, infinitive hope She hopes to attend.
subject, object, clause tell She told me he will attend.
subject, object, infinitive tell She told him to attend.

subject, (direct) object, indirect object give  She gave him the book.

Table 8.2 Some subcategorization frames with example verbs and sentences.
(adapted from (Brent 1993: 247)).

or sensitivity (true positives as a proportion of all targeted events). Think
of a burglar alarm that has a knob for regulating its sensitivity. The ROC
curve will tell you, for a certain rate of false positives, what the expected
rate of true positives is. For example, for a false positives rate of being
woken up once in a hundred nights with no burglars, one might achieve
an expected rate of true positives of 95% (meaning 5% of burglaries will
not be detected).

v Evaluation measures used in probabilistic parsing are discussed in sec-
tion 12.1.8, and evaluation in IR is further discussed in section 15.1.2.

Verb Subcategorization

Verbs subcategorize for different syntactic categories as we discussed in
section 3.2.2. That is, they express their semantic arguments with differ-
ent syntactic means. A particular set of syntactic categories that a verb
can appear with is called a subcategorization frame. Examples of subcat-
egorization frames are given in table 8.2. English verbs always subcatego-
rize for a subject, so we sometimes omit subjects from subcategorization
frames.

The phenomenon is called subcategorization because we can think of
the verbs with a particular set of semantic arguments as one category.
Each such category has several subcategories that express these seman-
tic arguments using different syntactic means. For example, the class
of verbs with semantic arguments theme and recipient has a subcategory
that expresses these arguments with an object and a prepositional phrase
(for example, donate in He donated a large sum of money to the church),
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and another subcategory that in addition permits a double-object con-
struction (for example, give in He gave the church a large sum of money).

Knowing the possible subcategorization frames for verbs is important
for parsing. The contrast in (8.7) shows why.

a. She told the man where Peter grew up.

b. She found the place where Peter grew up.

If we know that tell has the subcategorization frame NP NP S (subject,
object, clause), and that find lacks that frame, but has the subcatego-
rization frame NP NP (subject, object), we can correctly attach the where-
clause to told in the first sentence (as shown in (8.8a)) and to place in the
second sentence (as shown in (8.8b)).

a. She told [the man] [where Peter grew upl].
b. She found [the place [where Peter grew up]].

Unfortunately, most dictionaries do not contain information on subcat-
egorization frames. Even if we have access to one of the few dictionaries
that do (e.g., Hornby 1974), the information on most verbs is incomplete.
According to one account, up to 50% of parse failures can be due to miss-
ing subcategorization frames.! The most comprehensive source of sub-
categorization information for English is probably (Levin 1993). But even
this excellent compilation does not cover all subcategorization frames
and it does not have quantitative information such as the relative fre-
quency of different subcategorization frames for a verb. And the need to
cope with the productivity of language would make some form of acqui-
sition from corpora necessary even if there were better sources available.

A simple and effective algorithm for learning some subcategorization
frames was proposed by Brent (1993), implemented in a system called
Lerner. Suppose we want to decide based on corpus evidence whether
verb v takes frame f. Lerner makes this decision in two steps.

m Cues. Define a regular pattern of words and syntactic categories which
indicates the presence of the frame with high certainty. Certainty is
formalized as probability of error. For a particular cue ¢/ we define
a probability of error €; that indicates how likely we are to make a
mistake if we assign frame f to verb v based on cue ¢/.

1. John Carroll, “Automatic acquisition of subcategorization frames and selectional pref-
erences from corpora,” talk given at the workshop “Practical Acquisition of Large-Scale
Lexical Information” at CSLI, Stanford, on April 23, 1998.
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m Hypothesis testing. The basic idea here is that we initially assume
that the frame is not appropriate for the verb. This is our null hy-
pothesis Hy. We reject this hypothesis if the cue ¢/ indicate with high
probability that our Hy is wrong.

Cues. Here is the regular pattern that Brent (1993: 247) uses as the cue
for the subcategorization frame “NP NP” (transitive verbs):

Cue for frame “NP NP”:
(OBJ | SUBJ_OBJ | CAP) (PUNC | CC)

where OBJ stands for personal pronouns that are necessarily accusative
(or objective) like me and him, SUBJ_OBJ stands for personal pronouns
that can be both subjects and objects like you and it, CAP is any cap-
italized word, PUNC is a punctuation mark, and CC is a subordinating
conjunction like if, before or as.

This pattern is chosen because it is only likely to occur when a verb
indeed takes the frame “NP NP.” Suppose we have a sentence like (8.10)
which matches the instantiation “CAP PUNC” of pattern (8.9).

[...] greet-V Peter-CAP ,-PUNC [...]

One can imagine a sentence like (8.11) where this pattern occurs and the
verb does not allow the frame. (The matching pattern in (8.11) is came-V
Thursday-CAP ,-PUNC.) But this case is very unlikely since a verb followed
by a capitalized word that in turn is followed by a punctuation mark will
almost always be one that takes objects and does not require any other
syntactic arguments (except of course for the subject). So the probability
of error is very low when we posit the frame ‘NP NP’ for a verb that occurs
with cue (8.9).

I came Thursday, before the storm started.

Note that there is a tradeoff between how reliable a cue is and how of-
ten it occurs. The pattern “OBJ CC” is probably even less likely to be a
misleading cue than “CAP PUNC.” But if we narrowed (8.9) down to one
reliable instantiation, we might have to sift through hundreds of occur-
rences of a verb to find the first occurrence with a cue, which would make
the test applicable only to the most frequent verbs. This is a problem
which we will return to later.
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Hypothesis testing. Once the cues for the frames of interest have been
defined, we can analyze a corpus, and, for any verb-frame combination,
count the number of times that a cue for the frame occurs with the verb.
Suppose that verb v occurs a total of n times in the corpus and that there
are m < n occurrences with a cue for frame f/. Then we can reject the null
hypothesis Hy that v does not permit f/ with the following probability
of error:

n
pe =PV (f) =0IC(V, /) =m) = ) <':)ef(1 —e)nr
r=m
where vi(fJ) = 0 is shorthand for ‘Verb v! does not permit frame fJ,
C(Vi,¢/) is the number of times that v! occurs with cue ¢/, and €; is the
error rate for cue fJ, that is, the probability that we find cue ¢/ for a
particular occurrence of the verb although the frame is not actually used.

Recall the basic idea of hypothesis testing (chapter 5, page 162): pg is
the probability of the observed data if the null hypothesis Hj is correct.
If pg is small, then we reject Hy because the fact that an unlikely event
occurred indicates assuming Hy was wrong. Our probability of error in
this reasoning is pr.

In equation (8.12), we assume a binomial distribution (section 2.1.9).
Each occurrence of the verb is an independent coin flip for which the cue
doesn’t work with probability €; (that is, the cue occurs, but the frame
doesn’t), and for which it works correctly with probability 1—¢; (either the
cue occurs and correctly indicates the frame or the cue doesn’t occur and
thus doesn’t mislead us).? It follows that an incorrect rejection of Hy has
probability pg if we observe m or more cues for the frame. We will reject
the null hypothesis if pr < « for an appropriate level of significance «,
for example, x = 0.02. For pr > «, we will assume that verb v! does not
permit frame f/.

An experimental evaluation shows that Lerner does well as far as pre-
cision is concerned. For most subcategorization frames, close to 100%
of the verbs assigned to a particular frame are correctly assigned (Brent
1993: 255). However, Lerner does less well at recall. For the six frames
covered by Brent (1993), recall ranges from 47% to 100%, but these num-
bers would probably be appreciably lower if a random sample of verb
types had been selected instead of a random sample of verb tokens,

2. Lerner has a third component that we have omitted here: a way of determining €; for
each frame. The interested reader should consult (Brent 1993).



8.2 Verb Subcategorization 275

a sampling method that results in a small proportion of low-frequency
verbs.3 Since low-frequency verbs are least likely to be comprehensively
covered in existing dictionaries, they are arguably more important to get
right than high-frequency verbs.

Manning (1993) addresses the problem of low recall by using a tagger
and running the cue detection (that is, the regular expression matching
for patterns like (8.9)) on the output of the tagger. It may seem worrying
that we now have two error-prone systems, the tagger and the cue detec-
tor, which are combined, resulting in an even more error-prone system.
However, in a framework of hypothesis testing, this is not necessarily
problematic. The basic insight is that it doesn’t really matter how reliable
a cue is as an indicator for a subcategorization frame. Even an unreliable
indicator can help us determine the subcategorization frame of a verb
reliably if it occurs often enough and we do the appropriate hypothesis
testing. For example, if cue ¢/ with error rate €; = 0.25 occurs 11 out
of 80 times, then we can still reject the null hypothesis that v/ does not
permit ¢/ with pg = 0.011 < 0.02 despite the low reliability of c/.

Allowing low-reliability cues and additional cues based on tagger out-
put increases the number of available cues significantly. As a result, a
much larger proportion of verb occurrences have cues for a given frame.
But more importantly, there are many subcategorization frames that have
no high-reliability cues, for example, subcategorization for a preposition
such as on in he relies on relatives or with in she compared the results with
earlier findings. Since most prepositions occurring after verbs are not
subcategorized for, there is simply no reliable cue for verbs subcatego-
rizing for a preposition. Manning’s method can learn a larger number of
subcategorization frames, even those that have only low-reliability cues.

Table 8.3 shows a sample of Manning’s results. We can see that preci-
sion is high: there are only three errors. Two of the errors are preposi-
tional phrases (PPs): to bridge between and to retire in. It is often difficult
to decide whether prepositional phrases are arguments (which are sub-
categorized for) or adjuncts (which aren’t). One could argue that retire
subcategorizes for the PP in Malibu in a sentence like John retires in Mal-
ibu since the verb and the PP-complement enter into a closer relationship
than mere adverbial modification. (For example, one can infer that John
ended up living in Malibu for a long time.) But the OALD does not list

3. Each occurrence of a verb in the Brown corpus had an equal chance of appearing in the
sample which biases the sample against low-frequency verbs.



276

(8.13)

8 Lexical Acquisition

Verb Correct Incorrect OALD

bridge 1 1
burden
depict
emanate
leak
occupy
remark
retire
shed

troop

O = N == NN =
—
W N U R WUl = WD

Table 8.3 Some subcategorization frames learned by Manning’s system. For
each verb, the table shows the number of correct and incorrect subcategoriza-
tion frames that were learned and the number of frames listed in the Oxford
Advanced Learner’s Dictionary (Hornby 1974). Adapted from (Manning 1993).

“NP in-PP” as a subcategorization frame, and this was what was used as
the gold standard for evaluation.

The third error in the table is the incorrect assignment of the intransi-
tive frame to remark. This is probably due to sentences like (8.13) which
look like remark is used without any arguments (except the subject).

“And here we are 10 years later with the same problems,” Mr. Smith re-
marked.

Recall in table 8.3 is relatively low. Recall here is the proportion of sub-
categorization frames listed in the OALD that were correctly identified.
High precision and low recall are a consequence of the hypothesis testing
framework adopted here. We only find subcategorization frames that are
well attested. Conversely, this means that we do not find subcategoriza-
tion frames that are rare. An example is the transitive use of leak as in
he leaked the news, which was not found due to an insufficient number
of occurrences in the corpus.

Table 8.3 is only a sample. Precision for the complete set of 40 verbs
was 90%, recall was 43%. One way to improve these results would be
to incorporate prior knowledge about a verb’s subcategorization frame.
While it is appealing to be able to learn just from raw data, without any
help from a lexicographer’s work, results will be much better if we take



8.2 Verb Subcategorization 277

prior knowledge into account. The same pattern can be strong evidence
for a new, unlisted subcategorization frame for one verb but evidence
for a different frame with another verb. This is particularly true if we
continue in the direction of more structured input to the subcategoriza-
tion detector and use a parser instead of just a tagger. The simplest way
of specifying prior knowledge would be to stipulate a higher prior for
subcategorization frames listed in the dictionary.

As an example of how prior knowledge would improve accuracy, sup-
pose we analyze a particular syntactic pattern (say, V NP S) and find two
possible subcategorization frames f! (subject, object) and f? (subject,
object, clause) with a slightly higher probability for f!. This is our exam-
ple (8.8). A parser could choose f! (subject, object) for a verb for which
both frames have the same prior and f? (subject, object, clause) for a verb
for which we have entered a bias against f! using some prior knowledge.
For example, if we know that email is a verb of communication like tell,
we may want to disfavor frames without clauses, and the parser would
correctly choose frame f2 (subject, object, clause) for I emailed my boss
where I had put the file with the slide presentation. Such a system based
on an incomplete subcategorization dictionary would make better use of
a corpus than the systems described here and thus achieve better results.

Exercise 8.1 [*]

A potential problem with the inclusion of low-reliability cues is that they ‘wa-
ter down’ the effectiveness of high-reliability cues if we combine all cues in one
regular expression pattern, resulting in lower recall. How can we modify the
hypothesis test to address this problem? Hint: Consider a multinomial distribu-
tion.

Exercise 8.2 [*]

Suppose a subcategorization frame for a verb is very rare. Discuss the difficulty
of detecting such a frame with Brent and Manning’s methods.

Exercise 8.3 [*]

Could one sharpen the hypothesis test for a low-frequency subcategorization
frame f/ by taking as the event space the set of occurrences of the verb that
could potentially be instances of the subcategorization frame? Consider a verb
that is mostly used transitively (with a direct object NP), but that has some oc-
currences that subcategorize only for a PP. The methods discussed above would
count transitive uses as evidence against the possibility of any intransitive use.
With an appropriately reduced event space, this would no longer be true. Discuss
advantages and disadvantages of such an approach.
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Exercise 8.4 [*]

A difficult problem in an approach using a fixed significance level (¢ = 0.02 in
Brent’s work) and a categorical classification scheme (the verb takes a particular
frame, yes/no) is to determine the threshold such that as many subcategoriza-
tion classifications as possible are correct (high precision), but not too many
frames are missed (high recall). Discuss how this problem might be alleviated in
a probabilistic framework in which we determine P(f/|v') instead of making a
binary decision.

Exercise 8.5 [*]

In an approach to subcategorization acquisition based on parsing and priors,
how would you combine probabilistic parses and priors into a posterior estimate
of the probability of subcategorization frames? Assume that the priors are given
in the form P(f/|v'), and that parsing a corpus gives you a number of estimates
of the form P(sx|f’) (the probability of sentence k given that verb V! in the
sentence occurs with frame fJ).

Attachment Ambiguity

A pervasive problem in parsing natural language is resolving attachment
ambiguities. When we try to determine the syntactic structure of a sen-
tence, a problem that we consider in general in chapter 12, there are
often phrases that can be attached to two or more different nodes in
the tree, and we have to decide which one is correct. PP attachment is
the attachment ambiguity problem that has received the most attention
in the Statistical NLP literature. We saw an example of it in chapter 3
example (3.65), here repeated as (8.14):

The children ate the cake with a spoon.

Depending on where we attach the prepositional phrase with a spoon,
the sentence can either mean that the children were using a spoon to eat
the cake (the PP is attached to ate), or that of the many cakes that they
could have eaten the children ate the one that had a spoon attached (the
PP is attached to cake). This latter reading is anomalous with this PP,
but would be natural for the PP with frosting. See figure 3.2 in chapter 3
for the two different syntactic trees that correspond to the two attach-
ments. This type of syntactic ambiguity occurs in every sentence in which
a prepositional phrase follows an object noun phrase. The reason why
the sentence in (1.12) had so many parses was because there were a lot
of PPs (and participial relative clauses) which can attach at various places
syntactically. In this section, we introduce a method for determining the
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attachment of prepositional phrases based on lexical information that is
due to Hindle and Rooth (1993).

How are such ambiguities to be resolved? While one could imagine con-
textualizing a discourse where with a spoon was used as a differentiator
of cakes, it was natural in the above example to see it as a tool for eating,
and thus to choose the verb attachment. This seems to be true for many
naturally occurring sentences:

a. Moscow sent more than 100,000 soldiers into Afghanistan ...
b. Sydney Water breached an agreement with NSW Health ...

In these examples, only one attachment results in a reasonable interpre-
tation. In (8.15a), the PP into Afghanistan must attach to the verb phrase
headed by send, while in (8.15b), the PP with NSW Health must attach
to the NP headed by agreement. In cases like these, lexical preferences
can be used to disambiguate. Indeed, it turns out that, in most cases,
simple lexical statistics can determine which attachment is the correct
one. These simple statistics are basically co-occurrence counts between
the verb and the preposition on the one hand, and between the noun and
the preposition on the other. In a corpus, we would find lots of cases
where into is used with send, but only a few where into is used with sol-
dier. So we can be reasonably certain that the PP headed by into in (8.15a)
attaches to send, not to soldiers.

A simple model based on this information is to compute the following
likelihood ratio A (cf. section 5.3.4 on likelihood ratios).

P(plv)

P(pln)

where P(p|v) is the probability of seeing a PP with p after the verb v
and P(p|n) is the probability of seeing a PP with p after the noun n.
We can then attach to the verb for A(v,n,p) > 0 and to the noun for
A(v,n,p) <O0.

The trouble with this model is that it ignores the fact that other things
being equal, there is a preference for attaching phrases “low” in the parse
tree. For PP attachment, the lower node is the NP node. For example, the
tree in figure 3.2 (b) attaches the PP with the spoon to the lower NP node,
the tree in figure 3.2 (a) attaches it to the higher VP node. One can explain
low attachments with a preference for local operations. When we process
the PP, the NP is still fresh in our mind and so it is easier to attach the PP
to it.

A(v,n,p) = log
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w C(w) C(w,with)
end 5156 607
venture 1442 155

Table 8.4 An example where the simple model for resolving PP attachment
ambiguity fails.

The following example from the New York Times shows why it is im-
portant to take the preference for attaching low into account:

Chrysler confirmed that it would end its troubled venture with Maserati.

The preposition with occurs frequently after both end (e.g., the show
ended with a song) and venture (e.g., the venture with Maserati). The
data from the New York Times corpus in table 8.4, when plugged into
equation (8.16), predict attachment to the verb:

607 155
P(p|V) = ﬁ ~ (0.118 > 0.107 =~ m = P(pln)

But that is the wrong decision here. The model is wrong because equa-
tion (8.16) ignores a bias for low attachment in cases where a preposition
is equally compatible with the verb and the noun. We will now develop a
probabilistic model for PP attachment that formalizes this bias.

Hindle and Rooth (1993)

In setting up the probabilistic model that is due to Hindle and Rooth
(1993), we first define the event space. We are interested in sentences
that are potentially ambiguous with respect to PP attachment. So we
define the event space to consist of all clauses that have a transitive verb
(a verb with an object noun phrase), an NP following the verb (the object
noun phrase) and a PP following the NP.”> Our goal is to resolve the PP
attachment ambiguity in these cases.

In order to reduce the complexity of the model, we limit our attention
to one preposition at a time (that is, we are not modeling possible inter-
actions between PPs headed by different prepositions, see exercise 8.8),

4. We used the subset of texts from chapter 5.

5. Our terminology here is a little bit sloppy since the PP is actually part of the NP when
it attaches to the noun, so, strictly speaking, it does not follow the NP. So what we mean
here when we say “NP” is the base NP chunk without complements and adjuncts.
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and, if there are two PPs with the same preposition in sequence, then we
will only model the behavior of the first (see exercise 8.9).

To simplify the probabilistic model, we will not directly ask the ques-
tion about whether a certain preposition is attached to a certain verb or
noun. Rather, we will estimate how likely it is in general for a preposition
to attach to a verb or noun. We will look at the following two questions,
formalized by the sets of indicator random variables VA, and NA,:

VAy: Is there a PP headed by p and following the verb v which attaches
to v (VA, = 1) or not (VA, = 0)?

NAy: Is there a PP headed by p and following the noun n which attaches
to n (NAp = 1) or not (NA, = 0)?

Note that we are referring to any occurrence of the preposition p here
rather than to a particular instance. So it is possible for both NA, and
VA, to be 1 for some value of p. For instance, this is true for p = on in
the sentence:

He put the book [on World War II] [on the table].

For a clause containing the sequence “v ...n ...PP,” we wish to calcu-
late the probability of the PP headed with preposition p attaching to the
verb v and the noun n, conditioned on v and n:

P(VAp,NAylv,n) = P(VAylv,n)P(NA,lv,n)
= P(VAp|V)P(NAy|n)

In (8.19), we assume conditional independence of the two attachments
- that is, whether a PP occurs modifying n is independent of whether
one occurs modifying v. In (8.20), we assume that whether the verb is
modified by a PP does not depend on the noun and whether the noun is
modified by a PP does not depend on the verb.

That we are treating attachment of a preposition to a verb and to a noun
(i.e.,, VA, and NA,) as independent events seems counterintuitive at first
since the problem as stated above posits a binary choice between noun
and verb attachment. So, rather than being independent, attachment to
the verb seems to imply non-attachment to the noun and vice versa. But
we already saw in (8.18) that the definitions of VA, and NA, imply that
both can be true. The advantage of the independence assumption is that
it is easier to derive empirical estimates for the two variables separately
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rather than estimating their joint distribution. We will see below how we
can estimate the relevant quantities from an unlabeled corpus.

Now suppose that we wish to determine the attachment of a PP that is
immediately following an object noun. We can compute an estimate in
terms of model (8.20) by computing the probability of NA, = 1.

P(Attach(p) = nlv,n) = P(VA, =0V VA, =1|v) xP(NA, = 1|n)
= 1.0xXP(NA, =1|n)
= P(NA, =1|n)

So we do not need to consider whether VA, = 0 or VA, = 1, since while
there could be other PPs in the sentence modifying the verb, they are
immaterial to deciding the status of the PP immediately after the noun
head.

In order to see that the case VA, = 1 and NA, = 1 does not make
Attach(p) = v true, let’s look at what these two premises entail. First,
there must be two prepositional phrases headed by a preposition of type
p. This is because we assume that any given PP can only attach to one
phrase, either the verb or the noun. Second, the first of these two PPs
must attach to the noun, the second to the verb. If it were the other way
round, then we would get crossing brackets. It follows that VA, = 1 and
NA, = 1 implies that the first PP headed by p is attached to the noun, not
to the verb. So Attach(p) # v holds in this case.

In contrast, because there cannot be crossing lines in a phrase structure
tree, in order for the first PP headed by the preposition p to attach to the
verb, both VA, = 1 and NA, = 0 must hold. Substituting the appropriate
values in model (8.20) we get:

P(Attach(p) = v|v,n) P(VA, = 1,NA, = 0|v,n)

— P(VA, = 1|v)P(NA, = 0|n)

We can again assess P (Attach(p) = v) and P (Attach(p) = n) via a likeli-
hood ratio A.

og P(Attach(p) = v|v,n)
2 P(Attach(p) = n|v,n)

log, T VA = 11v)P(NA, = 0]v)
2 P(NA, = 1|n)

A(v,n,p)

We choose verb attachment for large positive values of A and noun attach-
ment for large negative values. We can also make decisions for values of
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A closer to zero (verb attachment for positive A and noun attachment for
negative A), but there is a higher probability of error.

How do we estimate the probabilities P(VA, = 1|v) and P(NA, = 1|n)
that we need for equation (8.22)? The simplest method is to rely on
maximum likelihood estimates of the familiar form:

P(VA, =1]v) = CC(Y’V‘)’)
P(NA, = 1n) = Cc(’g”q’)g)

where C(v) and C(n) are the number of occurrences of v and n in the
corpus, and C(v,p) and C(n, p) are the number of times that p attaches
to v and p attaches to n. The remaining difficulty is to determine the
attachment counts from an unlabeled corpus. In some sentences the
attachment is obvious.

a. The road to London is long and winding.
b. She sent him into the nursery to gather up his toys.

The prepositional phrase in italics in (8.22a) must attach to the noun
since there is no preceding verb, and the italicized PP in (8.22b) must
attach to the verb since attachment to a pronoun like him is not possi-
ble. So we can bump up our counts for C(road, to) and C(send, into) by
one based on these two sentences. But many sentences are ambiguous.
That, after all, is the reason why we need an automatic procedure for the
resolution of attachment ambiguity.

Hindle and Rooth (1993) propose a heuristic for determining C(v, p)
and C(n,p) from unlabeled data that has essentially three steps.

1. Build an initial model by counting all unambiguous cases (examples
like (8.22a) and (8.22h)).

2. Apply the initial model to all ambiguous cases and assign them to the
appropriate count if A exceeds a threshold (for example, A > 2.0 for
verb attachment and A < —2.0 for noun attachment).

3. Divide the remaining ambiguous cases evenly between the counts (that
is, increase both C(v, p) and C(n, p) by 0.5 for each ambiguous case).

Sentence (8.15a), here repeated as (8.23), may serve as an example of
how the method is applied (Hindle and Rooth 1993: 109-110).



284

(8.23)

(8.24)

8.3.2

8 Lexical Acquisition

Moscow sent more than 100,000 soldiers into Afghanistan ...

First we estimate the two probabilities we need for the likelihood ratio.

The count data are from Hindle and Rooth’s test corpus.

C(send, into) 86
C(send) 17425

C(soldiers,into) 1
C(soldiers) 1478

The fractional count is due to the step of the heuristic that divides the

hardest ambiguous cases evenly between noun and verb. We also have:

P(NAino = O|soldiers) = 1 — P(NAjno = 1|soldiers) ~ 0.9993

P (VAo = 1]send)

~ 0.049

P (NAjuto = 1|soldiers) ~ 0.0007

Plugging these numbers into formula (8.22), we get the following like-
lihood ratio.
0.049 x 0.9993

A(send, soldiers, into) ~ log, 00007 ~ 6.13

So attachment to the verb is much more likely (2613 =~ 70 times more
likely), which is the right prediction here. In general, the procedure is
accurate in about 80% of cases if we always make a choice (Hindle and
Rooth 1993: 115). We can trade higher precision for lower recall if we
only make a decision for values of A that exceed a certain threshold. For
example, Hindle and Rooth (1993) found that precision was 91.7% and
recall was 55.2% for A = 3.0.

General remarks on PP attachment

Much of the early psycholinguistic literature on parsing emphasized the
use of structural heuristics to resolve ambiguities, but they clearly don’t
help in cases like the PP attachments we have been looking at. For identi-
cal sequences of word classes, sometimes one parse structure is correct,
and sometimes another. Rather, as suggested by Ford et al. (1982), lexical
preferences seem very important here.

There are several major limitations to the model presented here. One
is that it only considers the identity of the preposition and the noun
and verb to which it might be attached. Sometimes other information is
important (studies suggest human accuracy improves by around 5% when
they see more than just a v,n, p triple). In particular, in sentences like
those in (8.25), the identity of the noun that heads the NP inside the PP is
clearly crucial:
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The board approved [its acquisition] [by Royal stco Ltd.] [of Toronto] [for
$27 a share] [at its monthly meeting].

Figure 8.2 Attachments in a complex sentence.

a. I examined the man with a stethoscope

b. I examined the man with a broken leg

Other information might also be important. For instance Hindle and
Rooth (1993) note that a superlative adjective preceding the noun highly
biased things towards an NP attachment (in their data). This condition-
ing was probably omitted by Hindle and Rooth because of the infrequent
occurrence of superlative adjectives. However, a virtue of the likelihood
ratio approach is that other factors can be incorporated in a principled
manner (providing that they are assumed to be independent). Much other
work has used various other features, in particular the identity of the
head noun inside the PP (Resnik and Hearst 1993; Brill and Resnik 1994;
Ratnaparkhi et al. 1994; Zavrel et al. 1997; Ratnaparkhi 1998). Franz
(1996) is able to include lots of features within a loglinear model ap-
proach, but at the cost of reducing the most basic association strength
parameters to categorical variables.

A second major limitation is that Hindle and Rooth (1993) consider
only the most basic case of a PP immediately after an NP object which
is modifying either the immediately preceding noun or verb. But there
are many more possibilities for PP attachments than this. Gibson and
Pearlmutter (1994) argue that psycholinguistic studies have been greatly
biased by their overconcentration on this one particular case. A PP sep-
arated from an object noun by another PP may modify any of the noun
inside the preceding PP, the object noun, or the preceding verb. Figure 8.2
shows a variety of the distant and complex attachment patterns that oc-
cur in texts. Additionally, in a complex sentence, a PP might not modify
just the immediately preceding verb, but might modify a higher verb. See
Franz (1997) for further discussion, and exercise 8.9.
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Other attachment issues

Apart from prepositional phrases, attachment ambiguity also occurs with
various kinds of adverbial and participial phrases and clauses, and in
noun compounds. The issue of the scope of coordinations in parsing is
also rather similar to an attachment decision, but we will not consider it
further here.

A noun phrase consisting of a sequence of three or more nouns either
has the left-branching structure [[N N] N] or the right-branching structure
[N [N N]]. For example, door bell manufacturer is left-branching: [[door
bell] manufacturer]. It’s a manufacturer of door bells, not a manufac-
turer of bells that somehow has to do with doors. The phrase woman
aid worker is an example of a right-branching NP: [woman [aid worker]].
The phrase refers to an aid worker who is female, not a worker working
for or on woman aid. The left-branching case roughly corresponds to at-
tachment of the PP to the verb ([V N P]), while the right-branching case
corresponds to attachment to the noun ([V [N P]]).

We could directly apply the formalism we’ve developed for preposi-
tional phrases to noun compounds. However, data sparseness tends to
be a more serious problem for noun compounds than for prepositional
phrases because prepositions are high-frequency words whereas most
nouns are not. For this reason, one approach is to use some form of
semantic generalization based on word classes in combination with at-
tachment information. See Lauer (1995a) for one take on the problem
(use of semantic classes for the PP attachment problem was explored by
Resnik and Hearst (1993) with less apparent success). A different exam-
ple of class-based generalization will be discussed in the next section.

As a final comment on attachment ambiguity, note that a large pro-
portion of prepositional phrases exhibit ‘indeterminacy’ with respect to
attachment (Hindle and Rooth 1993: 112). Consider the PP with them
in (8.26):

We have not signed a settlement agreement with them.

When you sign an agreement with person X, then in most cases it is an
agreement with X, but you also do the signing with X. It is rather unclear
whether the PP should be attached to the verb or the noun or whether we
should rather say that a PP like with them in sentence (8.26) should attach
to both verb and noun. Lauer (1995a) found that a significant proportion
of noun compounds also had this type of attachment indeterminacy. This
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is an example of a possibly important insight that came out of Statisti-
cal NLP work. Before Hindle and Rooth’s study, computational linguists
were not generally aware of how widespread attachment indeterminacy
is (though see Church and Patil (1982) for a counterexample).

After becoming aware of this fact, we could just say that it doesn’t mat-
ter how we attach in indeterminate cases. But the phenomenon might
also motivate us to explore new ways of determining the contribution
a prepositional phrase makes to the meaning of a sentence. The phe-
nomenon of attachment indeterminacy suggests that it may not be a
good idea to require that PP meaning always be mediated through a noun
phrase or a verb phrase as current syntactic formalisms do.

Exercise 8.6 [*]

As is usually the case with maximum likelihood estimates, they suffer in accuracy
if data are sparse. Modify the estimation procedure using one of the procedures
suggested in chapter 6. Hindle and Rooth (1993) use an ‘Add One’ method in
their experiments.

Exercise 8.7 [*]

Hindle and Rooth (1993) used a partially parsed corpus to determine C(v, p), and
C(n,p). Discuss whether we could use an unparsed corpus and what additional
problems we would have to grapple with.

Exercise 8.8 [*]

Consider sentences with two PPs headed by two different prepositions, for ex-
ample, “He put the book on Churchill in his backpack.” The model we developed
could attach on Churchill to put when applied to the preposition on and in his
backpack to book when applied to the preposition in. But that is an incorrect
parse tree since it has crossing brackets. Develop a model that makes consistent
decisions for sentences with two PPs headed by different prepositions.

Exercise 8.9 [* %]

Develop a model that resolves the attachment of the second PP in a sequence of
the form: V... N ... PP PP. There are three possible cases here: attachment to
the verb, attachment to the noun and attachment to the noun in the first PP.

Exercise 8.10 [*]

Note the following difference between a) the acquisition methods for attachment
ambiguity in this section and b) those for subcategorization frames in the last
section and those for collocations in chapter 5. In the case of PP attachment,
we are interested in what is predictable. We choose the pattern that best fits
what we would predict to happen from the training corpus. (For example, a PP
headed by in after send.) In the case of subcategorization and collocations, we
are interested in what is unpredictable, that is, patterns that shouldn’t occur if
our model was right. Discuss this difference.
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Selectional Preferences

Most verbs prefer arguments of a particular type. Such regularities are
called selectional preferences or selectional restrictions. Examples are that
the objects of the verb eat tend to be food items, the subjects of think
tend to be people, and the subjects of bark tend to be dogs. These seman-
tic constraints on arguments are analogous to the syntactic constraints
we looked at earlier, subcategorization for objects, PPs, infinitives etc.
We use the term preferences as opposed to rules because the preferences
can be overridden in metaphors and other extended meanings. For exam-
ple, eat takes non-food arguments in eating one’s words or fear eats the
soul.

The acquisition of selectional preferences is important in Statistical
NLP for a number of reasons. If a word like durian is missing from our
machine-readable dictionary, then we can infer part of its meaning from
selectional restrictions. In the case of sentence (8.27), we can infer that a
durian is a type of food.

Susan had never eaten a fresh durian before.

Another important use of selectional preferences is for ranking the
possible parses of a sentence. We will give higher scores to parses where
the verb has ‘natural’ arguments than to those with atypical arguments,
a strategy that allows us to choose among parses that are equally good
on syntactic criteria. Scoring the semantic wellformedness of a sentence
based on selectional preferences is more amenable to automated lan-
guage processing than trying to understand the meaning of a sentence
more fully. This is because the semantic regularities captured in selec-
tional preferences are often quite strong and, due to the tight syntactic
link between a verb and its arguments, can be acquired more easily from
corpora than other types of semantic information and world knowledge.

We will now introduce the model of selectional preferences proposed
by Resnik (1993, 1996). In principle, the model can be applied to any
class of words that imposes semantic constraints on a grammatically de-
pendent phrase: verb—subject, verb—direct object, verb—prepositional
phrase, adjective—~noun, noun—noun (in noun-noun compounds). But
we will only consider the case ‘verb—direct object’ here, that is, the case
of verbs selecting a semantically restricted class of direct object noun
phrases.

The model formalizes selectional preferences using two notions: selec-
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tional preference strength and selectional association. Selectional prefer-
ence strength measures how strongly the verb constrains its direct object.
It is defined as the KL divergence between the prior distribution of direct
objects (the distribution of direct objects for verbs in general) and the
distribution of direct objects of the verb we are trying to characterize.

We make two assumptions to simplify the model. First, we only take
the head noun of the direct object into account (for example, apple in
Susan ate the green apple) since the head is the crucial part of the noun
phrase that determines compatibility with the verb. Second, instead of
dealing with individual nouns, we will instead look at classes of nouns.
As usual, a class-based model facilitates generalization and parameter
estimation. With these assumptions, we can define selectional preference
strength S(v) as follows:

P(c|v)
P(c)

S(v) = D(P(CIV)IIP(C)) = > P(c|v)log

where P(C) is the overall probability distribution of noun classes and
P(C]v) is the probability distribution of noun classes in the direct object
position of v. We can take the noun classes from any lexical resource that
groups nouns into classes. Resnik (1996) uses WordNet.

Based on selectional preference strength, we can define selectional as-
sociation between a verb v and a class ¢ as follows:

P(c|v)log %
A(v,c) =
(v,c) SO
That is, the association between a verb and a class is defined as the pro-

portion that its summand P (c|v) log P P(’i‘c‘)/) contributes to the overall pref-

erence strength S(v).

Finally, we need a rule for assigning association strength to nouns (as
opposed to noun classes). If the noun n is in only one class c, then
we simply define A(v,n) £ A(v,c). If the noun is a member of several
classes, then we define its association strength as the highest association
strength of any of its classes.

A(v,n) = max A(v,c)
ceclasses(n)

A noun like chair in (8.31) is in several classes because it is polysemous
(or ambiguous).

Susan interrupted the chair.
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Nounclassc | P(c) P(cleat) P(c|see) P(clfind)
people 0.25 0.01 0.25 0.33
furniture 0.25 0.01 0.25 0.33
food 0.25 0.97 0.25 0.33
action 0.25 0.01 0.25 0.01
SPS S(v) 1.76 0.00 0.35

Table 8.5 Selectional Preference Strength (SPS). The argument distributions and
selectional preference strengths of three verbs for a classification of nouns with
four classes (based on hypothetical data).

In the case of chair, we have two candidate classes, ‘furniture’ and ‘peo-
ple’ (the latter in the sense ‘chairperson’). Equating A (v, n) with the max-
imum A(v, c¢) amounts to disambiguating the noun. In sentence (8.31) we
will base the association strength A (interrupt, chair) on the class ‘peo-
ple’ since interrupting people is much more common than interrupting
pieces of furniture, that is:

A(interrupt, people) > A(interrupt, furniture)
Hence:

A(interrupt, chair)

max Al(interrupt,c)
ceclasses(chair)

= A(interrupt, people)

So we can disambiguate chair as a by-product of determining the associ-
ation of interrupt and chair.

The hypothetical data in table 8.5 (based on (Resnik 1996: 139)) may
serve as a further illustration of the model. The table shows the prior dis-
tribution of object NPs over noun classes (assuming that there are only
the four classes shown) and posterior distributions for three verbs. The
verb eat overwhelmingly prefers food items as arguments; see’s distri-
bution is not very different from the prior distribution since all physical
objects can be seen; find has a uniform distribution over the first three
classes, but ‘disprefers’ actions since actions are not really the type of
entities that are found.

The selectional preference strengths of the three verbs are shown in
the row ‘SPS.” The numbers conform well with our intuition about the
three verbs: eat is very specific with respect to the arguments it can take,
find is less specific, and see has no selectional preferences (at least in
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our hypothetical data). Note that there is a clear interpretation of SPS
as the amount of information we gain about the argument after learning
about the verb. In the case of eat, SPS is 1.76, corresponding to almost 2
binary questions. That is just the number of binary questions we need to
get from four classes (people, furniture, food, action) to one, namely the
class ‘food’ that eat selects. (Binary logarithms were used to compute SPS
and association strength.)

Computing the association strengths between verbs and noun classes,
we find that the class ‘food’ is strongly preferred by eat (8.32) whereas
the class ‘action’ is dispreferred by find (8.33). This example shows that
the model formalizes selectional ‘dispreferences’ (negative numbers) as
well as selectional preferences (positive numbers).

Al(eat,food)
A(find, action)

1.08
—-0.13

The association strengths between see and all four noun classes are zero,
corresponding to the intuition that see does not put strong constraints
on its possible arguments.

The remaining problem is to estimate the probability that a direct ob-
ject in noun class ¢ occurs given a verb v, P(c|v) = Pp(:"‘f)). The maximum
likelihood estimate for P(v) is C(v)/>.,» C(V'), the relative frequency of
v with respect to all verbs. Resnik (1996) proposes the following estimate

for P(v,c):

1 1
P - = § .
v,0) N |classes(n)| cv,n)
newords(c)

where N is the total number of verb-object pairs in the corpus, words(c)
is the set of all nouns in class c, classes(n) is the number of noun classes
that contain n as a member and C(v,n) is the number of verb-object
pairs with v as the verb and n as the head of the object NP. This way of
estimating P (v, c) bypasses the problem of disambiguating nouns. If a
noun that is a member of two classes ¢; and ¢ occurs with v, then we
assign half of this occurrence to P(v,c;) and half to P(v, c2).

So far, we have only presented constructed examples. Table 8.6 shows
some actual data from Resnik’s experiments on the Brown corpus (Resnik
1996: 142). The verbs and nouns were taken from a psycholinguistic
study (Holmes et al. 1989). The nouns in the left and right halves of
the table are ‘typical’ and ‘atypical’ objects, respectively. For most verbs,
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Verb v Noun n A(v,n) Class Nounn A(v,n) Class

answer request 4.49 speech act tragedy 3.88 communication
find label 1.10 abstraction fever 0.22 psych. feature

hear story 1.89 communication | issue 1.89 communication
remember | reply 1.31 statement smoke 0.20 article of commerce
repeat comment 1.23 communication | journal 1.23 communication
read article 6.80 writing fashion —0.20 activity

see friend 5.79 entity method —0.01 method

write letter 7.26 writing market 0.00 commerce

IMPLICIT OBJECT
ALTERNATION

(8.35)

Table 8.6 Association strength distinguishes a verb’s plausible and implausible
objects. The left half of the table shows typical objects, the right half shows
atypical objects. In most cases, association strength A(v, n) is a good predictor
of object typicality.

association strength accurately predicts which object is typical. For ex-
ample, it correctly predicts that friend is a more natural object for see
than method. Most errors the model makes are due to the fact that it
performs a form of disambiguation, by choosing the highest association
strength among the possible classes of the noun (cf. the example of chair
we discussed earlier). Even if a noun is an atypical object, if it has a
rare interpretation as a plausible object, then it will be rated as typical.
An example of this is hear. Both story and issue can be forms of commu-
nication, but this meaning is rarer for issue. Yet the model chooses the
rare interpretation because it makes more sense for the verb hear.

Apart from the specific question of selectional preference, Resnik also
investigates how well the model predicts whether or not a verb has the
so-called implicit object alternation (or unspecified object alternation, see
Levin (1993: 33)). An example is the alternation between sentences (8.35a)
and (8.35b). The verb eat alternates between explicitly naming what was
eaten (8.35a) and leaving the thing eaten implicit (8.35b).

a. Mike ate the cake.
b. Mike ate.

The explanation Resnik offers for this phenomenon is that the more
constraints a verb puts on its object, the more likely it is to permit the
implicit-object construction. The intuition is that for a verb like eat with a
strong selectional preference, just knowing the verb gives us so much in-
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formation about the direct object that we don’t have to mention it. Resnik
finds evidence that selectional preference strength is a good predictor of
the permissibility of the implicit-object alternation for verbs.

We can now see why Resnik’s model defines selectional preference
strength (SPS) as the primary concept and derives association strength
from it. SPS is seen as the more basic phenomenon which explains the
occurrence of implicit objects as well as association strength.

An alternative is to define association strength directly as P(c|v) - or
as P(n|v) if we don’t want to go through an intermediate class represen-
tation. Approaches to computing P (n|v) include distributional clustering
(the work by Pereira et al. (1993) described in chapter 14) and methods
for computing the similarity of nouns. If a measure of the similarity of
nouns is available, then P (n|v) can be computed from the distribution of
nouns similar to n that are found in the argument slot of v. See the next
section for more on this approach.

Exercise 8.11 [*]

As we pointed out above, we can use a model of selectional preferences for dis-
ambiguating nouns by computing the association strengths for different senses
of the noun. This strategy assumes that we know what the senses of the noun
are and which classes they are members of. How could one use selectional pref-
erences to discover senses of nouns whose senses we don’t know?

Exercise 8.12 [*]
Verbs can also be ambiguous as in the case of fire in these two sentences.

a. The president fired the chief financial officer.
b. Mary fired her gun first.

How can the model be used to disambiguate verbs? Consider two scenarios, one
in which we have a training set in which verb senses are labeled, one in which we
don’t.

Exercise 8.13 [*]

The model discussed in this section assigns the noun sense with the maximum
association strength. This approach does not take prior probabilities into ac-
count. We may not want to choose an extremely rare sense of a noun even if it
is the best fit as the object NP of a verb.

Example: The noun shot has the rare meaning ‘marksman’ as in John was reputed
to be a crack shot. So, theoretically, we could choose this sense for shot in
the sentence John fired a shot, corresponding to the meaning John laid off a
marksman.

How could prior probabilities be used to avoid such incorrect inferences?
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Exercise 8.14 [% %]

In the approach developed above, WordNet is treated as a flat set of noun classes,
but it is actually a hierarchy. How could one make use of the information present
in the hierarchy (for example, the fact, that the class ‘dog’ is a subclass of ‘animal’
which in turn is a subclass of ‘entity’)?

Exercise 8.15 [**]

Verbs can be organized into a hierarchy too. How could one use hierarchical
information about verbs for better parameter estimation?

Exercise 8.16 [*]

One assumption of the model is that it is the head noun that determines the
compatibility of an object NP with the selectional preferences of the verb. How-
ever, as pointed out by Resnik (1996: 137), that is not always the case. Examples
include negation (you can’t eat stones), and certain adjectival modifiers (he ate
a chocolate firetruck; the tractor beam pulled the ship closer); neither stones
nor firetrucks are compatible with the selectional preferences of eat, but these
sentences are still well-formed. Discuss this problem.

Exercise 8.17 [*]

Hindle and Rooth (1993) go through several iterations of estimating initial pa-
rameters of their model, disambiguating some ambiguous attachments and re-
estimating parameters based on disambiguated instances. How could this ap-
proach be used to estimate the prior probabilities of noun classes in (8.34)?
The goal would be to improve on the uniform distribution over possible classes
assumed in the equation.

Exercise 8.18 [*]

Resnik’s model expresses association strength as a proportion of selectional
preference strength. This leads to interesting differences from an approach
based on formalizing selectional preference as P(n|v). Compare two noun-verb
pairs with equal P(n|v), that is, P(ni|vy) = P(ny|v»). If the selectional prefer-
ence strength of v; is much larger than that of v, then we get A(vy,c(n;)) <
A(vy,c(ny)). So the two models make different predictions here. Discuss these
differences.

Semantic Similarity

The holy grail of lexical acquisition is the acquisition of meaning. There
are many tasks (like text understanding and information retrieval) for
which Statistical NLP could make a big difference if we could automati-
cally acquire meaning. Unfortunately, how to represent meaning in a way
that can be operationally used by an automatic system is a largely un-
solved problem. Most work on acquiring semantic properties of words
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has therefore focused on semantic similarity. Automatically acquiring a
relative measure of how similar a new word is to known words (or how
dissimilar) is much easier than determining what the meaning actually is.
Despite its limitations, semantic similarity is still a useful measure to
have. It is most often used for generalization under the assumption that
semantically similar words behave similarly. An example would be the
problem of selectional preferences that we discussed in the previous
section. Suppose we want to find out how appropriate durian is as an
argument of eat in sentence (8.37) (our previous example (8.27)):

Susan had never eaten a fresh durian before.

Suppose further that we don’t have any information about durian except
that it’'s semantically similar to apple, banana, and mango, all of which
perfectly fit the selectional preferences of eat. Then we can generalize
from the behavior of apple, banana, and mango to the semantically sim-
ilar durian and hypothesize that durian is also a good argument of eat.
This scheme can be implemented in various ways. We could base our
treatment of durian only on the closest semantic neighbor (say, mango),
or we could base it on a combination of evidence from a fixed number of
nearest neighbors, a combination that can be weighted according to how
semantically similar each neighbor is to durian.

Similarity-based generalization is a close relative of class-based gener-
alization. In similarity-based generalization we only consider the closest
neighbors in generalizing to the word of interest. In class-based general-
ization, we consider the whole class of elements that the word of interest
is most likely to be a member of. (See exercise 8.20.)

Semantic similarity is also used for query expansion in information re-
trieval. A user who describes a request for information in her own words
may not be aware of related terms which are used in the documents that
the user would be most interested in. If a user describes a request for
documents on Russian space misions using the word astronaut, then a
query expansion system can suggest the term cosmonaut based on the
semantic similarity between astronaut and cosmonaut.

Another use of semantic similarity is for so-called k nearest neighbors
(or KNN) classification, see section 16.4). We first need a training set of
elements that are each assigned to a category. The elements might be
words and the categories might be topic categories as they are used by
newswire services (‘financial,” ‘agriculture,” ‘politics’ etc.). In KNN classi-
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fication we assign a new element to the category that is most prevalent
among its k nearest neighbors.

Before delving into the details of how to acquire measures of semantic
similarity, let us remark that semantic similarity is not as intuitive and
clear a notion as it may seem at first. For some, semantic similarity is an
extension of synonymy and refers to cases of near-synonymy like the pair
dwelling/abode. Often semantic similarity refers to the notion that two
words are from the same semantic domain or topic. On this understand-
ing of the term, words are similar if they refer to entities in the world that
are likely to co-occur like doctor, nurse, fever, and intravenous, words
that can refer to quite different entities or even be members of different
syntactic categories.

One attempt to put the notion of semantic similarity on a more solid
footing is provided by Miller and Charles (1991), who show that judge-
ments of semantic similarity can be explained by the degree of contextual
interchangeability or the degree to which one word can be substituted for
another in context.

Note that ambiguity presents a problem for all notions of semantic
similarity. If a word is semantically similar to one sense of an ambiguous
word, then it is rarely semantically similar to the other sense. For exam-
ple, litigation is similar to the legal sense of suit, but not to the ‘clothes’
sense. When applied to ambiguous words, semantically similar usually
means ‘similar to the appropriate sense’.

Vector space measures

A large class of measures of semantic similarity are best conceptualized
as measures of vector similarity. The two words whose semantic similar-
ity we want to compute are represented as vectors in a multi-dimensional
space. Figures 8.3, 8.4, and 8.5 give (constructed) examples of such multi-
dimensional spaces (see also figure 15.5).

The matrix in figure 8.3 represents words as vectors in document space.
Entry a;; contains the number of times word j occurs in document i.
Words are deemed similar to the extent that they occur in the same doc-
uments. In document space, cosmonaut and astronaut are dissimilar (no
shared documents); truck and car are similar since they share a docu-
ment: they co-occur in dy.

The matrix in figure 8.4 represents words as vectors in word space.
Entry b;; contains the number of times word j co-occurs with word 1.
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cosmonaut astronaut moon car truck
dy | 1 0 1 1 0
d» | O 1 1 0 0
d; | 1 0 0 0 0
dy | O 0 0 1 1
ds | 0 0 0 1 0
dg | O 0 0 0 1
Figure 8.3 A document-by-word matrix A.
cosmonaut astronaut moon car truck
cosmonaut | 2 0 1 1 0
astronaut 0 1 1 0 0
moon 1 1 2 1 0
car 1 0 1 3 1
truck 0 0 0 1 2
Figure 8.4 A word-by-word matrix B.
cosmonaut astronaut moon car truck
Soviet 1 0 0 1 1
American 0 1 0 1 1
spacewalking | 1 1 0 0 0
red 0 0 0 1 1
full 0 0 1 0 0
old 0 0 0 1 1

297

Figure 8.5 A modifier-by-head matrix C. The nouns (or heads of noun phrases)

in the top row are modified by the adjectives in the left column.

Co-occurrence can be defined with respect to documents, paragraphs or
other units. Words are similar to the extent that they co-occur with the
same words. Here, cosmonaut and astronaut are more similar than before
since they both co-occur with moon.

We have defined co-occurrence in figure 8.4 with respect to the doc-
uments in figure 8.3. In other words, the following relationship holds:
B = AT A. (Here -1 is the transpose, where we swap the rows and columns

so that X; = Xji.)

The matrix in figure 8.5 represents nouns (interpreted as heads of noun
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phrases) as vectors in modifier space. Entry c;; contains the number of
times that head j is modified by modifier i. Heads are similar to the ex-
tent that they are modified by the same modifiers. Again, cosmonaut and
astronaut are similar. But, interestingly moon is dissimilar from cosmo-
naut and astronaut here, in contrast to the document space in figure 8.3
and the word space in figure 8.4. This contrast demonstrates that differ-
ent spaces get at different types of semantic similarity. The type of un-
differentiated co-occurrence information in document and word spaces
captures topical similarity (words pertaining to the same topic domain).
Head-modifier information is more fine-grained. Although astronaut and
moon are part of the same domain (‘space exploration’), they are obvi-
ously entities with very different properties (a human being versus a
celestial body). Different properties correspond to different modifiers,
which explains why the two words come out as dissimilar on the head-
modifier metric.%

The three matrices also have an interesting interpretation if we look
at the similarity of rows instead of the similarity of columns (or, equiv-
alently, look at the similarity of columns of the transposed matrices).
Looking at the matrices this way, A defines similarity between docu-
ments. This is the standard way of defining similarity among documents
and between documents and queries in information retrieval. Matrix C
defines similarity between modifiers when transposed. For example, red
and old are similar (they share car and truck), suggesting that they are
used to modify the same types of nouns. Matrix B is symmetric, So
looking at similarity of rows is no different from looking at similarity
of columns.

So far we have appealed to an intuitive notion of vector similarity. Ta-
ble 8.7 defines several measures that have been proposed to make this
notion precise (adapted from (van Rijsbergen 1979: 39)). At first, we only
consider binary vectors, that is, vectors with entries that are either 0 or 1.
The simplest way to describe a binary vector is as the set of dimensions
on which it has non-zero values. So, for example, the vector for cosmo-
naut in figure 8.5 can be represented as the set {Soviet, spacewalking}.
Having done this, we can calculate similarities using set operations, as in
table 8.7.

6. See Grefenstette (1996) and Schiitze and Pedersen (1997) for a discussion of the pros
and cons of measuring word similarity based on associations versus head-modifier rela-
tionships.
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Similarity measure Definition
matching coefficient XnY
i - 2[XNY]
Dice coefficient XITTY]
Jaccard (or Tanimoto) coefficient Iigﬂ
. | XNnY]|
Overlap coefficient XY
. [ XnY]
cosine —
VIXIXY]

Table 8.7 Similarity measures for binary vectors.

The first similarity measure, the matching coefficient, simply counts the
number of dimensions on which both vectors are non-zero. In contrast
to the other measures, it does not take into account the length of the
vectors and the total number of non-zero entries in each.”

The Dice coefficient normalizes for length by dividing by the total num-
ber of non-zero entries. We multiply by 2 so that we get a measure that
ranges from 0.0 to 1.0 with 1.0 indicating identical vectors.

The Jaccard coefficient penalizes a small number of shared entries (as
a proportion of all non-zero entries) more than the Dice coefficient does.
Both measures range from 0.0 (no overlap) to 1.0 (perfect overlap), but the
Jaccard coefficient gives lower values to low-overlap cases. For example,
two vectors with ten non-zero entries and one common entry get a Dice
score of 2x1/(10+10) = 0.1 and a Jaccard score of 1/(10+10—-1) = 0.05.
The Jaccard coefficient is frequently used in chemistry as a measure of
similarity between chemical compounds (Willett and Winterman 1986).

The Overlap coefficient has the flavor of a measure of inclusion. It has
avalue of 1.0 if every dimension with a non-zero value for the first vector
is also non-zero for the second vector or vice versa (in other words if
XcYorY cX).

The cosine is identical to the Dice coefficient for vectors with the same
number of non-zero entries (see exercise 8.24), but it penalizes less in
cases where the number of non-zero entries is very different. For ex-
ample, if we compare one vector with one non-zero entry and another
vector with 1000 non-zero entries and if there is one shared entry, then

7. This can be desirable to reflect our confidence in the similarity judgement. Hindle
(1990) recommends a measure for noun similarity with this property.
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we get a Dice coefficient of 2 X 1/(1 + 1000) ~ 0.002 and a cosine of
1/+/1000 x 1 ~ 0.03. This property of the cosine is important in Statisti-
cal NLP since we often compare words or objects that we have different
amounts of data for, but we don't want to say they are dissimilar just
because of that.

So far we have looked at binary vectors, but binary vectors only have
one bit of information on each dimension. A more powerful represen-
tation for linguistic objects is the real-valued vector space. We will not
give a systematic introduction to linear algebra here, but let us briefly
review the basic concepts of vector spaces that we need in this book.
A real-valued vector X of dimensionality n is a sequence of n real num-
bers, where x; denotes the i component of X (its value on dimension i).
The components of a vector are properly written as a column:

X1

Xn

However, we sometimes write vectors horizontally within paragraphs. We
write R" for the vector space of real-valued vectors with dimensionality
n, so we have X € R". In a Euclidean vector space, the length of a vector
is defined as follows.

R n
Xl = Zi:lxi2

Finally, the dot product between two vectors is defined as X-y = > | X; V.

The cosine, the last similarity measure we introduced for binary vec-
tors, is also the most important one for real-valued vectors. The cosine
measures the cosine of the angle between two vectors. It ranges from 1.0
(cos(0°) = 1.0) for vectors pointing in the same direction over 0.0 for or-
thogonal vectors (cos(90°) = 0.0) to —1.0 for vectors pointing in opposite
directions (cos(180°) = —1.0).

For the general case of two n-dimensional vectors X and ¥ in a real-
valued space, the cosine measure can be calculated as follows:

- >

_ Xy sl XiYi
NNy

This definition highlights another interpretation of the cosine, the inter-
pretation as the normalized correlation coefficient. We compute how well

cos(X,y)
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the x; and the y; correlate and then divide by the (Euclidean) length of
the two vectors to scale for the magnitude of the individual x; and y;.

We call a vector normalized if it has unit length according to the Eu-
clidean norm:

n
Xl => x2=1

i=1
For normalized vectors, the cosine is simply the dot product:
cos(X,y) =X-y

The Euclidean distance between two vectors measures how far apart
they are in the vector space:

N o n
X =yl = Zi=1(><i - yi)?

An interesting property of the cosine is that, if applied to normalized
vectors, it will give the same ranking of similarities as Euclidean distance
does. That is, if we only want to know which of two objects is closest to
a third object, then cosine and Euclidean distance give the same answer
for normalized vectors. The following derivation shows why ranking ac-
cording to cosine and Euclidean distance comes out to be the same:

n
(IX-¥D?* = D> (xi—y)?
i=1
n n n
= > XE-2> xyi+ DV
i=1 i=1 i=1
n
= 1—22xiy,-+1

i=1
= 201-%-y)

Finally, the cosine has also been used as a similarity measure of prob-
ability distributions (Goldszmidt and Sahami 1998). Two distributions
{pi} and {g;} are first transformed into {./p;} and {,/q;}. Taking the
cosine of the two resulting vectors gives the measure D = Y[, ./Pidi,
which can be interpreted as the sum over the geometric means of the
{pi} and {g;}.

Table 8.8 shows some cosine similarities computed for the New York
Times corpus described in chapter 5. We compiled a 20,000-by-1,000 ma-
trix similar to the word-by-word matrix in figure 8.4. As rows we selected
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Focus word Nearest neighbors

garlic sauce .732 pepper .728 salt .726 cup .726
fallen fell 932 decline .931 rise 930 drop 929
engineered | genetically .758 drugs  .688 research .687 drug .685
Alfred named .814 Robert .809 William .808 W .808
simple something .964 things .963 You 963 always .962

Table 8.8 The cosine as a measure of semantic similarity. For each of the five
words in the left column, the table shows the words that were most similar
according to the cosine measure when applied to a word-by-word co-occurrence
matrix. For example, sauce is the word that is most similar to garlic. The cosine
between the vectors of sauce and garlic is 0.732.

the 20,000 most frequent words, as columns the 1,000 most frequent
words (after elimination of the 100 most frequent words in both cases).
Instead of raw co-occurrence counts, we used the logarithmic weighting
function f(x) = 1 + log(x) for non-zero counts (see section 15.2.2). A co-
occurrence event was defined as two words occurring within 25 words
of each other. The table shows cosine similarities between rows of the
matrix.

For some word pairs, cosine in word space is a good measure of se-
mantic similarity. The neighbors of garlic are generally close in meaning
to garlic (with the possible exception of cup). The same is true for fallen.
Note, however, that grammatical distinctions are not reflected because
co-occurrence information is insensitive to word order and grammatical
dependencies (the past participle fallen and the past tense fell are near-
est neighbors of each other). The word engineered shows the corpus-
dependency of the similarity measure. In the New York Times, the word
is often used in the context of genetic engineering. A corpus of automo-
bile magazine articles would give us a very different set of neighbors of
engineered. Finally, the words Alfred and simple show us the limits of
the chosen similarity measure. Some of the neighbors of Alfred are also
names, but this is a case of part-of-speech similarity rather than seman-
tic similarity. The neighbors of simple seem completely random. Since
simple is frequently used and its occurrences are distributed throughout
the corpus, co-occurrence information is not useful here to characterize
the semantics of the word.

The examples we have given demonstrate the advantage of vector
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spaces as a representational medium: their simplicity. It is easy to visu-
alize vectors in a two-dimensional or three-dimensional space. Equating
similarity with the extent to which the vectors point in the same direction
is equally intuitive. In addition, vector space measures are easy to com-
pute. Intuitive simplicity and computational efficiency are probably the
main reasons that vector space measures have been used for a long time
in information retrieval, notably for word-by-document matrices (Lesk
1969; Salton 1971a; Qiu and Frei 1993). Work on using vector measures
for word-by-word and modifier-by-head matrices is more recent (Grefen-
stette 1992b; Schiitze 1992b). See (Grefenstette 1992a) and (Burgess and
Lund 1997) for research demonstrating that vector-based similarity mea-
sures correspond to psychological notions of semantic similarity such as
the degree to which one word primes another.

Probabilistic measures

The problem with vector space based measures is that, except for the
cosine, they operate on binary data (yes or no). The cosine is the only
vector space measure that accommodates quantitative information, but it
has its own problems. Computing the cosine assumes a Euclidean space.
This is because the cosine is defined as the ratio of the lengths of two
sides of a triangle. So we need a measure of length, the Euclidean met-
ric. But a Euclidean space is not a well-motivated choice if the vectors
we are dealing with are vectors of probabilities or counts - which is what
most representations for computing semantic similarity are based on. To
see this observe that the Euclidean distance between the probabilities 0.0
and 0.1 is the same as the distance between the probabilities 0.9 and 1.0.
But in the first case we have the difference between impossibility and
a chance of 1 in 10 whereas in the second there is only a small differ-
ence of about 10%. The Euclidean distance is appropriate for normally
distributed quantities, not for counts and probabilities.

Matrices of counts like those in figures 8.3, 8.4, and 8.5 can be easily
transformed into matrices of conditional probabilities by dividing each
element in a row by the sum of all entries in the row (this amounts to
using maximum likelihood estimates). For example, in the matrix in fig-
ure 8.5, the entry for (American, astronaut) would be transformed into
P(American|astronaut) = % = 0.5. The question of semantic similarity
can then be recast as a question about the similarity (or dissimilarity) of
two probability distributions.
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(Dis-)similarity measure | Definition
KL divergence D(pllg) = >;pilog %

information radius (IRad) | D(p|%%) + D(qll%5%)
Ly norm >ilpi — ail

Table 8.9 Measures of (dis-)similarity between probability distributions.

Table 8.9 shows three measures of dissimilarity between probability
distributions investigated by Dagan et al. (1997b). We are already familiar
with the KL divergence from section 2.2.5. It measures how well distribu-
tion g approximates distribution p; or, more precisely, how much infor-
mation is lost if we assume distribution g when the true distribution is p.
The KL divergence has two problems for practical applications. First, we
get a value of o if there is a ‘dimension’ with g; = 0 and p; # 0 (which will
happen often, especially if we use simple maximum likelihood estimates).
Secondly, KL divergence is asymmetric, that is, usually D (pllq) = D(qllp).
The intuitive notion of semantic similarity and most other types of sim-
ilarity we are interested in is symmetric, so the following should hold:
sim(p, q) = sim(q, p).8

The second measure in table 8.9, information radius (or total diver-
gence to the average as Dagan et al. (1997b) call it), overcomes both
these problems. It is symmetric (IRad(p,q) = IRad(q,p)) and there is
no problem with infinite values since % + 0 if either p; + 0 or g; = 0.
The intuitive interpretation of IRad is that it answers the question: How
much information is lost if we describe the two words (or random vari-
ables in the general case) that correspond to p and g with their average
distribution? IRad ranges from O for identical distributions to 21log?2 for
maximally different distributions (see exercise 8.26). As usual we assume
0log0 = 0.

A third measure considered by Dagan et al. (1997b) is the L; (or Man-
hattan) norm. It also has the desirable properties of being symmetric and
well-defined for arbitrary p and g. We can interpret it as a measure of the
expected proportion of different events, that is, as the expected propor-

8. Note that in clustering, asymmetry can make sense since we are comparing two differ-
ent entities, the individual word that we need to assign to a cluster and the representation
of the cluster. The question here is how well the cluster represents the word which is
different from similarity in the strict sense of the word. See (Pereira et al. 1993).
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tion of events that are going to be different between the distributions p
and g. This is because %Ll(p,q) =1 - >;min(p;, q;), and > ; min(p;, q;)
is the expected proportion of trials with the same outcome.’

As an example consider the following conditional distributions com-
puted from the data in figure 8.5.

p1 = P(Soviet|cosmonaut) = 0.5

p2 = 0

p3 = P(spacewalking|cosmonaut) = 0.5
a = 0

g2 = P(American|astronaut) = 0.5

q3 = P(spacewalking|astronaut) = 0.5

Here we have:

1 .

SLip,@) =1- 3 min(p;,g) =1-05=0.5
i

So if we looked at the sets of adjectives that occurred with a large number
of uses of cosmonaut and astronaut in a corpus, then the overlap of the
two sets would be expected to be 0.5, corresponding to the proportion of
occurrences of spacewalking with each noun.

Dagan et al. (1997b) compared the three dissimilarity measures (KL,
IRad, and L;) on a task similar to the selectional preferences problem in
section 8.4. Instead of looking at the fit of nouns as argument of verbs,
they looked at the fit of verbs as predicates for nouns. For example, given
a choice of the verbs make and take the similarity measures were used to
determine that make is the right verb to use with plans (make plans) and
take is the right verb to use with actions (take actions).

9. The following derivation shows that %Ll(p, q) =1->;min(pi,qi):

Li(p,q) = Zi‘pi7Qi|
> [max(pi, ai) - min(pi, 1) |

> .| (i + ai - min(pi, 1)) — min(pi,ap) |
D pit > ai -2 min(pi,di)
2(1 - Zi min(mﬂi))

Note that this also shows that 0 < L1 (p,q) < 2 since >; min(p,q) = 0.
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Here is how the similarity measure is used to compute the conditional
probability P (verb|noun), which Dagan et al. (1997b) use as a measure of
‘goodness of fit:’

W(n,n")
Z AR

N1 P(v|n")

Psm(vin) =
n’eS(n)
Here, v is the verb, n is the noun, S(n) is the set of nouns closest to n
according to the similarity measure,'® W (n,n’) is a similarity measure
derived from the dissimilarity measure and N (n) is a normalizing factor:
N(n) =>, W(n,n').
This formulation makes it necessary to transform the dissimilarity
measure (KL, IRad or L;) into the similarity measure W. The following
three transformations were used.

Wxi(p,q) = 10-8Dplla)
Wirad(p,q) = 10 FRad(plla)
WLl(plq) = (Z_Ll(p,Q))B

The parameter 8 can be tuned for optimal performance.

Dagan et al. (1997b) show that IRad consistently performs better than
KL and L;. Consequently, they recommend IRad as the measure that is
best to use in general.

This concludes our brief survey of measures of semantic similarity and
dissimilarity. Vector space measures have the advantage of conceptual
simplicity and of producing a similarity value that can be directly used
for generalization. But they lack a clear interpretation of the computed
measure. Probabilistic dissimilarity measures are on a more solid footing
theoretically, but require an additional transformation to get to a mea-
sure of similarity that can be used for nearest neighbor generalization. Ei-
ther approach is valuable in acquiring semantic properties of words from
corpora by using similarity to transfer knowledge from known words to
those that are not covered in the lexicon.

Exercise 8.19 [*]

Similarity-based generalization depends on the premise that similar things be-
have similarly. This premise is unobjectionable if the two uses of the word simi-
lar here refer to the same notion. But it is easy to fall into the trap of interpreting

10. For the experiments, S(n) was chosen to be the entire set of nouns, but one can limit
the words considered to those closest to the target word.
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them differently. In that case, similarity-based generalization can give inaccurate
results.

Find examples of such potentially dangerous cases, that is, examples where
words that are similar with respect to one aspect behave very differently with
respect to another aspect.

Exercise 8.20 [*]

Similarity-based and class-based generalization are more closely related than it
may seem at first glance. Similarity-based generalization looks at the closest
neighbors and weights the input from these neighbors according to their sim-
ilarity. Class-based generalization looks at the most promising class and, in
the simplest case, generalizes the novel word to the average of that class. But
class-based generalization can be made to look like similarity-based generaliza-
tion by integrating evidence from all classes and weighting it according to how
well the element fits into each class. Similarity-based generalization looks like
class-based generalization if we view each element as a class.

Discuss the relationship between the two types of generalization. What role do
efficiency considerations play?

Exercise 8.21 [*]

Co-occurrence matrices like the one in figure 8.3 represent different types of in-
formation depending on how co-occurrence is defined. What types of words
would you expect fire to be similar to for the following definitions of co-
occurrence: co-occurrence within a document; co-occurrence within a sentence;
co-occurrence with words at a maximum distance of three words to the right;
co-occurrence with the word immediately adjacent to the right. (See Finch and
Chater (1994) and Schiitze (1995) for two studies that show how the latter type
of immediate co-occurrence can be used to discover syntactic categories.)

Exercise 8.22 [* %]

The measures we have looked at compare simple objects like vectors and proba-
bility distributions. There have also been attempts to measure semantic similar-
ity between more complex objects like trees (see (Sheridan and Smeaton 1992)
for one example). How could one measure the (semantic?) similarity between
trees? How might such an approach lead to a better measure of semantic simi-
larity between words than ‘flat’ structures?

Exercise 8.23 [*]

Select two words heading columns in figure 8.3 and compute pairwise similar-
ities using each of the measures in table 8.7 for each of the three matrices in
figures 8.3 through 8.5.

Exercise 8.24 [*]

Show that dice and cosine coefficients are identical if the two vectors compared
have the same number of non-zero entries.
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Exercise 8.25 [*]

Semantic similarity can be context-dependent. For example, electrons and tennis
balls are similar when we are talking about their form (both have a round shape)
and dissimilar when we are talking about their sizes.

Discuss to what extent similarity is context-dependent and when this can hinder
correct generalization.
Exercise 8.26 [*]

Show that divergence to the average (IRad) is bounded by 2 log 2.

Exercise 8.27 [*]

Select two words heading columns in figure 8.3 and compute the three measures
of dissimilarity in table 8.9 for each of the matrices in figures 8.3 through 8.5.
You will have to smooth the probabilities for KL divergence. Are the dissimilarity
measures asymmetric for KL divergence?

Exercise 8.28 [**]

Both the L; norm and the Euclidean norm are special cases of the Minkowski
norm Ly:

Ly(a,b) = v /> |ai - bil?

In this context, the Euclidean norm is also referred to as L,. So the L; norm
can be seen as a more appropriate version of the Euclidean norm for probability
distributions.

Another norm that has been used for vectors is L., that is L, for p — oo (Salton
et al. 1983). What well-known function does L., correspond to?

Exercise 8.29 [*]
Does a dissimilarity measure of 0 on one of the measures in table 8.9 imply that
the other two measures are 0 too?

Exercise 8.30 [*]

If two probability distributions are maximally dissimilar according to one mea-
sure in table 8.9 (e.g., IRad(p,q) = 2log2), does that imply that they are maxi-
mally dissimilar according to the other two?

The Role of Lexical Acquisition in Statistical NLP

Lexical acquisition plays a key role in Statistical NLP because available lex-
ical resources are always lacking in some way. There are several reasons
for this.
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One reason is the cost of building lexical resources manually. For many
types of lexical information, professional lexicographers will collect more
accurate and comprehensive data than automatic procedures. But often
manually constructed dictionaries are not available due to the cost of
their construction. One estimate for the average time it takes to create
a lexical entry from scratch is half an hour (Neff et al. 1993; obviously it
depends on the complexity of the entry), so manual resource construction
can be quite expensive.

There is one type of data that humans, including lexicographers, are
notoriously bad at collecting: quantitative information. So the quantita-
tive part of lexical acquisition almost always has to be done automati-
cally, even if excellent manually constructed lexical resources are avail-
able for qualitative properties.

More generally, many lexical resources were designed for human con-
sumption. The flip side of quantitative information being missing (which
may be less important for people) is that the computer has no access
to contextual information that is necessary to interpret lexical entries in
conventional dictionaries. This is expressed aptly by Mercer (1993): “one
cannot learn a new language by reading a bilingual dictionary.” An ex-
ample is the irregular plural postmen which is not listed as an exception
in the lexical entry of postman in some dictionaries because it is obvious
to a human reader that the plural of postman is formed in analogy to
the plural of man. The best solution to problems like these is often the
augmentation of a manual resource by automatic means.

Despite the importance of these other considerations motivating au-
tomated lexical acquisition, the main reason for its importance is the
inherent productivity of language. Natural language is in a constant state
of flux, adapting to the changing world by creating names and words to
refer to new things, new people and new concepts. Lexical resources have
to be updated to keep pace with these changes. Some word classes are
more likely to have coverage gaps than others. Most documents will men-
tion proper nouns that we have not encountered before whereas there
will hardly ever be newly created auxiliaries or prepositions. But the cre-
ativity of language is not limited to names. New nouns and verbs also
occur at a high rate in many texts. Words that are covered in the diction-
ary may still need the application of lexical acquisition methods because
they develop new senses or new syntactic usage patterns.

How can we quantify the amount of lexical information that has to be
learned automatically, even if lexical resources are available? For a rough
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Type of coverage problem Example

proper noun Caramello, Chateau-Chalon
foreign word perestroika

code R101

mathematical object X1

non-standard English havin’

abbreviation NLP

hyphenated word non-examination

hyphen omitted bedclothes

negated adjective unassailable

adverbs ritualistically

technical vocabulary normoglycaemia

plural of mass noun estimations

other cases deglutition, don’ts, affinitizes (VBZ)

Table 8.10 Types of words occurring in the LOB corpus that were not covered
by the OALD dictionary.

assessment, we can consult Zipf’s law and other attempts to estimate the
proportion of as yet unseen words and uses in text (see chapter 6 and,
for example, (Baayen and Sproat 1996) and (Youmans 1991)).

A more detailed analysis is provided in (Sampson 1989). Sampson
tested the coverage of a dictionary with close to 70,000 entries (the OALD,
Hornby 1974) for a 45,000 word subpart of the LOB corpus. (Numbers
were not counted as words.) He found that about 3% of tokens were not
listed in the dictionary. It is instructive to look at the different types of
words that are the cause of coverage problems. Table 8.10 lists the major
types found by Sampson and some examples.

More than half of the missing words were proper nouns. The other
half is due to the other categories in the table. Some of the coverage
problems would be expected not to occur in a larger dictionary (some
frequent proper nouns and words like unassailable). But based on Samp-
son’s findings, one would expect between one and two percent of tokens
in a corpus to be missing from even a much larger dictionary. It is also im-
portant to note that this type of study only gets at character strings that
are entirely missing from the dictionary. It is much harder to estimate
at what rate known words are used with new senses or in novel syntactic
constructions. Finally, the one to two percent of unknown words tend to
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be among the most important in a document: the name of the person pro-
filed in an article or the abbreviation for a new scientific phenomenon. So
even if novel words constitute only a small percentage of the text, having
an operational representation for their properties is paramount.

It took a long time until the limitations of dictionaries and hand-crafted
knowledge bases for successful language processing became clear to NLP
researchers. A common strategy in early NLP research was to focus on a
small subdomain to attack what seemed to be the two most fundamental
problems: parsing and knowledge representation. As a result of this
focus on small subdomains, this early research “provided nothing for
general use on large-scale texts” and “work in computational linguistics
was largely inapplicable to anything but to sub-languages of very limited
semantic and syntactic scope” (Ide and Walker 1992).

Problems of lexical coverage started to take center stage in the late
eighties when interest shifted from subdomains to large corpora and ro-
bust systems, partly due to the influence of speech recognition research.
One of the earliest pieces of work on lexical acquisition from corpora was
done for the FORCE4 system developed by Walker and Amsler (1986) at
SRI International. Since then, lexical acquisition has become one of the
most active areas of Statistical NLP.

What does the future hold for lexical acquisition? One important trend
is to look harder for sources of prior knowledge that can constrain the
process of lexical acquisition. This is in contrast to earlier work that tried
to start ‘from scratch’ and favored deriving everything from the corpus.
Prior knowledge can be discrete as is the case when a lexical hierarchy like
WordNet is used or probabilistic, for example, when a prior distribution
over object noun classes is derived from a verb’s dictionary entry and
this prior distribution is then refined based on corpora. Much of the hard
work of lexical acquisition will be in building interfaces that admit easy
specification of prior knowledge and easy correction of mistakes made in
automatic learning.

One important source of prior knowledge should be linguistic theory,
which has been surprisingly underutilized in Statistical NLP. In addition
to the attempts we have discussed here to constrain the acquisition pro-
cess using linguistic insights, we refer the reader to Pustejovsky et al.
(1993), Boguraev and Pustejovsky (1995), and Boguraev (1993) for work
that takes linguistic theory as the foundation of acquisition. The last
two articles summarize the important work on computational lexicogra-
phy done at Cambridge University (described in detail in (Boguraev and
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Briscoe 1989)), which, although mostly non-statistical, contains impor-
tant insights on how to combine theoretical linguistics and empirical ac-
quisition from lexical resources.

Dictionaries are only one source of information that can be important
in lexical acquisition in addition to text corpora. Other sources are en-
cyclopedias, thesauri, gazeteers, collections of technical vocabulary and
any other reference work or data base that is likely to contribute to a
characterization of the syntactic and semantic properties of uncommon
words and names.

The reader may have wondered why we have limited ourselves to tex-
tual sources. What about speech, images, video? Lexical acquisition has
focused on text because words are less ambiguous descriptors of content
than features that can be automatically extracted from audio and visual
data. But we can hope that, as work on speech recognition and image
understanding progresses, we will be able to ground the linguistic rep-
resentation of words in the much richer context that non-textual media
provide. It has been estimated that the average educated person reads
on the order of one million words in a year, but hears ten times as many
words spoken. If we succeed in emulating human acquisition of language
by tapping into this rich source of information, then a breakthrough in
the effectiveness of lexical acquisition can be expected.

Further Reading

There are several books and special issues of journals on lexical acqui-
sition: (Zernik 1991a), (Ide and Walker 1992), (Church and Mercer 1993),
and (Boguraev and Pustejovsky 1995). More recent work is covered in
later issues of Computational Linguistics, Natural Language Engineering,
and Computers and the Humanities. In what follows, we point the reader
to some of the work on lexical acquisition we were not able to cover.

Other approaches to the resolution of attachment ambiguity include
transformation-based learning (Brill and Resnik 1994) and loglinear mod-
els (Franz 1997). Collins and Brooks (1995) used a back-off model to
address data sparseness issues. Attachment ambiguity in noun phrases
also occurs in Romance languages. See (Bourigault 1993) for French and
(Basili et al. 1997) for Italian.

An alternative to Resnik’s information-theoretic approach to the acqui-
sition of selectional preferences is work by Li and Abe (1995) that uses a
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Minimum Description Length framework. In (Li and Abe 1996), this work
is extended to take into account the dependency between two or more
arguments of a verb. For example, drive can take car as a subject (This
car drives well), but only if there is no object. This type of regularity
can only be discovered we we look at all arguments of the verb simulta-
neously. See also (Velardi and Pazienza 1989) and (Webster and Marcus
1989) for early (non-probabilistic, but corpus-based) work on selectional
preferences.

Once we have acquired information about the selectional preferences
of a verb, we can exploit this knowledge to acquire subcategorization
frames, the first problem we looked at in this chapter. Poznanski and
Sanfilippo (1995) and Aone and McKee (1995) take this approach. For
example, a verb that takes an NP of type ‘beneficiary’ or ‘recipient’ is
likely to subcategorize for a to-PP.

Apart from semantic similarity, the automatic enhancement of hierar-
chies has been another focus in the area of acquiring semantics. Hearst
and Schiitze (1995) and Hearst (1992) describe systems that insert new
words into an existing semantic hierarchy and Coates-Stephens (1993)
and Paik et al. (1995) do the same for proper nouns. Riloff and Shep-
herd (1997) and Roark and Charniak (1998) assign words to categories
assuming a flat category structure (which can be regarded as a simplified
semantic hierarchy).

Two other important types of semantic information that attempts have
been made to acquire from corpora are antonyms (Justeson and Katz
1991) and metaphors (Martin 1991).

We suggested above that non-textual data are a worthwhile source of
information to exploit. There are some research projects that investigate
how lexical acquisition could take advantage of such data once the prob-
lem of how to automatically build a representation of the context of an
utterance has been solved. Suppes et al. (1996) stress the importance of
action-oriented matching between linguistic forms and their contextual
meaning (as opposed to acquiring word meaning from passive percep-
tion). Siskind (1996) shows that even if the contextual representation is
highly ambiguous (as one would expect in a realistic learning situation),
lexical acquisition can proceed successfully.

As a last source of information for acquiring meaning, we mention
work on exploiting morphology for this purpose. An example of a mor-
phological regularity that implies a particular type of meaning is the pro-
gressive tense. In English, only non-stative verbs occur in the progressive
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tense. Oversimplifying somewhat, we can infer from the fact that we find
he is running in a corpus, but not he is knowing that know is stative and
run is non-stative. See (Dorr and Olsen 1997), (Light 1996) and (Viegas
et al. 1996) for work along these lines. While none of these papers take
a statistical approach, such morphological information could be a fertile
ground for applying statistical methods.

We conclude these bibliographic remarks by pointing the reader to
two important bodies of non-statistical work that warrant careful study
by anybody interested in lexical acquisition. They are of great poten-
tial importance either because they suggest ways of combining statisti-
cal approaches with symbolic approaches (as in the regular-expression
post-filtering of collocations in (Justeson and Katz 1995b)) or because
the insights they offer can often be expressed in a statistical framework
as well as in a non-statistical framework, making them a valuable source
for future statistical work.

The first area is the work on building syntactic and semantic know-
ledge bases from machine-readable dictionaries described by Boguraev
and Briscoe (1989) and Jensen et al. (1993). These two books are a
good starting point for those who want to learn about the strengths and
weaknesses of dictionaries for lexical acquisition. We have focused on
corpus-based acquisition here because that has been the bias in Statisti-
cal NLP, but we believe that most future work will combine corpus-based
and dictionary-based acquisition.

The second area is the application of regular expression matching to
natural language processing. (See (Appelt et al. 1993), (Jacquemin 1994),
(Voutilainen 1995), (Sproat et al. 1996), and (Jacquemin et al. 1997) for
examples.) There are phenomena and processing steps in lexical acqui-
sition that deal with purely symbolic information and that can be well
modeled in terms of regular languages. (Tokenization of English is an
example.) In such cases, the speed and simplicity of finite state automata
cannot be matched by other methods (Roche and Schabes 1997; Levine
et al. 1992).
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